1
|
Frick DN, Bavisotto RV, Hopper NC, Tysoe WT. Analogs of NIH Molecular Probe ML283 Are Potent SARS-CoV-2 Helicase Inhibitors. ACS Chem Biol 2025. [PMID: 39910979 DOI: 10.1021/acschembio.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The National Institutes of Health molecular probe ML283 was synthesized as a potent, selective inhibitor of the helicase encoded by the hepatitis C virus. Because modeling with AutoDock Vina predicted that ML283 might bind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 13 (nsp13) helicase, the effects of a collection of ML283 analogs and other hepatitis C virus (HCV) helicase inhibitors on the SARS-CoV-2 helicase were analyzed. Only modest impacts on nsp13-catalyzed ATP hydrolyses were observed with some compounds, most of which were analogs of the drug ebselen, not ML283. In contrast, a new molecular-beacon-based helicase assay revealed that ML283 and many ML283 analogs are potent SARS-CoV-2 helicase inhibitors. Analog potencies correlate with the binding energies predicted by modeling, which suggests that a pocket surrounded by the carboxy-terminal nsp13 RecA-like helicase motor domain might be exploitable for antiviral drug development.
Collapse
Affiliation(s)
- David N Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Robert V Bavisotto
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Nicholas C Hopper
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Wilfred T Tysoe
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| |
Collapse
|
2
|
Rahmani D, Jafari A, Kesharwani P, Sahebkar A. Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates. Pathol Res Pract 2024; 263:155589. [PMID: 39276508 DOI: 10.1016/j.prp.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The 2019 widespread contagion of the human coronavirus novel type (SARS-CoV-2) led to a pandemic declaration by the World Health Organization. A daily increase in patient numbers has formed an urgent necessity to find suitable targets and treatment options for the novel coronavirus (COVID-19). Despite scientists' struggles to discover quick treatment solutions, few effective specific drugs are approved to control SARS-CoV-2 infections thoroughly. Drug repositioning or Drug repurposing and target-based approaches are promising strategies for facilitating the drug discovery process. Here, we review current in silico, in vitro, in vivo, and clinical updates regarding proposed drugs for prospective treatment options for COVID-19. Drug targets that can direct pharmaceutical sciences efforts to discover new drugs against SARS-CoV-2 are divided into two categories: Virus-based targets, for example, Spike glycoprotein and Nucleocapsid Protein, and host-based targets, for instance, inflammatory cytokines and cell receptors through which the virus infects the cell. A broad spectrum of drugs has been found to show anti-SARS-CoV-2 potential, including antiviral drugs and monoclonal antibodies, statins, anti-inflammatory agents, and herbal products.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Grimes SL, Denison MR. The Coronavirus helicase in replication. Virus Res 2024; 346:199401. [PMID: 38796132 PMCID: PMC11177069 DOI: 10.1016/j.virusres.2024.199401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.
Collapse
Affiliation(s)
- Samantha L Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Sales AH, Fu I, Durandin A, Ciervo S, Lupoli TJ, Shafirovich V, Broyde S, Geacintov NE. Variable Inhibition of DNA Unwinding Rates Catalyzed by the SARS-CoV-2 Helicase Nsp13 by Structurally Distinct Single DNA Lesions. Int J Mol Sci 2024; 25:7930. [PMID: 39063172 PMCID: PMC11276626 DOI: 10.3390/ijms25147930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2-5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions' inhibitory effects than unwinding rate constants.
Collapse
Affiliation(s)
- Ana H. Sales
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Iwen Fu
- Biology Department, New York University, 24 Waverly Place, New York, NY 10003, USA; (I.F.); (S.B.)
| | - Alexander Durandin
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Sam Ciervo
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Tania J. Lupoli
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Suse Broyde
- Biology Department, New York University, 24 Waverly Place, New York, NY 10003, USA; (I.F.); (S.B.)
| | - Nicholas E. Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| |
Collapse
|
5
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Kuzikov M, Reinshagen J, Wycisk K, Corona A, Esposito F, Malune P, Manelfi C, Iaconis D, Beccari A, Tramontano E, Nowotny M, Windshügel B, Gribbon P, Zaliani A. Drug repurposing screen to identify inhibitors of the RNA polymerase (nsp12) and helicase (nsp13) from SARS-CoV-2 replication and transcription complex. Virus Res 2024; 343:199356. [PMID: 38490582 PMCID: PMC10958470 DOI: 10.1016/j.virusres.2024.199356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany; Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Krzysztof Wycisk
- Laboratory of Protein Structure - International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Paolo Malune
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Daniela Iaconis
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Andrea Beccari
- EXSCALATE, Dompé farmaceutici S.p.A., Via Tommaso De Amicis, 95, Napoli, 80131, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure - International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany; Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, and Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
7
|
Deng M, Zhang C, Yan W, Chen L, He B, Li Y. Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle. Int J Mol Sci 2024; 25:2850. [PMID: 38474097 DOI: 10.3390/ijms25052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals.
Collapse
Affiliation(s)
- Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
8
|
Marx SK, Mickolajczyk KJ, Craig J, Thomas C, Pfeffer A, Abell S, Carrasco J, Franzi M, Huang J, Kim H, Brinkerhoff H, Kapoor T, Gundlach J, Laszlo A. Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. Nucleic Acids Res 2023; 51:9266-9278. [PMID: 37560916 PMCID: PMC10516658 DOI: 10.1093/nar/gkad660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.
Collapse
Affiliation(s)
- Sinduja K Marx
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Akira M Pfeffer
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Michaela C Franzi
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Maio N, Raza MK, Li Y, Zhang DL, Bollinger JM, Krebs C, Rouault TA. An iron-sulfur cluster in the zinc-binding domain of the SARS-CoV-2 helicase modulates its RNA-binding and -unwinding activities. Proc Natl Acad Sci U S A 2023; 120:e2303860120. [PMID: 37552760 PMCID: PMC10438387 DOI: 10.1073/pnas.2303860120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uses an RNA-dependent RNA polymerase along with several accessory factors to replicate its genome and transcribe its genes. Nonstructural protein (nsp) 13 is a helicase required for viral replication. Here, we found that nsp13 ligates iron, in addition to zinc, when purified anoxically. Using inductively coupled plasma mass spectrometry, UV-visible absorption, EPR, and Mössbauer spectroscopies, we characterized nsp13 as an iron-sulfur (Fe-S) protein that ligates an Fe4S4 cluster in the treble-clef metal-binding site of its zinc-binding domain. The Fe-S cluster in nsp13 modulates both its binding to the template RNA and its unwinding activity. Exposure of the protein to the stable nitroxide TEMPOL oxidizes and degrades the cluster and drastically diminishes unwinding activity. Thus, optimal function of nsp13 depends on a labile Fe-S cluster that is potentially targetable for COVID-19 treatment.
Collapse
Affiliation(s)
- Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - Md Kausar Raza
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, NIH, Proteomics Core Facility, Bethesda, MD20892
| | - De-Liang Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Tracey A. Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| |
Collapse
|
10
|
Yu J, Im H, Lee G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca 2+, elucidated by biochemical and single-molecular studies. Biochem Biophys Res Commun 2023; 668:35-41. [PMID: 37235917 PMCID: PMC10193821 DOI: 10.1016/j.bbrc.2023.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.
Collapse
Affiliation(s)
- Jeongmin Yu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Hyeryeon Im
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|