1
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
2
|
Wu L, Yan Y, Yuan Y, Zhao Z, Qu W, Huang X, Wang H, Li P, Li X. Viral protease binds to nucleosomal DNA and cleaves nuclear cGAS that attenuates type I interferon. mBio 2025; 16:e0339524. [PMID: 39998223 PMCID: PMC11980361 DOI: 10.1128/mbio.03395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Nuclear cyclic GMP-AMP synthetase (cGAS) binds to nucleosome with high affinity to prevent its activation by self-DNA. Upon stimulation with double-stranded DNA, cGAS is activated and translocates from the nucleus to the cytoplasm, guided by its N-terminal domain. However, it remains unclear whether viruses can hijack cGAS translocation and regulate its activation. Here, we discovered that the protease 3C of picornavirus Seneca Valley virus (SVV) translocates from the cytoplasm to the nucleus upon viral infection and binds to nuclear DNA. Protease 3C specifically cleaves histone H2A while leaving other histone proteins unaffected. Additionally, DNA binding enhances the protease 3C's ability to cleave nuclear cGAS, leading to its retention in the nucleus. This, in turn, suppresses the induction of type I interferon (IFN-I) following poly(dA:dT) stimulation. These findings reveal a novel mechanism by which a viral protease binds nuclear DNA, cleaves nuclear cGAS and histone H2A, and thereby mislocalizes cGAS, facilitating immune evasion. IMPORTANCE Cyclic GMP-AMP synthetase (cGAS) is robustly expressed in the nucleus and tightly tethered by chromatin to prevent its activation with self-DNA. During stimulation or infection, nuclear cGAS is activated and translocates from the nucleus to the cytoplasm. However, the viral strategies specifically targeting nuclear cGAS are completely unexplored. Here, we discovered that protease 3C of Seneca Valley virus translocates from the cytoplasm to the nucleus upon viral infection, binds to nuclear DNA, and specifically cleaves H2A. Furthermore, DNA binding to 3C enhances the cleavage of nuclear cGAS within its N-terminal domain. The hindrance of cGAS translocation from the nucleus to the cytoplasm results in the suppression of IFN-I induction and leads to immune evasion. This work uncovers a unique mechanism wherein a viral protease binds to nuclear DNA and cleaves nuclear cGAS and histone H2A, leading to viral evasion of cGAS-mediated immune restriction.
Collapse
Affiliation(s)
- Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyu Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Li B, Zhang C, Xu X, Shen Q, Luo S, Hu J. Manipulating the cGAS-STING Axis: advancing innovative strategies for osteosarcoma therapeutics. Front Immunol 2025; 16:1539396. [PMID: 39991153 PMCID: PMC11842356 DOI: 10.3389/fimmu.2025.1539396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
This paper explored the novel approach of targeting the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway for the treatment of osteosarcoma (OS). Osteosarcoma is a common malignancy in adolescents. Most patients die from lung metastasis. It reviewed the epidemiology and pathological characteristics of OS, highlighting its highly malignant nature and tendency for pulmonary metastasis, underscoring the importance of identifying new therapeutic targets. The cGAS-STING pathway was closely associated with the malignant biological behaviors of OS cells, suggesting that targeting this pathway could be a promising therapeutic strategy. Currently, research on the role of the cGAS-STING pathway in OS treatment has been limited, and the underlying mechanisms remain unclear. Therefore, further investigation into the mechanisms of the cGAS-STING pathway in OS and the exploration of therapeutic strategies based on this pathway are of great significance for developing more effective treatments for OS. This paper offered a fresh perspective on the treatment of OS, providing hope for new therapeutic options for OS patients by targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- BingBing Li
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Cheng Zhang
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - XiaoJuan Xu
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - QiQin Shen
- Department of Orthopedics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - ShuNan Luo
- Department of Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - JunFeng Hu
- Department of Pain, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Bhattacharya M, Bhowmik D, Yin Q. In Vitro Cleavage Assay to Characterize DENV NS2B3 Antagonism of cGAS. Methods Mol Biol 2025; 2854:153-170. [PMID: 39192127 DOI: 10.1007/978-1-0716-4108-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
cGAS is a key cytosolic dsDNA receptor that senses viral infection and elicits interferon production through the cGAS-cGAMP-STING axis. cGAS is activated by dsDNA from viral and bacterial origins as well as dsDNA leaked from damaged mitochondria and nucleus. Eventually, cGAS activation launches the cell into an antiviral state to restrict the replication of both DNA and RNA viruses. Throughout the long co-evolution, viruses devise many strategies to evade cGAS detection or suppress cGAS activation. We recently reported that the Dengue virus protease NS2B3 proteolytically cleaves human cGAS in its N-terminal region, effectively reducing cGAS binding to DNA and consequent production of the second messenger cGAMP. Several other RNA viruses likely adopt the cleavage strategy. Here, we describe a protocol for the purification of recombinant human cGAS and Dengue NS2B3 protease, as well as the in vitro cleavage assay.
Collapse
Affiliation(s)
| | - Debipreeta Bhowmik
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Qian Yin
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
5
|
Zhou P, Zhang Q, Yang Y, Wu W, Chen D, Zheng Z, Jongkaewwattana A, Jin H, Zhou H, Luo R. Cleavage of SQSTM1/p62 by the Zika virus protease NS2B3 prevents autophagic degradation of viral NS3 and NS5 proteins. Autophagy 2024; 20:2769-2784. [PMID: 39128850 PMCID: PMC11587865 DOI: 10.1080/15548627.2024.2390810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Macroautophagy/autophagy plays a crucial role in inhibiting viral replication and regulating the host's immune response. The autophagy receptor SQSTM1/p62 (sequestosome 1) restricts viral replication by directing specific viral proteins to phagophores for degradation. In this study, we investigate the reciprocal relationship between Zika virus (ZIKV) and selective autophagy mediated by SQSTM1/p62. We show that NS2B3 protease encoded by ZIKV cleaves human SQSTM1/p62 at arginine 265 (R265). This cleavage also occurs with endogenous SQSTM1 in ZIKV-infected cells. Furthermore, overexpression of SQSTM1 inhibits ZIKV replication in A549 cells, while its absence increases viral titer. We have also shown that SQSTM1 impedes ZIKV replication by interacting with NS3 and NS5 and directing them to autophagic degradation, and that NS2B3-mediated cleavage could potentially alter this antiviral function of SQSTM1. Taken together, our study highlights the role of SQSTM1-mediated selective autophagy in the host's antiviral defense against ZIKV and uncovers potential viral evasion strategies that exploit the host's autophagic machinery to ensure successful infection.Abbreviation: Cas9: CRISPR-associated protein 9; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; DENV: dengue virus; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; KIR: KEAP1-interacting region; KO: knockout; LIR: MAP1LC3/LC3-interacting region; mAb: monoclonal antibody; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PB1: Phox/BEM1 domain; R265A, a SQSTM1 construct with the arginine (R) residue at position 265 replaced with glutamic acid (A); SQSTM1: sequestosome 1; SQSTM1-C, C-terminal fragment of SQSTM1; SQSTM1-N, N-terminal fragment of SQSTM1; SVV: Seneca Valley virus; TAX1BP1: Tax1 binding protein 1; TBD: TRAF6-binding domain; TCID50: 50% tissue culture infective dose; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild type; ZIKV: Zika virus; ZZ: ZZ-type zinc finger domain.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Yueshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Nueng, Thailand
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| |
Collapse
|
6
|
Martí MM, Castanha PMS, Barratt-Boyes SM. The Dynamic Relationship between Dengue Virus and the Human Cutaneous Innate Immune Response. Viruses 2024; 16:727. [PMID: 38793609 PMCID: PMC11125669 DOI: 10.3390/v16050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Dengue virus (DENV) is a continuing global threat that puts half of the world's population at risk for infection. This mosquito-transmitted virus is endemic in over 100 countries. When a mosquito takes a bloodmeal, virus is deposited into the epidermal and dermal layers of human skin, infecting a variety of permissive cells, including keratinocytes, Langerhans cells, macrophages, dermal dendritic cells, fibroblasts, and mast cells. In response to infection, the skin deploys an array of defense mechanisms to inhibit viral replication and prevent dissemination. Antimicrobial peptides, pattern recognition receptors, and cytokines induce a signaling cascade to increase transcription and translation of pro-inflammatory and antiviral genes. Paradoxically, this inflammatory environment recruits skin-resident mononuclear cells that become infected and migrate out of the skin, spreading virus throughout the host. The details of the viral-host interactions in the cutaneous microenvironment remain unclear, partly due to the limited body of research focusing on DENV in human skin. This review will summarize the functional role of human skin, the cutaneous innate immune response to DENV, the contribution of the arthropod vector, and the models used to study DENV interactions in the cutaneous environment.
Collapse
Affiliation(s)
- Michelle M. Martí
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| | - Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
- Faculdade de Ciệncias Médicas, Universidade de Pernambuco, Recife 52171-011, Brazil
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| |
Collapse
|
7
|
Xie F, Zhu Q. The regulation of cGAS-STING signaling by RNA virus-derived components. Virol J 2024; 21:101. [PMID: 38693578 PMCID: PMC11064393 DOI: 10.1186/s12985-024-02359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
The Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) serves as a key innate immune signaling axis involved in the regulation of various human diseases. It has been found that cGAS-STING pathway can recognize a variety of cytosolic double-stranded DNA (dsDNA), contributing to cause a robust type I interferon response thereby affecting the occurrence and progression of viral infection. Accumulating evidence indicates RNA virus-derived components play an important role in regulating cGAS-STING signaling, either as protective or pathogenic factors in the pathogenesis of diseases. Thus, a comprehensive understanding of the function of RNA virus-derived components in regulating cGAS-STING signaling will provide insights into developing novel therapies. Here, we review the existing literature on cGAS-STING pathway regulated by RNA virus-derived components to propose insights into pharmacologic strategies targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China.
| | - Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People's Hospital of Shaoxing, Shaoxing, China
| |
Collapse
|
8
|
Sanz MÁ, Polo M, Rodríguez-Pulido M, Huildore Bommanna R, Sáiz M. The antiviral response triggered by the cGAS/STING pathway is subverted by the foot-and-mouth disease virus proteases. Cell Mol Life Sci 2024; 81:148. [PMID: 38509419 PMCID: PMC10954996 DOI: 10.1007/s00018-024-05190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.
Collapse
Affiliation(s)
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
9
|
Han J, Wang Z, Han F, Peng B, Du J, Zhang C. Microtubule disruption synergizes with STING signaling to show potent and broad-spectrum antiviral activity. PLoS Pathog 2024; 20:e1012048. [PMID: 38408104 PMCID: PMC10919859 DOI: 10.1371/journal.ppat.1012048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The activation of stimulator of interferon genes (STING) signaling induces the production of type I interferons (IFNs), which play critical roles in protective innate immunity for the host to defend against viral infections. Therefore, achieving sustained or enhanced STING activation could become an antiviral immune strategy with potential broad-spectrum activities. Here, we discovered that various clinically used microtubule-destabilizing agents (MDAs) for the treatment of cancer showed a synergistic effect with the activation of STING signaling in innate immune response. The combination of a STING agonist cGAMP and a microtubule depolymerizer MMAE boosted the activation of STING innate immune response and showed broad-spectrum antiviral activity against multiple families of viruses. Mechanistically, MMAE not only disrupted the microtubule network, but also switched the cGAMP-mediated STING trafficking pattern and changed the distribution of Golgi apparatus and STING puncta. The combination of cGAMP and MMAE promoted the oligomerization of STING and downstream signaling cascades. Importantly, the cGAMP plus MMAE treatment increased STING-mediated production of IFNs and other antiviral cytokines to inhibit viral propagation in vitro and in vivo. This study revealed a novel role of the microtubule destabilizer in antiviral immune responses and provides a previously unexploited strategy based on STING-induced innate antiviral immunity.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhimeng Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Peng
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Du
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University Beijing, China
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
10
|
Yan Y, Wu L, Yuan Y, Wang H, Yin H, Li M, Chai L, Liang R, Liu Y, Zhao D, Xing J, Li P, Li X. Species-specific cleavage of cGAS by picornavirus protease 3C disrupts mitochondria DNA-mediated immune sensing. PLoS Pathog 2023; 19:e1011641. [PMID: 37708231 PMCID: PMC10521975 DOI: 10.1371/journal.ppat.1011641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/26/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
RNA viruses cause numerous infectious diseases in humans and animals. The crosstalk between RNA viruses and the innate DNA sensing pathways attracts increasing attention. Recent studies showed that the cGAS-STING pathway plays an important role in restricting RNA viruses via mitochondria DNA (mtDNA) mediated activation. However, the mechanisms of cGAS mediated innate immune evasion by RNA viruses remain unknown. Here, we report that seneca valley virus (SVV) protease 3C disrupts mtDNA mediated innate immune sensing by cleaving porcine cGAS (pcGAS) in a species-specific manner. Mechanistically, a W/Q motif within the N-terminal domain of pcGAS is a unique cleavage site recognized by SVV 3C. Three conserved catalytic residues of SVV 3C cooperatively contribute to the cleavage of pcGAS, but not human cGAS (hcGAS) or mouse cGAS (mcGAS). Additionally, upon SVV infection and poly(dA:dT) transfection, pcGAS and SVV 3C colocalizes in the cells. Furthermore, SVV 3C disrupts pcGAS-mediated DNA binding, cGAMP synthesis and interferon induction by specifically cleaving pcGAS. This work uncovers a novel mechanism by which the viral protease cleaves the DNA sensor cGAS to evade innate immune response, suggesting a new antiviral approach against picornaviruses.
Collapse
Affiliation(s)
- Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minjie Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lvye Chai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Liu
- College of Animal Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Dongming Zhao
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, Texas, United States of America
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist, Houston, Texas, United States of America
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Shoraka S, Samarasinghe AE, Ghaemi A, Mohebbi SR. Host mitochondria: more than an organelle in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1228275. [PMID: 37692170 PMCID: PMC10485703 DOI: 10.3389/fcimb.2023.1228275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Memphis, TN, United States
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Fu C, Zhu W, Cao N, Liu W, Lu Z, Wong Z, Guan K, Hu C, Han B, Zeng S, Fan S. Role of CIV NS1 Protein in Innate Immunity and Viral Replication. Int J Mol Sci 2023; 24:10056. [PMID: 37373204 DOI: 10.3390/ijms241210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The innate immune pathway serves as the first line of defense against viral infections and plays a crucial role in the host's immune response in clearing viruses. Prior research has indicated that the influenza A virus has developed various strategies to avoid host immune responses. Nevertheless, the role of the NS1 protein of the canine influenza virus (CIV) in the innate immune pathway remains unclear. In this study, eukaryotic plasmids of NS1, NP, PA, PB1, and PB2 were constructed, and it was found that these proteins interact with melanoma differentiation-associated gene 5 (MDA5) and antagonize the activation of IFN-β promoters by MDA5. We selected the NS1 protein for further study and found that NS1 does not affect the interaction between the viral ribonucleoprotein (RNP) subunit and MDA5, but that it downregulates the expression of the laboratory of genetics and physiology 2 (LGP2) and retinoic acid-inducible gene-I (RIG-I) receptors in the RIG-I pathway. Additionally, NS1 was found to inhibit the expression of several antiviral proteins and cytokines, including MX dynamin like GTPase 1 (MX1), 2'-5'oligoadenylate synthetase (OAS), Signal Transducers and Activators of Transcription (STAT1), tripartite motif 25 (TRIM25), interleukin-2 (IL-2), IFN, IL-8, and IL-1β. To further investigate the role of NS1, a recombinant H3N2 virus strain (rH3N2) and an NS1-null virus (rH3N2ΔNS1) were rescued using reverse-genetic technology. The rH3N2ΔNS1 virus exhibited lower viral titers compared to rH3N2, but had a stronger activation effect on the receptors LGP2 and RIG-I. Furthermore, when compared to rH3N2, rH3N2ΔNS1 exhibited a more pronounced activation of antiviral proteins such as MX1, OAS, STAT1, and TRIM25, as well as antiviral cytokines such as IL-6, IFN-β, and IL-1β. These findings suggest a new mechanism by which NS1, a nonstructural protein of CIV, facilitates innate immune signaling and provides new avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510000, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhier Lu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ziyuan Wong
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kaiting Guan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunyan Hu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Baoting Han
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510000, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510000, China
| |
Collapse
|