1
|
Abidi MH. Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person. Sci Rep 2024; 14:30633. [PMID: 39719464 DOI: 10.1038/s41598-024-82624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
Recently, social demands for a good quality of life have increased among the elderly and disabled people. So, biomedical engineers and robotic researchers aimed to fuse these techniques in a novel rehabilitation system. Moreover, these models utilized the biomedical signals acquired from the human body's particular organ, cells, or tissues. The human motion intention prediction mechanism plays an essential role in various applications, such as assistive and rehabilitation robots, that execute specific tasks among elders and physically impaired individuals. However, more complications are increased in the human-machine-based interaction techniques, creating more scope for personalized assistance for the human motion intention prediction system. Therefore, in this paper, an Adaptive Hybrid Network (AHN) is implemented for effective human motion intention prediction. Initially, multimodal data like electroencephalogram (EEG)/Electromyography (EMG) signals and sensor measures data are collected from the available data resource. The gathered EEG/EMG signals are then converted into spectrogram images and sent to AH-CNN-LSTM, which is the integration of an Adaptive Hybrid Convolution Neural Network (AH-CNN) with a Long Short-Term Memory (LSTM) network. Similarly, the data details of sensor measures are directly subjected to AH-CNN-Res-LSTM, which is the combination of Adaptive Hybrid CNN with Residual Network and LSTM (Res-LSTM) to get the predictive result. Further, to enhance the prediction, the parameters in both the AH-CNN-LSTM and AH-CNN-Res-LSTM techniques are optimized using the Improved Yellow Saddle Goatfish Algorithm (IYSGA). The efficiency of the implemented model is computed by conducting the comparison experiment of the proposed technique with other standard models. The performance outcome of the developed method outperformed the other traditional methods.
Collapse
Affiliation(s)
- Mustufa Haider Abidi
- Advanced Manufacturing Institute, King Saud University, Riyadh, 11421, Saudi Arabia.
- King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia.
| |
Collapse
|
2
|
Rundo L, Militello C. Image biomarkers and explainable AI: handcrafted features versus deep learned features. Eur Radiol Exp 2024; 8:130. [PMID: 39560820 PMCID: PMC11576747 DOI: 10.1186/s41747-024-00529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Feature extraction and selection from medical data are the basis of radiomics and image biomarker discovery for various architectures, including convolutional neural networks (CNNs). We herein describe the typical radiomics steps and the components of a CNN for both deep feature extraction and end-to-end approaches. We discuss the curse of dimensionality, along with dimensionality reduction techniques. Despite the outstanding performance of deep learning (DL) approaches, the use of handcrafted features instead of deep learned features needs to be considered for each specific study. Dataset size is a key factor: large-scale datasets with low sample diversity could lead to overfitting; limited sample sizes can provide unstable models. The dataset must be representative of all the "facets" of the clinical phenomenon/disease investigated. The access to high-performance computational resources from graphics processing units is another key factor, especially for the training phase of deep architectures. The advantages of multi-institutional federated/collaborative learning are described. When large language models are used, high stability is needed to avoid catastrophic forgetting in complex domain-specific tasks. We highlight that non-DL approaches provide model explainability superior to that provided by DL approaches. To implement explainability, the need for explainable AI arises, also through post hoc mechanisms. RELEVANCE STATEMENT: This work aims to provide the key concepts for processing the imaging features to extract reliable and robust image biomarkers. KEY POINTS: The key concepts for processing the imaging features to extract reliable and robust image biomarkers are provided. The main differences between radiomics and representation learning approaches are highlighted. The advantages and disadvantages of handcrafted versus learned features are given without losing sight of the clinical purpose of artificial intelligence models.
Collapse
Affiliation(s)
- Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, Salerno, Italy.
| | - Carmelo Militello
- High Performance Computing and Networking Institute (ICAR-CNR), Italian National Research Council, Palermo, Italy
| |
Collapse
|
3
|
Klang E, Tessler I, Apakama DU, Abbott E, Glicksberg BS, Arnold M, Moses A, Sakhuja A, Soroush A, Charney AW, Reich DL, McGreevy J, Gavin N, Carr B, Freeman R, Nadkarni GN. Assessing Retrieval-Augmented Large Language Model Performance in Emergency Department ICD-10-CM Coding Compared to Human Coders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.15.24315526. [PMID: 39484238 PMCID: PMC11527068 DOI: 10.1101/2024.10.15.24315526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Accurate medical coding is essential for clinical and administrative purposes but complicated, time-consuming, and biased. This study compares Retrieval-Augmented Generation (RAG)-enhanced LLMs to provider-assigned codes in producing ICD-10-CM codes from emergency department (ED) clinical records. Methods Retrospective cohort study using 500 ED visits randomly selected from the Mount Sinai Health System between January and April 2024. The RAG system integrated past 1,038,066 ED visits data (2021-2023) into the LLMs' predictions to improve coding accuracy. Nine commercial and open-source LLMs were evaluated. The primary outcome was a head-to-head comparison of the ICD-10-CM codes generated by the RAG-enhanced LLMs and those assigned by the original providers. A panel of four physicians and two LLMs blindly reviewed the codes, comparing the RAG-enhanced LLM and provider-assigned codes on accuracy and specificity. Findings RAG-enhanced LLMs demonstrated superior performance to provider coders in both the accuracy and specificity of code assignments. In a targeted evaluation of 200 cases where discrepancies existed between GPT-4 and provider-assigned codes, human reviewers favored GPT-4 for accuracy in 447 instances, compared to 277 instances where providers' codes were preferred (p<0.001). Similarly, GPT-4 was selected for its superior specificity in 509 cases, whereas human coders were preferred in only 181 cases (p<0.001). Smaller open-access models, such as Llama-3.1-70B, also demonstrated substantial scalability when enhanced with RAG, with 218 instances of accuracy preference compared to 90 for providers' codes. Furthermore, across all models, the exact match rate between LLM-generated and provider-assigned codes significantly improved following RAG integration, with Qwen-2-7B increasing from 0.8% to 17.6% and Gemma-2-9b-it improving from 7.2% to 26.4%. Interpretation RAG-enhanced LLMs improve medical coding accuracy in EDs, suggesting clinical workflow applications. These findings show that generative AI can improve clinical outcomes and reduce administrative burdens. Funding This work was supported in part through the computational and data resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences. Research reported in this publication was also supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD026880 and S10OD030463. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript. Twitter Summary A study showed AI models with retrieval-augmented generation outperformed human doctors in ED diagnostic coding accuracy and specificity. Even smaller AI models perform favorably when using RAG. This suggests potential for reducing administrative burden in healthcare, improving coding efficiency, and enhancing clinical documentation.
Collapse
|
4
|
Das KP, Gavade P. A review on the efficacy of artificial intelligence for managing anxiety disorders. Front Artif Intell 2024; 7:1435895. [PMID: 39479229 PMCID: PMC11523650 DOI: 10.3389/frai.2024.1435895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Anxiety disorders are psychiatric conditions characterized by prolonged and generalized anxiety experienced by individuals in response to various events or situations. At present, anxiety disorders are regarded as the most widespread psychiatric disorders globally. Medication and different types of psychotherapies are employed as the primary therapeutic modalities in clinical practice for the treatment of anxiety disorders. However, combining these two approaches is known to yield more significant benefits than medication alone. Nevertheless, there is a lack of resources and a limited availability of psychotherapy options in underdeveloped areas. Psychotherapy methods encompass relaxation techniques, controlled breathing exercises, visualization exercises, controlled exposure exercises, and cognitive interventions such as challenging negative thoughts. These methods are vital in the treatment of anxiety disorders, but executing them proficiently can be demanding. Moreover, individuals with distinct anxiety disorders are prescribed medications that may cause withdrawal symptoms in some instances. Additionally, there is inadequate availability of face-to-face psychotherapy and a restricted capacity to predict and monitor the health, behavioral, and environmental aspects of individuals with anxiety disorders during the initial phases. In recent years, there has been notable progress in developing and utilizing artificial intelligence (AI) based applications and environments to improve the precision and sensitivity of diagnosing and treating various categories of anxiety disorders. As a result, this study aims to establish the efficacy of AI-enabled environments in addressing the existing challenges in managing anxiety disorders, reducing reliance on medication, and investigating the potential advantages, issues, and opportunities of integrating AI-assisted healthcare for anxiety disorders and enabling personalized therapy.
Collapse
Affiliation(s)
- K. P. Das
- Department of Computer Science, Christ University, Bengaluru, India
| | - P. Gavade
- Independent Practitioner, San Francisco, CA, United States
| |
Collapse
|
5
|
Sengupta PP, Dey D, Davies RH, Duchateau N, Yanamala N. Challenges for augmenting intelligence in cardiac imaging. Lancet Digit Health 2024; 6:e739-e748. [PMID: 39214759 DOI: 10.1016/s2589-7500(24)00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Artificial Intelligence (AI), through deep learning, has brought automation and predictive capabilities to cardiac imaging. However, despite considerable investment, tangible health-care cost reductions remain unproven. Although AI holds promise, there has been insufficient time for both methodological development and prospective clinical trials to establish its advantage over human interpretations in terms of its effect on patient outcomes. Challenges such as data scarcity, privacy issues, and ethical concerns impede optimal AI training. Furthermore, the absence of a unified model for the complex structure and function of the heart and evolving domain knowledge can introduce heuristic biases and influence underlying assumptions in model development. Integrating AI into diverse institutional picture archiving and communication systems and devices also presents a clinical hurdle. This hurdle is further compounded by an absence of high-quality labelled data, difficulty sharing data between institutions, and non-uniform and inadequate gold standards for external validations and comparisons of model performance in real-world settings. Nevertheless, there is a strong push in industry and academia for AI solutions in medical imaging. This Series paper reviews key studies and identifies challenges that require a pragmatic change in the approach for using AI for cardiac imaging, whereby AI is viewed as augmented intelligence to complement, not replace, human judgement. The focus should shift from isolated measurements to integrating non-linear and complex data towards identifying disease phenotypes-emphasising pattern recognition where AI excels. Algorithms should enhance imaging reports, enriching patients' understanding, communication between patients and clinicians, and shared decision making. The emergence of professional standards and guidelines is essential to address these developments and ensure the safe and effective integration of AI in cardiac imaging.
Collapse
Affiliation(s)
- Partho P Sengupta
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rhodri H Davies
- Institute of Cardiovascular Science, University College London, London, UK
| | - Nicolas Duchateau
- CREATIS, INSA, CNRS UMR 5220, INSERM U1294, Université Lyon 1, UJM Saint-Etienne, Lyon, France; Institut Universitaire de France, Paris, France
| | - Naveena Yanamala
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Alnasser AH, Hassanain MA, Alnasser MA, Alnasser AH. Critical factors challenging the integration of AI technologies in healthcare workplaces: a stakeholder assessment. J Health Organ Manag 2024; ahead-of-print. [PMID: 39300711 DOI: 10.1108/jhom-04-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
PURPOSE This study aims to identify and assess the factors challenging the integration of artificial intelligence (AI) technologies in healthcare workplaces. DESIGN/METHODOLOGY/APPROACH The study utilized a mixed approach, that starts with a literature review, then developing and testing a questionnaire survey of the factors challenging the integration of AI technologies in healthcare workplaces. In total, 46 factors were identified and classified under 6 groups. These factors were assessed by four different stakeholder categories: facilities managers, medical staff, operational staff and patients/visitors. The evaluations gathered were examined to determine the relative importance index (RII), importance rating (IR) and ranking of each factor. FINDINGS All 46 factors were assessed as "Very Important" through the overall assessment by the four stakeholder categories. The results indicated that the most important factors, across all groups, are "AI ability to learn from patient data", "insufficient data privacy measures for patients", "availability of technical support and maintenance services", "physicians' acceptance of AI in healthcare", "reliability and uptime of AI systems" and "ability to reduce medical errors". PRACTICAL IMPLICATIONS Determining the importance ratings of the factors can lead to better resource allocation and the development of strategies to facilitate the adoption and implementation of these technologies, thus promoting the development of innovative solutions to improve healthcare practices. ORIGINALITY/VALUE This study contributes to the body of knowledge in the domain of technology adoption and implementation in the medical workplace, through improving stakeholders' comprehension of the factors challenging the integration of AI technologies.
Collapse
Affiliation(s)
- Abdullah H Alnasser
- Architectural Engineering and Construction Management Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mohammad A Hassanain
- Architectural Engineering and Construction Management Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Ali H Alnasser
- Primary Healthcare Units, Al Ahsa Health Cluster, Al Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Bosworth KT, Ghosh P, Flowers L, Proffitt R, Koopman RJ, Tosh AK, Wilson G, Braddock AS. The user-centered design and development of a childhood and adolescent obesity Electronic Health Record tool, a mixed-methods study. Front Digit Health 2024; 6:1396085. [PMID: 39411348 PMCID: PMC11476727 DOI: 10.3389/fdgth.2024.1396085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Background Childhood and adolescent obesity are persistent public health issues in the United States. Childhood obesity Electronic Health Record (EHR) tools strengthen provider-patient relationships and improve outcomes, but there are currently limited EHR tools that are linked to adolescent mHealth apps. This study is part of a larger study entitled, CommitFit, which features both an adolescent-targeted mobile health application (mHealth app) and an ambulatory EHR tool. The CommitFit mHealth app was designed to be paired with the CommitFit EHR tool for integration into clinical spaces for shared decision-making with patients and clinicians. Objectives The objective of this sub-study was to identify the functional and design needs and preferences of healthcare clinicians and professionals for the development of the CommitFit EHR tool, specifically as it relates to childhood and adolescent obesity management. Methods We utilized a user-centered design process with a mixed-method approach. Focus groups were used to assess current in-clinic practices, deficits, and general beliefs and preferences regarding the management of childhood and adolescent obesity. A pre- and post-focus group survey helped assess the perception of the design and functionality of the CommitFit EHR tool and other obesity clinic needs. Iterative design development of the CommitFit EHR tool occurred throughout the process. Results A total of 12 healthcare providers participated throughout the three focus group sessions. Two themes emerged regarding EHR design: (1) Functional Needs, including Enhancing Clinical Practices and Workflow, and (2) Visualization, including Colors and Graphs. Responses from the surveys (n = 52) further reflect the need for Functionality and User-Interface Design by clinicians. Clinicians want the CommitFit EHR tool to enhance in-clinic adolescent lifestyle counseling, be easy to use, and presentable to adolescent patients and their caregivers. Additionally, we found that clinicians preferred colors and graphs that improved readability and usability. During each step of feedback from focus group sessions and the survey, the design of the CommitFit EHR tool was updated and co-developed by clinicians in an iterative user-centered design process. Conclusion More research is needed to explore clinician actual user analytics for the CommitFit EHR tool to evaluate real-time workflow, design, and function needs. The effectiveness of the CommitFit mHealth and EHR tool as a weight management intervention needs to be evaluated in the future.
Collapse
Affiliation(s)
- K. Taylor Bosworth
- Department of Family and Community Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- School of Medicine, Tom and Anne Smith MD/PhD Program, University of Missouri, Columbia, MO, United States
| | - Parijat Ghosh
- Department of Family and Community Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Lauren Flowers
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Rachel Proffitt
- School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Richelle J. Koopman
- Department of Family and Community Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Aneesh K. Tosh
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Gwen Wilson
- Department of Family and Community Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Amy S. Braddock
- Department of Family and Community Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Tutsoy O, Sumbul HE. A novel deep machine learning algorithm with dimensionality and size reduction approaches for feature elimination: thyroid cancer diagnoses with randomly missing data. Brief Bioinform 2024; 25:bbae344. [PMID: 39007597 PMCID: PMC11247408 DOI: 10.1093/bib/bbae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid cancer incidences endure to increase even though a large number of inspection tools have been developed recently. Since there is no standard and certain procedure to follow for the thyroid cancer diagnoses, clinicians require conducting various tests. This scrutiny process yields multi-dimensional big data and lack of a common approach leads to randomly distributed missing (sparse) data, which are both formidable challenges for the machine learning algorithms. This paper aims to develop an accurate and computationally efficient deep learning algorithm to diagnose the thyroid cancer. In this respect, randomly distributed missing data stemmed singularity in learning problems is treated and dimensionality reduction with inner and target similarity approaches are developed to select the most informative input datasets. In addition, size reduction with the hierarchical clustering algorithm is performed to eliminate the considerably similar data samples. Four machine learning algorithms are trained and also tested with the unseen data to validate their generalization and robustness abilities. The results yield 100% training and 83% testing preciseness for the unseen data. Computational time efficiencies of the algorithms are also examined under the equal conditions.
Collapse
Affiliation(s)
- Onder Tutsoy
- Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Hilmi Erdem Sumbul
- University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
9
|
Contino S, Cruciata L, Gambino O, Pirrone R. IODeep: An IOD for the introduction of deep learning in the DICOM standard. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 248:108113. [PMID: 38479148 DOI: 10.1016/j.cmpb.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVE In recent years, Artificial Intelligence (AI) and in particular Deep Neural Networks (DNN) became a relevant research topic in biomedical image segmentation due to the availability of more and more data sets along with the establishment of well known competitions. Despite the popularity of DNN based segmentation on the research side, these techniques are almost unused in the daily clinical practice even if they could support effectively the physician during the diagnostic process. Apart from the issues related to the explainability of the predictions of a neural model, such systems are not integrated in the diagnostic workflow, and a standardization of their use is needed to achieve this goal. METHODS This paper presents IODeep a new DICOM Information Object Definition (IOD) aimed at storing both the weights and the architecture of a DNN already trained on a particular image dataset that is labeled as regards the acquisition modality, the anatomical region, and the disease under investigation. RESULTS The IOD architecture is presented along with a DNN selection algorithm from the PACS server based on the labels outlined above, and a simple PACS viewer purposely designed for demonstrating the effectiveness of the DICOM integration, while no modifications are required on the PACS server side. Also a service based architecture in support of the entire workflow has been implemented. CONCLUSION IODeep ensures full integration of a trained AI model in a DICOM infrastructure, and it is also enables a scenario where a trained model can be either fine-tuned with hospital data or trained in a federated learning scheme shared by different hospitals. In this way AI models can be tailored to the real data produced by a Radiology ward thus improving the physician decision making process. Source code is freely available at https://github.com/CHILab1/IODeep.git.
Collapse
Affiliation(s)
- Salvatore Contino
- Department of Engineering, University of Palermo, Palermo, 90128, Sicily, Italy
| | - Luca Cruciata
- Department of Engineering, University of Palermo, Palermo, 90128, Sicily, Italy
| | - Orazio Gambino
- Department of Engineering, University of Palermo, Palermo, 90128, Sicily, Italy.
| | - Roberto Pirrone
- Department of Engineering, University of Palermo, Palermo, 90128, Sicily, Italy
| |
Collapse
|
10
|
Marzano L, Darwich AS, Jayanth R, Sven L, Falk N, Bodeby P, Meijer S. Diagnosing an overcrowded emergency department from its Electronic Health Records. Sci Rep 2024; 14:9955. [PMID: 38688997 PMCID: PMC11061188 DOI: 10.1038/s41598-024-60888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Emergency department overcrowding is a complex problem that persists globally. Data of visits constitute an opportunity to understand its dynamics. However, the gap between the collected information and the real-life clinical processes, and the lack of a whole-system perspective, still constitute a relevant limitation. An analytical pipeline was developed to analyse one-year of production data following the patients that came from the ED (n = 49,938) at Uppsala University Hospital (Uppsala, Sweden) by involving clinical experts in all the steps of the analysis. The key internal issues to the ED were the high volume of generic or non-specific diagnoses from non-urgent visits, and the delayed decision regarding hospital admission caused by several imaging assessments and lack of hospital beds. Furthermore, the external pressure of high frequent re-visits of geriatric, psychiatric, and patients with unspecified diagnoses dramatically contributed to the overcrowding. Our work demonstrates that through analysis of production data of the ED patient flow and participation of clinical experts in the pipeline, it was possible to identify systemic issues and directions for solutions. A critical factor was to take a whole systems perspective, as it opened the scope to the boundary effects of inflow and outflow in the whole healthcare system.
Collapse
Affiliation(s)
- Luca Marzano
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Adam S Darwich
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Raghothama Jayanth
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Nina Falk
- Uppsala University Hospital, Uppsala, Sweden
| | | | - Sebastiaan Meijer
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
11
|
Subramanian HV, Canfield C, Shank DB. Designing explainable AI to improve human-AI team performance: A medical stakeholder-driven scoping review. Artif Intell Med 2024; 149:102780. [PMID: 38462282 DOI: 10.1016/j.artmed.2024.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
The rise of complex AI systems in healthcare and other sectors has led to a growing area of research called Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on improving user trust and task performance by providing system- and prediction-level XAI features. We analyze stakeholder engagement events (interviews and workshops) on the use of AI for kidney transplantation. From this we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder engagement process lasted over nine months covering three stakeholder group's workflows, determining where AI could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we identify four major themes relevant to designing XAI systems - 1) use of AI predictions, 2) information included in AI predictions, 3) personalization of AI predictions for individual differences, and 4) customizing AI predictions for specific cases. Using these themes, our scoping literature review finds that providing AI predictions before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, AI prediction, and uncertainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system- and prediction-level information is necessary to build the user's mental model of the system appropriately. Although XAI features improve users' trust in the system, human-AI team performance is not always enhanced. Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI features based on preferences and tasks.
Collapse
Affiliation(s)
- Harishankar V Subramanian
- Engineering Management & Systems Engineering, Missouri University of Science and Technology, 600 W 14(th) Street, Rolla, MO 65409, United States of America
| | - Casey Canfield
- Engineering Management & Systems Engineering, Missouri University of Science and Technology, 600 W 14(th) Street, Rolla, MO 65409, United States of America.
| | - Daniel B Shank
- Psychological Science, Missouri University of Science and Technology, 500 W 14(th) Street, Rolla, MO 65409, United States of America
| |
Collapse
|
12
|
Park S, Marquard J, Austin RR, Pieczkiewicz D, Jantraporn R, Delaney CW. A Systematic Review of Nurses' Perceptions of Electronic Health Record Usability Based on the Human Factor Goals of Satisfaction, Performance, and Safety. Comput Inform Nurs 2024; 42:168-175. [PMID: 38191474 DOI: 10.1097/cin.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The poor usability of electronic health records contributes to increased nurses' workload, workarounds, and potential threats to patient safety. Understanding nurses' perceptions of electronic health record usability and incorporating human factors engineering principles are essential for improving electronic health records and aligning them with nursing workflows. This review aimed to synthesize studies focused on nurses' perceived electronic health record usability and categorize the findings in alignment with three human factor goals: satisfaction, performance, and safety. This systematic review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Five hundred forty-nine studies were identified from January 2009 to June 2023. Twenty-one studies were included in this review. The majority of the studies utilized reliable and validated questionnaires (n = 15) to capture the viewpoints of hospital-based nurses (n = 20). When categorizing usability-related findings according to the goals of good human factor design, namely, improving satisfaction, performance, and safety, studies used performance-related measures most. Only four studies measured safety-related aspects of electronic health record usability. Electronic health record redesign is necessary to improve nurses' perceptions of electronic health record usability, but future efforts should systematically address all three goals of good human factor design.
Collapse
Affiliation(s)
- Suhyun Park
- Author Affiliations: School of Nursing (Mss Park and Jantraporn and Drs Marquard, Austin, and Delaney) and Institute for Health Informatics (Drs Marquard, Pieczkiewicz, and Delaney), University of Minnesota, Minneapolis
| | | | | | | | | | | |
Collapse
|
13
|
Shams‐Vahdati N, Shams Vahdati S, Samad‐Soltani T. Design and evaluation of collaborative decision-making application for patient care in the emergency department. Health Sci Rep 2024; 7:e1931. [PMID: 38410500 PMCID: PMC10895157 DOI: 10.1002/hsr2.1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/05/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Background and Aims Collaboration has become a crucial element of effective healthcare delivery in the emergency department (ED). In high-pressure environments, healthcare providers can prioritize patients by consulting with other specialists to gain diverse perspectives and arrive at a shared understanding of the best course of action. It was conducted for the purpose of designing and evaluating the collaborative decision-making application for patient care in the ED. Methods The present applied research study was conducted between April 1, 2021 and May 31, 2023 at Imam Reza Hospital of Tabriz University of Medical Sciences. The study was conducted in three phases: exploration, development, and evaluation, utilizing modern technologies such as Flutter and Node.js to design and program the application. The effectiveness of the system was evaluated using established measures, including the think-aloud protocol, user experience questionnaire, and Likert-scale questionnaires developed by Ghadri et al. Results The average scale for attractiveness was 2.03, perspicuity was 2.90, efficiency was 2.40, dependability was 1.93, stimulation was 2.48, and novelty was 2.78. Additionally, 71% of physicians gave a very good rating to the accessibility of necessary information at any time, motivation to use the system for accessing information, usefulness of the system compared to the time spent using it throughout the day. Furthermore, 57% of physicians gave a very positive rating to sharing information and knowledge, ease of using the search function and accessing the system, user control and monitoring, free access to the system, and support from colleagues and system users. Conclusion The study suggests that introducing Information and Communication Technology such as medical apps can improve healthcare delivery by streamlining patient care, promoting effective teamwork, and reducing medical errors and treatment delays.
Collapse
Affiliation(s)
- Neda Shams‐Vahdati
- Department of Health Information Technology, School of Management and Medical InformaticsTabriz University of Medical SciencesTabrizIran
| | - Samad Shams Vahdati
- Emergency and Trauma Care Research CenterTabriz University of Medical SciencesTabrizIran
| | - Taha Samad‐Soltani
- Department of Health Information Technology, School of Management and Medical InformaticsTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
14
|
Holmlund TB, Chandler C, Foltz PW, Diaz-Asper C, Cohen AS, Rodriguez Z, Elvevåg B. Towards a temporospatial framework for measurements of disorganization in speech using semantic vectors. Schizophr Res 2023; 259:71-79. [PMID: 36372683 DOI: 10.1016/j.schres.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Incoherent speech in schizophrenia has long been described as the mind making "leaps" of large distances between thoughts and ideas. Such a view seems intuitive, and for almost two decades, attempts to operationalize these conceptual "leaps" in spoken word meanings have used language-based embedding spaces. An embedding space represents meaning of words as numerical vectors where a greater proximity between word vectors represents more shared meaning. However, there are limitations with word vector-based operationalizations of coherence which can limit their appeal and utility in clinical practice. First, the use of esoteric word embeddings can be conceptually hard to grasp, and this is complicated by several different operationalizations of incoherent speech. This problem can be overcome by a better visualization of methods. Second, temporal information from the act of speaking has been largely neglected since models have been built using written text, yet speech is spoken in real time. This issue can be resolved by leveraging time stamped transcripts of speech. Third, contextual information - namely the situation of where something is spoken - has often only been inferred and never explicitly modeled. Addressing this situational issue opens up new possibilities for models with increased temporal resolution and contextual relevance. In this paper, direct visualizations of semantic distances are used to enable the inspection of examples of incoherent speech. Some common operationalizations of incoherence are illustrated, and suggestions are made for how temporal and spatial contextual information can be integrated in future implementations of measures of incoherence.
Collapse
Affiliation(s)
- Terje B Holmlund
- Department of Clinical Medicine, University of Tromsø - the Arctic University of Norway, Tromsø, Norway.
| | - Chelsea Chandler
- Institute of Cognitive Science, University of Colorado Boulder, United States of America
| | - Peter W Foltz
- Institute of Cognitive Science, University of Colorado Boulder, United States of America
| | | | - Alex S Cohen
- Department of Psychology, Louisiana State University, United States of America; Center for Computation and Technology, Louisiana State University, United States of America
| | - Zachary Rodriguez
- Department of Psychology, Louisiana State University, United States of America; Center for Computation and Technology, Louisiana State University, United States of America
| | - Brita Elvevåg
- Department of Clinical Medicine, University of Tromsø - the Arctic University of Norway, Tromsø, Norway; Norwegian Center for eHealth Research, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
15
|
Parvizimosaed M, Esnaashari M, Damia A, Paband MT. Hyper-parameter Optimization of LSTM Network Using Genetic Algorithm and Q-Learning Algorithm for Classification of COVID-19 Dataset. 2023 9TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR) 2023:167-172. [DOI: 10.1109/icwr57742.2023.10139161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Mehdi Esnaashari
- K. N. Toosi University of Technology,Faculty of Computer Engineering,Tehran,Iran
| | - Amirhossein Damia
- K. N. Toosi University of Technology,Faculty of Computer Engineering,Tehran,Iran
| | | |
Collapse
|
16
|
Jung J, Lee H, Jung H, Kim H. Essential properties and explanation effectiveness of explainable artificial intelligence in healthcare: A systematic review. Heliyon 2023; 9:e16110. [PMID: 37234618 PMCID: PMC10205582 DOI: 10.1016/j.heliyon.2023.e16110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Background Significant advancements in the field of information technology have influenced the creation of trustworthy explainable artificial intelligence (XAI) in healthcare. Despite improved performance of XAI, XAI techniques have not yet been integrated into real-time patient care. Objective The aim of this systematic review is to understand the trends and gaps in research on XAI through an assessment of the essential properties of XAI and an evaluation of explanation effectiveness in the healthcare field. Methods A search of PubMed and Embase databases for relevant peer-reviewed articles on development of an XAI model using clinical data and evaluating explanation effectiveness published between January 1, 2011, and April 30, 2022, was conducted. All retrieved papers were screened independently by the two authors. Relevant papers were also reviewed for identification of the essential properties of XAI (e.g., stakeholders and objectives of XAI, quality of personalized explanations) and the measures of explanation effectiveness (e.g., mental model, user satisfaction, trust assessment, task performance, and correctability). Results Six out of 882 articles met the criteria for eligibility. Artificial Intelligence (AI) users were the most frequently described stakeholders. XAI served various purposes, including evaluation, justification, improvement, and learning from AI. Evaluation of the quality of personalized explanations was based on fidelity, explanatory power, interpretability, and plausibility. User satisfaction was the most frequently used measure of explanation effectiveness, followed by trust assessment, correctability, and task performance. The methods of assessing these measures also varied. Conclusion XAI research should address the lack of a comprehensive and agreed-upon framework for explaining XAI and standardized approaches for evaluating the effectiveness of the explanation that XAI provides to diverse AI stakeholders.
Collapse
Affiliation(s)
- Jinsun Jung
- College of Nursing, Seoul National University, Seoul, Republic of Korea
- Center for Human-Caring Nurse Leaders for the Future by Brain Korea 21 (BK 21) Four Project, College of Nursing, Seoul National University, Seoul, Republic of Korea
| | - Hyungbok Lee
- College of Nursing, Seoul National University, Seoul, Republic of Korea
- Emergency Nursing Department, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunggu Jung
- Department of Computer Science and Engineering, University of Seoul, Seoul, Republic of Korea
- Department of Artificial Intelligence, University of Seoul, Seoul, Republic of Korea
| | - Hyeoneui Kim
- College of Nursing, Seoul National University, Seoul, Republic of Korea
- Research Institute of Nursing Science, College of Nursing, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
von Wagner M, Queck A, Beekers P, Tolhuizen L, Synnatschke A, Boesing J, Chatterjea S. Towards accurate and automatic emergency department workflow characterization using a real-time locating system. INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT 2023. [DOI: 10.1080/20479700.2023.2172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
| | | | - Pim Beekers
- Philips Electronics Nederland B.V., Eindhoven, The Netherlands
| | - Ludo Tolhuizen
- Philips Electronics Nederland B.V., Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
18
|
Militello C, Prinzi F, Sollami G, Rundo L, La Grutta L, Vitabile S. CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease. Cognit Comput 2023. [DOI: 10.1007/s12559-023-10118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractThis study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue — around the anterior interventricular artery (IVA) — to assess the condition of coronary arteries compared with the use of clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features improved prediction above the use of risk factors alone. In fact, with the best model (Random Forest + Mutual Information) the AUROC reached $$0.820 \pm 0.076$$
0.820
±
0.076
. As a matter of fact, the combined use of both types of features (i.e., radiomic and clinical) allows for improved performance regardless of the feature selection method used. Experimental findings demonstrated that the use of radiomic features alone achieves better performance than the use of clinical features alone, while the combined use of both clinical and radiomic biomarkers further improves the predictive ability of the models. The main contribution of this work concerns: (i) the implementation of multimodal predictive models, based on both clinical and radiomic features, and (ii) a trusted system to support clinical decision-making processes by means of explainable classifiers and interpretable features.
Collapse
|
19
|
Fadja AN, Fraccaroli M, Bizzarri A, Mazzuchelli G, Lamma E. Neural-Symbolic Ensemble Learning for early-stage prediction of critical state of Covid-19 patients. Med Biol Eng Comput 2022; 60:3461-3474. [PMID: 36201136 PMCID: PMC9540054 DOI: 10.1007/s11517-022-02674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
Abstract
Recently, Artificial Intelligence (AI) and Machine Learning (ML) have been successfully applied to many domains of interest including medical diagnosis. Due to the availability of a large quantity of data, it is possible to build reliable AI systems that assist humans in making decisions. The recent Covid-19 pandemic quickly spread over the world causing serious health problems and severe economic and social damage. Computer scientists are actively working together with doctors on different ML models to diagnose Covid-19 patients using Computed Tomography (CT) scans and clinical data. In this work, we propose a neural-symbolic system that predicts if a Covid-19 patient arriving at the hospital will end in a critical condition. The proposed system relies on Deep 3D Convolutional Neural Networks (3D-CNNs) for analyzing lung CT scans of Covid-19 patients, Decision Trees (DTs) for predicting if a Covid-19 patient will eventually pass away by analyzing its clinical data, and a neural system that integrates the previous ones using Hierarchical Probabilistic Logic Programs (HPLPs). Predicting if a Covid-19 patient will end in a critical condition is useful for managing the limited number of intensive care at the hospital. Moreover, knowing early that a Covid-19 patient could end in serious conditions allows doctors to gain early knowledge on patients and provide special treatment to those predicted to finish in critical conditions. The proposed system, entitled Neural HPLP, obtains good performance in terms of area under the receiver operating characteristic and precision curves with values of about 0.96 for both metrics. Therefore, with Neural HPLP, it is possible not only to efficiently predict if Covid-19 patients will end in severe conditions but also possible to provide an explanation of the prediction. This makes Neural HPLP explainable, interpretable, and reliable. Graphical abstract Representation of Neural HPLP. From top to bottom, the two different types of data collected from the same patient and used in this project are represented. This data feeds the two different machine learning systems and the integration of the two systems using Hierarchical Probabilistic Logic Program.
Collapse
Affiliation(s)
- Arnaud Nguembang Fadja
- Department of Mathematics and Computer Science, University of Ferrara, Via Nicolò Machiavelli 30, Ferrara, 44121 Italy
| | - Michele Fraccaroli
- DE - Department of Engineering, University of Ferrara, Via Saragat 1, Ferrara, 44122 Italy
| | - Alice Bizzarri
- DE - Department of Engineering, University of Ferrara, Via Saragat 1, Ferrara, 44122 Italy
| | - Giulia Mazzuchelli
- DE - Department of Engineering, University of Ferrara, Via Saragat 1, Ferrara, 44122 Italy
| | - Evelina Lamma
- DE - Department of Engineering, University of Ferrara, Via Saragat 1, Ferrara, 44122 Italy
| |
Collapse
|
20
|
di Noia C, Grist JT, Riemer F, Lyasheva M, Fabozzi M, Castelli M, Lodi R, Tonon C, Rundo L, Zaccagna F. Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics (Basel) 2022; 12:diagnostics12092125. [PMID: 36140526 PMCID: PMC9497964 DOI: 10.3390/diagnostics12092125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.
Collapse
Affiliation(s)
- Christian di Noia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford Centre for Clinical Magnetic Research Imaging, University of Oxford, Oxford OX3 9DU, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maria Lyasheva
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriana Fabozzi
- Centro Medico Polispecialistico (CMO), 80058 Torre Annunziata, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-0514969951
| |
Collapse
|
21
|
Time Is Money: Considerations for Measuring the Radiological Reading Time. J Imaging 2022; 8:jimaging8080208. [PMID: 35893086 PMCID: PMC9394242 DOI: 10.3390/jimaging8080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Timestamps in the Radiology Information System (RIS) are a readily available and valuable source of information with increasing significance, among others, due to the current focus on the clinical impact of artificial intelligence applications. We aimed to evaluate timestamp-based radiological dictation time, introduce timestamp modeling techniques, and compare those with prospective measured reporting. Dictation time was calculated from RIS timestamps between 05/2010 and 01/2021 at our institution (n = 108,310). We minimized contextual outliers by simulating the raw data by iteration (1000, vector size (µ/sd/λ) = 100/loop), assuming normally distributed reporting times. In addition, 329 reporting times were prospectively measured by two radiologists (1 and 4 years of experience). Altogether, 106,127 of 108,310 exams were included after simulation, with a mean dictation time of 16.62 min. Mean dictation time was 16.05 min head CT (44,743/45,596), 15.84 min for chest CT (32,797/33,381), 17.92 min for abdominal CT (n = 22,805/23,483), 10.96 min for CT foot (n = 937/958), 9.14 min for lumbar spine (881/892), 8.83 min for shoulder (409/436), 8.83 min for CT wrist (1201/1322), and 39.20 min for a polytrauma patient (2127/2242), without a significant difference to the prospective reporting times. In conclusion, timestamp analysis is useful to measure current reporting practice, whereas body-region and radiological experience are confounders. This could aid in cost–benefit assessments of workflow changes (e.g., AI implementation).
Collapse
|
22
|
Shelleh M, Gurupur VP. PC-LSTM: Ontology-based Long Short-Term Memory State Model for Data Incompleteness Prediction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2606-2610. [PMID: 36086213 DOI: 10.1109/embc48229.2022.9871867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Medical practices are engaged and motivated by new technologies and methods to enhance patient care as efficiently as possible. These new methods and technologies give way for medical practices and clinicians to have the insight, comprehension, and projections to develop better decisions and overall levels of care. In this paper, we propose a model, PatientCentered-LSTM (or PC-LSTM), using the states of the LSTM model to produce a novel, ontology-based state system for data incompleteness. The overall architecture and system design are based around utilizing the hidden and cell states of the LSTM model to produce a network of states for each of the corresponding hierarchies in an Electronic Health Record (EHR) system. The resulting methodology allows for an accurate and precise approach to predicting data incompleteness in electronic health records. Clinical relevance- The method presented uses the hierarchical nature of electronic health record systems to positively influence the analysis of its data completeness; thereby, increasing the possibility of improved healthcare outcomes.
Collapse
|
23
|
Elsayed Sharaf D, Shebel H, El-Diasty T, Osman Y, Khater S, Abdelhamid M, Abou El Atta H. Nomogram predictive model for differentiation between renal oncocytoma and chromophobe renal cell carcinoma at multi-phasic CT: a retrospective study. Clin Radiol 2022; 77:767-775. [DOI: 10.1016/j.crad.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
|
24
|
Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Machine learning models based on radiomic features allow us to obtain biomarkers that are capable of modeling the disease and that are able to support the clinical routine. Recent studies have shown that it is fundamental that the computed features are robust and reproducible. Although several initiatives to standardize the definition and extraction process of biomarkers are ongoing, there is a lack of comprehensive guidelines. Therefore, no standardized procedures are available for ROI selection, feature extraction, and processing, with the risk of undermining the effective use of radiomic models in clinical routine. In this study, we aim to assess the impact that the different segmentation methods and the quantization level (defined by means of the number of bins used in the feature-extraction phase) may have on the robustness of the radiomic features. In particular, the robustness of texture features extracted by PyRadiomics, and belonging to five categories—GLCM, GLRLM, GLSZM, GLDM, and NGTDM—was evaluated using the intra-class correlation coefficient (ICC) and mean differences between segmentation raters. In addition to the robustness of each single feature, an overall index for each feature category was quantified. The analysis showed that the level of quantization (i.e., the `bincount’ parameter) plays a key role in defining robust features: in fact, in our study focused on a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) dataset of 111 breast masses, sets with cardinality varying between 34 and 43 robust features were obtained with `binCount’ values equal to 256 and 32, respectively. Moreover, both manual segmentation methods demonstrated good reliability and agreement, while automated segmentation achieved lower ICC values. Considering the dependence on the quantization level, taking into account only the intersection subset among all the values of `binCount’ could be the best selection strategy. Among radiomic feature categories, GLCM, GLRLM, and GLDM showed the best overall robustness with varying segmentation methods.
Collapse
|
25
|
Chen X, Li Y, Yao L, Adeli E, Zhang Y, Wang X. Generative Adversarial U-Net for Domain-free Few-shot Medical Diagnosis. Pattern Recognit Lett 2022. [DOI: 10.1016/j.patrec.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Jacobsohn GC, Leaf M, Liao F, Maru AP, Engstrom CJ, Salwei ME, Pankratz GT, Eastman A, Carayon P, Wiegmann DA, Galang JS, Smith MA, Shah MN, Patterson BW. Collaborative design and implementation of a clinical decision support system for automated fall-risk identification and referrals in emergency departments. HEALTHCARE (AMSTERDAM, NETHERLANDS) 2022; 10:100598. [PMID: 34923354 PMCID: PMC8881336 DOI: 10.1016/j.hjdsi.2021.100598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Of the 3 million older adults seeking fall-related emergency care each year, nearly one-third visited the Emergency Department (ED) in the previous 6 months. ED providers have a great opportunity to refer patients for fall prevention services at these initial visits, but lack feasible tools for identifying those at highest-risk. Existing fall screening tools have been poorly adopted due to ED staff/provider burden and lack of workflow integration. To address this, we developed an automated clinical decision support (CDS) system for identifying and referring older adult ED patients at risk of future falls. We engaged an interdisciplinary design team (ED providers, health services researchers, information technology/predictive analytics professionals, and outpatient Falls Clinic staff) to collaboratively develop a system that successfully met user requirements and integrated seamlessly into existing ED workflows. Our rapid-cycle development and evaluation process employed a novel combination of human-centered design, implementation science, and patient experience strategies, facilitating simultaneous design of the CDS tool and intervention implementation strategies. This included defining system requirements, systematically identifying and resolving usability problems, assessing barriers and facilitators to implementation (e.g., data accessibility, lack of time, high patient volumes, appointment availability) from multiple vantage points, and refining protocols for communicating with referred patients at discharge. ED physician, nurse, and patient stakeholders were also engaged through online surveys and user testing. Successful CDS design and implementation required integration of multiple new technologies and processes into existing workflows, necessitating interdisciplinary collaboration from the onset. By using this iterative approach, we were able to design and implement an intervention meeting all project goals. Processes used in this Clinical-IT-Research partnership can be applied to other use cases involving automated risk-stratification, CDS development, and EHR-facilitated care coordination.
Collapse
Affiliation(s)
- Gwen Costa Jacobsohn
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Margaret Leaf
- Applied Data Science, Enterprise Analytics, UW Health, Madison, WI, USA.
| | - Frank Liao
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Applied Data Science, Enterprise Analytics, UW Health, Madison, WI, USA.
| | - Apoorva P. Maru
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Collin J. Engstrom
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA,Department of Computer Science, Winona State University, Rochester, MN, USA
| | - Megan E. Salwei
- Department of Industrial and Systems Engineering, University of Wisconsin, Madison, Wisconsin, USA,Center for Quality and Productivity Improvement, University of Wisconsin-Madison, Madison, Wisconsin, USA,Center for Research and Innovation in Systems Safety, Departments of Anesthesiology and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gerald T Pankratz
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Alexis Eastman
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Pascale Carayon
- Department of Industrial and Systems Engineering, University of Wisconsin, Madison, WI, USA; Center for Quality and Productivity Improvement, University of Wisconsin-Madison, Madison, WI, USA.
| | - Douglas A. Wiegmann
- Department of Industrial and Systems Engineering, University of Wisconsin, Madison, Wisconsin, USA,Center for Quality and Productivity Improvement, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S. Galang
- Applied Data Science, Enterprise Analytics, UW Health, Madison, Wisconsin, USA
| | - Maureen A. Smith
- Health Innovation Program, University of Wisconsin-Madison, Madison, Wisconsin, USA,Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Manish N. Shah
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA,Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA,Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brian W. Patterson
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA,Health Innovation Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Bernstam EV, Shireman PK, Meric‐Bernstam F, N. Zozus M, Jiang X, Brimhall BB, Windham AK, Schmidt S, Visweswaran S, Ye Y, Goodrum H, Ling Y, Barapatre S, Becich MJ. Artificial intelligence in clinical and translational science: Successes, challenges and opportunities. Clin Transl Sci 2022; 15:309-321. [PMID: 34706145 PMCID: PMC8841416 DOI: 10.1111/cts.13175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Artificial intelligence (AI) is transforming many domains, including finance, agriculture, defense, and biomedicine. In this paper, we focus on the role of AI in clinical and translational research (CTR), including preclinical research (T1), clinical research (T2), clinical implementation (T3), and public (or population) health (T4). Given the rapid evolution of AI in CTR, we present three complementary perspectives: (1) scoping literature review, (2) survey, and (3) analysis of federally funded projects. For each CTR phase, we addressed challenges, successes, failures, and opportunities for AI. We surveyed Clinical and Translational Science Award (CTSA) hubs regarding AI projects at their institutions. Nineteen of 63 CTSA hubs (30%) responded to the survey. The most common funding source (48.5%) was the federal government. The most common translational phase was T2 (clinical research, 40.2%). Clinicians were the intended users in 44.6% of projects and researchers in 32.3% of projects. The most common computational approaches were supervised machine learning (38.6%) and deep learning (34.2%). The number of projects steadily increased from 2012 to 2020. Finally, we analyzed 2604 AI projects at CTSA hubs using the National Institutes of Health Research Portfolio Online Reporting Tools (RePORTER) database for 2011-2019. We mapped available abstracts to medical subject headings and found that nervous system (16.3%) and mental disorders (16.2) were the most common topics addressed. From a computational perspective, big data (32.3%) and deep learning (30.0%) were most common. This work represents a snapshot in time of the role of AI in the CTSA program.
Collapse
Affiliation(s)
- Elmer V. Bernstam
- School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- Division of General Internal MedicineDepartment of Internal MedicineMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Paula K. Shireman
- Departments of Surgery and MicrobiologyImmunology & Molecular GeneticsUniversity of Texas Health San AntonioSan AntonioTexasUSA
- University HealthSan AntonioTexasUSA
- South Texas Veterans Health Care SystemSan AntonioTexasUSA
| | - Funda Meric‐Bernstam
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Meredith N. Zozus
- Division of Clinical Research InformaticsDepartment of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Xiaoqian Jiang
- School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Bradley B. Brimhall
- University HealthSan AntonioTexasUSA
- Department of PathologyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Ashley K. Windham
- University HealthSan AntonioTexasUSA
- Department of PathologyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Susanne Schmidt
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Shyam Visweswaran
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ye Ye
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Heath Goodrum
- School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yaobin Ling
- School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Seemran Barapatre
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Michael J. Becich
- Department of Biomedical InformaticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
28
|
Estimation of the Prostate Volume from Abdominal Ultrasound Images by Image-Patch Voting. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Estimation of the prostate volume with ultrasound offers many advantages such as portability, low cost, harmlessness, and suitability for real-time operation. Abdominal Ultrasound (AUS) is a practical procedure that deserves more attention in automated prostate-volume-estimation studies. As the experts usually consider automatic end-to-end volume-estimation procedures as non-transparent and uninterpretable systems, we proposed an expert-in-the-loop automatic system that follows the classical prostate-volume-estimation procedures. Our system directly estimates the diameter parameters of the standard ellipsoid formula to produce the prostate volume. To obtain the diameters, our system detects four diameter endpoints from the transverse and two diameter endpoints from the sagittal AUS images as defined by the classical procedure. These endpoints are estimated using a new image-patch voting method to address characteristic problems of AUS images. We formed a novel prostate AUS data set from 305 patients with both transverse and sagittal planes. The data set includes MRI images for 75 of these patients. At least one expert manually marked all the data. Extensive experiments performed on this data set showed that the proposed system results ranged among experts’ volume estimations, and our system can be used in clinical practice.
Collapse
|
29
|
Martínez-García M, Hernández-Lemus E. Data Integration Challenges for Machine Learning in Precision Medicine. Front Med (Lausanne) 2022; 8:784455. [PMID: 35145977 PMCID: PMC8821900 DOI: 10.3389/fmed.2021.784455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
A main goal of Precision Medicine is that of incorporating and integrating the vast corpora on different databases about the molecular and environmental origins of disease, into analytic frameworks, allowing the development of individualized, context-dependent diagnostics, and therapeutic approaches. In this regard, artificial intelligence and machine learning approaches can be used to build analytical models of complex disease aimed at prediction of personalized health conditions and outcomes. Such models must handle the wide heterogeneity of individuals in both their genetic predisposition and their social and environmental determinants. Computational approaches to medicine need to be able to efficiently manage, visualize and integrate, large datasets combining structure, and unstructured formats. This needs to be done while constrained by different levels of confidentiality, ideally doing so within a unified analytical architecture. Efficient data integration and management is key to the successful application of computational intelligence approaches to medicine. A number of challenges arise in the design of successful designs to medical data analytics under currently demanding conditions of performance in personalized medicine, while also subject to time, computational power, and bioethical constraints. Here, we will review some of these constraints and discuss possible avenues to overcome current challenges.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Clinical Research Division, National Institute of Cardiology ‘Ignacio Chávez’, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autnoma de Mexico, Mexico City, Mexico
| |
Collapse
|
30
|
Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Kellogg KC, Sadeh-Sharvit S. Pragmatic AI-augmentation in mental healthcare: Key technologies, potential benefits, and real-world challenges and solutions for frontline clinicians. Front Psychiatry 2022; 13:990370. [PMID: 36147984 PMCID: PMC9485594 DOI: 10.3389/fpsyt.2022.990370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The integration of artificial intelligence (AI) technologies into mental health holds the promise of increasing patient access, engagement, and quality of care, and of improving clinician quality of work life. However, to date, studies of AI technologies in mental health have focused primarily on challenges that policymakers, clinical leaders, and data and computer scientists face, rather than on challenges that frontline mental health clinicians are likely to face as they attempt to integrate AI-based technologies into their everyday clinical practice. In this Perspective, we describe a framework for "pragmatic AI-augmentation" that addresses these issues by describing three categories of emerging AI-based mental health technologies which frontline clinicians can leverage in their clinical practice-automation, engagement, and clinical decision support technologies. We elaborate the potential benefits offered by these technologies, the likely day-to-day challenges they may raise for mental health clinicians, and some solutions that clinical leaders and technology developers can use to address these challenges, based on emerging experience with the integration of AI technologies into clinician daily practice in other healthcare disciplines.
Collapse
Affiliation(s)
- Katherine C Kellogg
- Department of Work and Organization Studies, MIT Sloan School of Management, Cambridge, MA, United States
| | - Shiri Sadeh-Sharvit
- Eleos Health, Cambridge, MA, United States.,Center for M2Health, Palo Alto University, Palo Alto, CA, United States
| |
Collapse
|
32
|
Fischer UM, Shireman PK, Lin JC. Current applications of artificial intelligence in vascular surgery. Semin Vasc Surg 2021; 34:268-271. [PMID: 34911633 PMCID: PMC9883982 DOI: 10.1053/j.semvascsurg.2021.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/31/2023]
Abstract
Basic foundations of artificial intelligence (AI) include analyzing large amounts of data, recognizing patterns, and predicting outcomes. At the core of AI are well-defined areas, such as machine learning, natural language processing, artificial neural networks, and computer vision. Although research and development of AI in health care is being conducted in many medical subspecialties, only a few applications have been implemented in clinical practice. This is true in vascular surgery, where applications are mostly in the translational research stage. These AI applications are being evaluated in the realms of vascular diagnostics, perioperative medicine, risk stratification, and outcome prediction, among others. Apart from the technical challenges of AI and research outcomes on safe and beneficial use in patient care, ethical issues and policy surrounding AI will present future challenges for its successful implementation. This review will give a brief overview and a basic understanding of AI and summarize the currently available and used clinical AI applications in vascular surgery.
Collapse
Affiliation(s)
| | - Paula K. Shireman
- University of Texas Health San Antonio Long School of Medicine and the South Texas Veterans Health Care System
| | | |
Collapse
|
33
|
Rundo L, Militello C, Conti V, Zaccagna F, Han C. Advanced Computational Methods for Oncological Image Analysis. J Imaging 2021; 7:237. [PMID: 34821868 PMCID: PMC8619456 DOI: 10.3390/jimaging7110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
The Special Issue "Advanced Computational Methods for Oncological Image Analysis", published for the Journal of Imaging, covered original research papers about state-of-the-art and novel algorithms and methodologies, as well as applications of computational methods for oncological image analysis, ranging from radiogenomics to deep learning [...].
Collapse
Affiliation(s)
- Leonardo Rundo
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy
| | - Carmelo Militello
- Institute of Molecular Bioimaging and Physiology, Italian National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Vincenzo Conti
- Faculty of Engineering and Architecture, University of Enna KORE, 94100 Enna, Italy;
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, 40139 Bologna, Italy
| | - Changhee Han
- Saitama Prefectural University, Saitama 343-8540, Japan;
| |
Collapse
|
34
|
Xu X, Li J, Guan Y, Zhao L, Zhao Q, Zhang L, Li L. GLA-Net: A global-local attention network for automatic cataract classification. J Biomed Inform 2021; 124:103939. [PMID: 34752858 DOI: 10.1016/j.jbi.2021.103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Cataracts are the most crucial cause of blindness among all ophthalmic diseases. Convenient and cost-effective early cataract screening is urgently needed to reduce the risks of visual loss. To date, many studies have investigated automatic cataract classification based on fundus images. However, existing methods mainly rely on global image information while ignoring various local and subtle features. Notably, these local features are highly helpful for the identification of cataracts with different severities. To avoid this disadvantage, we introduce a deep learning technique to learn multilevel feature representations of the fundus image simultaneously. Specifically, a global-local attention network (GLA-Net) is proposed to handle the cataract classification task, which consists of two levels of subnets: the global-level attention subnet pays attention to the global structure information of the fundus image, while the local-level attention subnet focuses on the local discriminative features of the specific regions. These two types of subnets extract retinal features at different attention levels, which are then combined for final cataract classification. Our GLA-Net achieves the best performance in all metrics (90.65% detection accuracy, 83.47% grading accuracy, and 81.11% classification accuracy of grades 1 and 2). The experimental results on a real clinical dataset show that the combination of global-level and local-level attention models is effective for cataract screening and provides significant potential for other medical tasks.
Collapse
Affiliation(s)
- Xi Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jianqiang Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Yu Guan
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Linna Zhao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Qing Zhao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
| | - Li Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Abstract
OBJECTIVE Human factors and ergonomics (HF/E) frameworks and methods are becoming embedded in the health informatics community. There is now broad recognition that health informatics tools must account for the diverse needs, characteristics, and abilities of end users, as well as their context of use. The objective of this review is to synthesize the current nature and scope of HF/E integration into the health informatics community. METHODS Because the focus of this synthesis is on understanding the current integration of the HF/E and health informatics research communities, we manually reviewed all manuscripts published in primary HF/E and health informatics journals during 2020. RESULTS HF/E-focused health informatics studies included in this synthesis focused heavily on EHR customizations, specifically clinical decision support customizations and customized data displays, and on mobile health innovations. While HF/E methods aimed to jointly improve end user safety, performance, and satisfaction, most HF/E-focused health informatics studies measured only end user satisfaction. CONCLUSION HF/E-focused health informatics researchers need to identify and communicate methodological standards specific to health informatics, to better synthesize findings across resource intensive HF/E-focused health informatics studies. Important gaps in the HF/E design and evaluation process should be addressed in future work, including support for technology development platforms and training programs so that health informatics designers are as diverse as end users.
Collapse
|
36
|
Hou LX, Mao LX, Liu HC, Zhang L. Decades on emergency decision-making: a bibliometric analysis and literature review. COMPLEX INTELL SYST 2021; 7:2819-2832. [PMID: 34777972 PMCID: PMC8314852 DOI: 10.1007/s40747-021-00451-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 11/03/2022]
Abstract
When an emergency occurs, effective decisions should be made in a limited time to reduce the casualties and economic losses as much as possible. In the past decades, emergency decision-making (EDM) has become a research hotspot and a lot of studies have been conducted for better managing emergency events under tight time constraint. However, there is a lack of a comprehensive bibliometric analysis of the literature on this topic. The objective of this paper is to provide academic community with a complete bibliometric analysis of the EDM researches to generate a global picture of developments, focus areas, and trends in the field. A total of 303 journal publications published between 2010 and 2020 were identified and analyzed using the VOSviewer in regard to cooperation network, co-citation network, and keyword co-occurrence network. The findings indicate that the annual publications in this research field have increased rapidly since 2014. Based on the cooperation network and co-citation network analyses, the most productive and influential countries, institutions, researchers, and their cooperation networks were identified. Using the co-citation network analysis, the landmark articles and the core journals in the EDM area are found out. With the help of the keyword co-occurrence network analysis, research hotspots and development of the EDM domain are determined. According to current trends and blind spots in the literature, possible directions for further investigation are finally suggested for EDM. The literature review results provide valuable information and new insights for both scholars and practitioners to grasp the current situation, hotspots and future research agenda of the EDM field.
Collapse
Affiliation(s)
- Lin-Xiu Hou
- School of Management, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Ling-Xiang Mao
- School of Management, Shanghai University, Shanghai, 200444 People’s Republic of China
- School of Economics and Management, Anhui Normal University, Wuhu, 241002 People’s Republic of China
| | - Hu-Chen Liu
- School of Economics and Management, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
- College of Economics and Management, China Jiliang University, Hangzhou, 310018 People’s Republic of China
| | - Ling Zhang
- School of Management, Shanghai University, Shanghai, 200444 People’s Republic of China
| |
Collapse
|
37
|
Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115088] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Machine Learning and Artificial Intelligence (AI) more broadly have great immediate and future potential for transforming almost all aspects of medicine. However, in many applications, even outside medicine, a lack of transparency in AI applications has become increasingly problematic. This is particularly pronounced where users need to interpret the output of AI systems. Explainable AI (XAI) provides a rationale that allows users to understand why a system has produced a given output. The output can then be interpreted within a given context. One area that is in great need of XAI is that of Clinical Decision Support Systems (CDSSs). These systems support medical practitioners in their clinic decision-making and in the absence of explainability may lead to issues of under or over-reliance. Providing explanations for how recommendations are arrived at will allow practitioners to make more nuanced, and in some cases, life-saving decisions. The need for XAI in CDSS, and the medical field in general, is amplified by the need for ethical and fair decision-making and the fact that AI trained with historical data can be a reinforcement agent of historical actions and biases that should be uncovered. We performed a systematic literature review of work to-date in the application of XAI in CDSS. Tabular data processing XAI-enabled systems are the most common, while XAI-enabled CDSS for text analysis are the least common in literature. There is more interest in developers for the provision of local explanations, while there was almost a balance between post-hoc and ante-hoc explanations, as well as between model-specific and model-agnostic techniques. Studies reported benefits of the use of XAI such as the fact that it could enhance decision confidence for clinicians, or generate the hypothesis about causality, which ultimately leads to increased trustworthiness and acceptability of the system and potential for its incorporation in the clinical workflow. However, we found an overall distinct lack of application of XAI in the context of CDSS and, in particular, a lack of user studies exploring the needs of clinicians. We propose some guidelines for the implementation of XAI in CDSS and explore some opportunities, challenges, and future research needs.
Collapse
|
38
|
Thomas MJ, Lal V, Baby AK, Rabeeh Vp M, James A, Raj AK. Can technological advancements help to alleviate COVID-19 pandemic? a review. J Biomed Inform 2021; 117:103787. [PMID: 33862231 PMCID: PMC8056973 DOI: 10.1016/j.jbi.2021.103787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/22/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is continuing, and the innovative and efficient contributions of the emerging modern technologies to the pandemic responses are too early and cannot be completely quantified at this moment. Digital technologies are not a final solution but are the tools that facilitate a quick and effective pandemic response. In accordance, mobile applications, robots and drones, social media platforms (such as search engines, Twitter, and Facebook), television, and associated technologies deployed in tackling the COVID-19 (SARS-CoV-2) outbreak are discussed adequately, emphasizing the current-state-of-art. A collective discussion on reported literature, press releases, and organizational claims are reviewed. This review addresses and highlights how these effective modern technological solutions can aid in healthcare (involving contact tracing, real-time isolation monitoring/screening, disinfection, quarantine enforcement, syndromic surveillance, and mental health), communication (involving remote assistance, information sharing, and communication support), logistics, tourism, and hospitality. The study discusses the benefits of these digital technologies in curtailing the pandemic and 'how' the different sectors adapted to these in a shorter period. Social media and television's role in ensuring global connectivity and serving as a common platform to share authentic information among the general public were summarized. The World Health Organization and Governments' role globally in-line with the prevention of propagation of false news, spreading awareness, and diminishing the severity of the COVID-19 was discussed. Furthermore, this collective review is helpful to investigators, health departments, Government organizations, and policymakers alike to facilitate a quick and effective pandemic response.
Collapse
Affiliation(s)
- Mervin Joe Thomas
- Dept. of Mechanical Engg., National Institute of Technology Calicut, Kerala 673601, India
| | - Vishnu Lal
- Dept. of Mechanical Engg., National Institute of Technology Calicut, Kerala 673601, India
| | - Ajith Kurian Baby
- Dept. of Mechanical Engg., National Institute of Technology Calicut, Kerala 673601, India
| | - Muhammad Rabeeh Vp
- School of Materials Science and Engg., National Institute of Technology Calicut, Kerala 673601, India
| | - Alosh James
- Solar Energy Center, Dept. of Mechanical Engg., National Institute of Technology Calicut, Kerala 673601, India
| | - Arun K Raj
- Dept. of Mechanical Engg., Indian Institute of Technology Bombay, Maharashtra 400076, India.
| |
Collapse
|
39
|
Abstract
Head–Neck Cancer (HNC) has a relevant impact on the oncology patient population and for this reason, the present review is dedicated to this type of neoplastic disease. In particular, a collection of methods aimed at tumor delineation is presented, because this is a fundamental task to perform efficient radiotherapy. Such a segmentation task is often performed on uni-modal data (usually Positron Emission Tomography (PET)) even though multi-modal images are preferred (PET-Computerized Tomography (CT)/PET-Magnetic Resonance (MR)). Datasets can be private or freely provided by online repositories on the web. The adopted techniques can belong to the well-known image processing/computer-vision algorithms or the newest deep learning/artificial intelligence approaches. All these aspects are analyzed in the present review and comparison among various approaches is performed. From the present review, the authors draw the conclusion that despite the encouraging results of computerized approaches, their performance is far from handmade tumor delineation result.
Collapse
|
40
|
Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, Gallivanone F, Cozzi A, D'Amico NC, Sardanelli F. AI applications to medical images: From machine learning to deep learning. Phys Med 2021; 83:9-24. [PMID: 33662856 DOI: 10.1016/j.ejmp.2021.02.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context. METHODS A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections. RESULTS We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way. CONCLUSIONS Biomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
Collapse
Affiliation(s)
- Isabella Castiglioni
- Department of Physics, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy; Institute of Biomedical Imaging and Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Leonardo Rundo
- Department of Radiology, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom.
| | - Marina Codari
- Department of Radiology, Stanford University School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| | - Giovanni Di Leo
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy.
| | - Christian Salvatore
- Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy; DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milano, Italy.
| | - Matteo Interlenghi
- DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milano, Italy.
| | - Francesca Gallivanone
- Institute of Biomedical Imaging and Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Andrea Cozzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| | - Natascha Claudia D'Amico
- Department of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano S.p.A., Via Saint Bon 20, 20147 Milano, Italy; Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy.
| | - Francesco Sardanelli
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| |
Collapse
|
41
|
Abdelminaam DS, Ismail FH, Taha M, Taha A, Houssein EH, Nabil A. CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:27840-27867. [PMID: 34786308 PMCID: PMC8545243 DOI: 10.1109/access.2021.3058066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 05/05/2023]
Abstract
COVID-19 has affected all peoples' lives. Though COVID-19 is on the rising, the existence of misinformation about the virus also grows in parallel. Additionally, the spread of misinformation has created confusion among people, caused disturbances in society, and even led to deaths. Social media is central to our daily lives. The Internet has become a significant source of knowledge. Owing to the widespread damage caused by fake news, it is important to build computerized systems to detect fake news. The paper proposes an updated deep neural network for identification of false news. The deep learning techniques are The Modified-LSTM (one to three layers) and The Modified GRU (one to three layers). In particular, we carry out investigations of a large dataset of tweets passing on data with respect to COVID-19. In our study, we separate the dubious claims into two categories: true and false. We compare the performance of the various algorithms in terms of prediction accuracy. The six machine learning techniques are decision trees, logistic regression, k nearest neighbors, random forests, support vector machines, and naïve Bayes (NB). The parameters of deep learning techniques are optimized using Keras-tuner. Four Benchmark datasets were used. Two feature extraction methods were used (TF-ID with N-gram) to extract essential features from the four benchmark datasets for the baseline machine learning model and word embedding feature extraction method for the proposed deep neural network methods. The results obtained with the proposed framework reveal high accuracy in detecting Fake and non-Fake tweets containing COVID-19 information. These results demonstrate significant improvement as compared to the existing state of art results of baseline machine learning models. In our approach, we classify the data into two categories: fake or nonfake. We compare the execution of the proposed approaches with Six machine learning procedures. The six machine learning procedures are Decision Tree (DT), Logistic Regression (LR), K Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes (NB). The parameters of deep learning techniques are optimized using Keras-tuner. Four Benchmark datasets were used. Two feature extraction methods were used (TF-ID with N-gram) to extract essential features from the four benchmark datasets for the baseline machine learning model and word embedding feature extraction method for the proposed deep neural network methods. The results obtained with the proposed framework reveal high accuracy in detecting Fake and non-Fake tweets containing COVID-19 information. These results demonstrate significant improvement as compared to the existing state of art results of baseline machine learning models.
Collapse
Affiliation(s)
- Diaa Salama Abdelminaam
- Faculty of Computers and Artificial IntelligenceBenha UniversityBenha13511Egypt
- Faculty of Computer ScienceMisr International UniversityCairo11341Egypt
| | | | - Mohamed Taha
- Faculty of Computers and Artificial IntelligenceBenha UniversityBenha13511Egypt
| | - Ahmed Taha
- Faculty of Computers and Artificial IntelligenceBenha UniversityBenha13511Egypt
| | | | - Ayman Nabil
- Faculty of Computer ScienceMisr International UniversityCairo11341Egypt
| |
Collapse
|
42
|
HCI for biomedical decision-making: From diagnosis to therapy. J Biomed Inform 2020; 111:103593. [PMID: 33069887 DOI: 10.1016/j.jbi.2020.103593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
|
43
|
Kirby K, Anwar MN. An application of activity theory to the "problem of e-books". Heliyon 2020; 6:e04982. [PMID: 32995643 PMCID: PMC7505808 DOI: 10.1016/j.heliyon.2020.e04982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The “problem of e-books” is defined as the difficulty improving the adoption rates of e-books by students. The adoption rates of e-books for academic use remain low, and research into the reasons for this have resulted in inconclusive findings. Factors such as student perception, and variations in experimental methodology and technology, contribute to difficulties in generalising findings and establishing conclusive causes for this problem. To better understand the causal factors for low adoption rates and the student's experience with ereaders and digital text, an investigation was conducted by the lead researcher as a student enrolled in a postgraduate course. The experiment was designed using e-book and digital text documents on an ereader for academic study and the results analysed with the framework of Activity Theory. This methodology allowed exploration of the problem within the authentic experience of a student to examine the effects of this social environment on ereader and e-book use. Analysis of the work domain was conducted and a comparative assessment of the observed effect of using the digital documents on an ereader compared with the paper book. Findings show that attempts to apply self-regulation and metacognitive learning techniques within the activity using the ereader were abandoned due to breakdowns in operations, and that this resulted in a perceived lower quality of achievement. The effect on the processes used by the student were extreme and were observed to be highly dependent on the student's use of specific learning strategies. The experimental methodology employed in this investigation enabled identification of the role of the social environment in the use of course documents on an ereader for academic study. The functionality of the ereader was such an extremely poor fit with the observed academic processes that a redesign approach for ereader and e-book technology is proposed as a solution to the low adoption rates of e-books.
Collapse
Affiliation(s)
- Karen Kirby
- Department of Computer and Information Sciences, Northumbria University, UK
| | - Muhammad N Anwar
- Department of Computer and Information Sciences, Northumbria University, UK
| |
Collapse
|