1
|
Song YW, Nam J, Kim J, Lee Y, Choi J, Min HS, Yang H, Cho Y, Hwang S, Son J, Jung UW, Jung H. Hyaluronic acid-based minocycline-loaded dissolving microneedle: Innovation in local minocycline delivery for periodontitis. Carbohydr Polym 2025; 349:122976. [PMID: 39638519 DOI: 10.1016/j.carbpol.2024.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Periodontitis is a prevalent inflammatory disease that affects tooth-supporting tissues and is induced by complex polymicrobial dental plaques. Prior treatments, including topical antibiotic ointments, have faced difficulties in tissue permeability issues. Although dissolving microneedle (DMN) has been proposed as a painless and highly efficient transdermal drug delivery system to resolve this challenge, minocycline, widely used for the treatment of periodontitis, is light-sensitive, making it challenging to maintain its stability using conventional fabrication methods. Our hyaluronic acid-based minocycline-loaded dissolving microneedle (HAM-DMN) was designed utilizing an innovative light-blocking strategy, preserving 94.4 % of minocycline's stability, as confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. HAM-DMNs demonstrated antimicrobial efficacy in in vitro zone of inhibition tests with Streptococcus mutans strains and provided enhanced local delivery of minocycline to porcine oral gingival mucosa at concentrations 6.1 times higher than those of commercial ointments. In vivo studies in periodontitis-induced rat models showed that HAM-DMNs reduced levels of junctional epithelium more effectively than control and blank DMN groups, indicating enhanced treatment efficacy. HAM-DMN is a novel local delivery system developed to overcome the limitations of systemic delivery and conventional topical treatment. We suggest that HAM-DMNs can replace injections for the treatment of intraoral mucosal and systemic diseases.
Collapse
Affiliation(s)
- Young Woo Song
- Department of Periodontology, Dental Hospital, Veterans Health Service Medical Center, 53, Jinhwangdo-ro 61-gil, Seoul, Republic of Korea
| | - Jeehye Nam
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jeongin Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Youjin Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Hye Su Min
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Huisuk Yang
- Juvic Inc., 208Ho, 272, Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Sungmin Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea; Doping Control Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea.
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea; Juvic Inc., 208Ho, 272, Digital-ro, Guro-gu, Seoul 08389, Republic of Korea.
| |
Collapse
|
2
|
Cammarano A, Dello Iacono S, Battisti M, De Stefano L, Meglio C, Nicolais L. A systematic review of microneedles technology in drug delivery through a bibliometric and patent overview. Heliyon 2024; 10:e40658. [PMID: 39669166 PMCID: PMC11635707 DOI: 10.1016/j.heliyon.2024.e40658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
The transdermal drug delivery (TDD) route has gathered considerable attention for its potential to improve therapeutic efficacy while minimizing systemic side effects. Among transdermal technologies, microneedle (MN) devices have proven to be a promising approach that combines the advantages of traditional needle injections and non-invasive topical applications. This review provides a comprehensive analysis of progress in transdermal drug delivery systems (TDDS) via MN from 2000 to 2023, integrating bibliometric analysis and patent landscape to present a multi-faceted perspective on the evolution of this technology. The study identifies key trends, challenges, and opportunities in the research, implementation, and commercialization of MN tools through a systematic examination of scientific literature and an extensive investigation of global patent databases. The study of bibliometric trends reveals the leading experts, organizations, companies, and countries contributing to this field, collaboration networks, and the thematic evolution of research topics. The patent analysis offers insights into innovative trajectories, key players, and geographical distribution of intellectual property. This review resumes the latest advancements in MN devices and provides a strategic outlook that can guide future research directions, promote partnerships, and inform stakeholders involved in the development of TDDS.
Collapse
Affiliation(s)
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Mario Battisti
- Materias Srl, Corso N. Protopisani 50, 80146, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | | | - Luigi Nicolais
- Materias Srl, Corso N. Protopisani 50, 80146, Naples, Italy
| |
Collapse
|
3
|
Bahnick AJ, Dziewior CS, Li Y, Chou A, Segal M, Augustine EK, Ji RR, Becker ML. Controlled Transdermal Delivery of Dexamethasone for Pain Management via Photochemically 3D-Printed Bioresorbable Microneedle Arrays. Adv Healthc Mater 2024; 13:e2402113. [PMID: 39132866 DOI: 10.1002/adhm.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Microneedle array patches (MAPs) are extensively studied for transdermal drug delivery. Additive manufacturing enables precise control over MAP customization and rapid fabrication. However, the scope of 3D-printable, bioresorbable materials is limited. Dexamethasone (DXM) is widely used to manage inflammation and pain, but its application is limited by systemic side effects. Thus, it is crucial to achieve high local drug concentrations while maintaining low serum levels. Here, poly(propylene fumarate-co-propylene succinate) oligomers are fabricated into DXM-loaded, bioresorbable MAPs via continuous liquid interface production 3D printing. Thiol-ene click chemistry yields MAPs with tailorable mechanical and degradation properties. DXM-loaded MAPs exhibit controlled elution of drug in vitro. Transdermal application of DXM-loaded MAPs in a murine tibial fracture model leads to substantial relief of postoperative pain. Pharmacokinetic analysis shows that MAP administration is able to control pain at a significantly lower dose than intravenous administration. This work expands the material properties of 3D-printed poly(propylene fumarate-co-propylene succinate) copolyesters and their use in drug delivery applications.
Collapse
Affiliation(s)
| | | | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Amy Chou
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Maddison Segal
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Seong KY, Kim MJ, Lee H, Kim S, Kim S, Kim HS, Jung EM, An BS, Yang SY. One-touch embeddable microneedles for hair loss treatment. Int J Pharm 2024; 669:125020. [PMID: 39626847 DOI: 10.1016/j.ijpharm.2024.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
With increasing clinical demands for painless and easy administration of medications, such as for hair loss, microneedles (MNs) have been widely exploited for facilitating drug permeation in a minimally invasive manner. However, precise dose control and long-term drug delivery without the infection risk through punctured holes have remained unresolved. Herein, we developed swellable microneedles (MNs) with an air-pocket structure, enabling shear-induced implantation inside the skin. The air-pocket MNs (AP-MNs) were prepared by one-step molding process with genipin-crosslinked gelatin solutions. This MN design induced mechanical difference following insertion due to selective hydration at the inserted MN tips, causing them to break at the interface between the swollen tip and the non-inserted column. The AP-MNs (80-90 %) were embedded into the skin and played a barrier function by tightly sealing punctured holes. Minoxidil (MXD) for hair loss treatment were quantitatively loaded in the AP-MNs depending on swellable tip heights, with 90 % of loaded MXD in the AP-MN tips released over 48 h. In animal studies, the MXD-loaded AP-MNs exhibited higher efficiency than topical application for hair loss treatment. These results indicate that the design of shear-induced embeddable MNs could provide a high-efficiency, convenient, safe, and potentially self-administered method for drug delivery.
Collapse
Affiliation(s)
- Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea; Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeseon Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sodam Kim
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Semin Kim
- SNvia Co., Ltd., PNU AVEC, Busan 46285, Republic of Korea
| | - Hoon-Soo Kim
- Department of Dermatology, School of Medicine, Pusan National University, Busan 49241, Republic of Korea
| | - Eui-Man Jung
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
5
|
Jiang H, Guo Y, Tan X, Jiang Y, Pang N, Niu C, Liu L, Zhou Z, Liu L, Li H. Oxidized cellulose microneedle patch combined with vascular embolization and local delivery of timolol maleate for hemangiomas. Colloids Surf B Biointerfaces 2024; 244:114174. [PMID: 39197327 DOI: 10.1016/j.colsurfb.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Hemangiomas are superficial tumors characterized by dense vascular structures that often affect the patient's aesthetic appearance due to the obvious red appearance on the skin. Current treatments, especially timolol maleate in the form of eye drops and hydrogels, suffer from low transdermal drug delivery rates, resulting in prolonged treatment time. To address this challenge, our study introduced a soluble microneedle patch with dextran as the main material to form microcatheters for sustained delivery of timolol maleate. In addition, we proposed a vascular embolization strategy to disrupt the blood supply in hemangiomas. Oxidized cellulose (C-cellulose) was selected for its excellent hemostatic properties. We incorporated C-cellulose into dextran microneedles to facilitate thrombosis in the vascular-rich areas of hemangiomas. The innovative microneedle patch we developed can penetrate the skin to a depth of 430 μm and dissolve rapidly within 3 minutes, ensuring direct drug delivery to the subcutaneous layer. Notably, the treated skin area regained its original appearance within two hours after treatment. In addition to excellent skin permeability and rapid dissolution, these patches significantly promoted apoptosis and inhibited cell migration in mouse hemangioendothelioma EOMA cells. Our results demonstrate that this approach not only achieves significant tumor inhibition in a mouse hemangioma model, but also represents a more effective, convenient, and non-invasive treatment option. Therefore, dextran/C-cellulose/timolol maleate microneedle patch (MNs/Timolol) has broad clinical application prospects in the treatment of hemangiomas, minimizing the risk of additional damage and improving treatment efficacy.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Yiqun Guo
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Xiaoyun Tan
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Yizhou Jiang
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Ningdong Pang
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Chuanqiang Niu
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Lang Liu
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Zijun Zhou
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Lu Liu
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China
| | - Haibo Li
- Department of Interventional Hemangioma, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510600, China.
| |
Collapse
|
6
|
Moawad F, Ruel Y, Rezaei N, Alsarraf J, Pichette A, Legault J, Pouliot R, Brambilla D. Microneedles with Implantable Tip-Accumulated Therapeutics for the Long-Term Management of Psoriasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405927. [PMID: 39375985 DOI: 10.1002/smll.202405927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 625617, Egypt
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nastaran Rezaei
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Jérôme Alsarraf
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
7
|
Yang J, Zhao X, Yan LX, Chen LJ, Yan XP. Dual-Indicator loaded porous polymer microneedle patches for rapid and colorimetric detection of water-injected meat. Food Chem 2024; 467:142218. [PMID: 39637670 DOI: 10.1016/j.foodchem.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Water-injected meat leads to microbial growth, which affects the health of consumers. A colorimetric porous polymer microneedle patch was designed and prepared using photopolymerization of an acrylate monomer with porogen to be the substrate, and cobalt (II) chloride as color change indicator and tartrazine as the reference. The color of the microneedle patch changed from green to yellow green and to yellow as the increase of moisture concentration. Furthermore, the discoloration trend of the microneedle patch during the moisture measurement of meat is very regular. The moisture measurement of meat in range of 66.9 %-75.7 % exhibited a good linear dependence on RGB values. The results indicate that the microneedle patch can visually determine the moisture content of meat in 3 min. In addition, the microneedle patch can be combined with smartphone to achieve accurate detection of water-injected meat, making it a wonderful tool in the field of food safety testing.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Xia Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2024; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
9
|
Tsuboko Y, Sakoda H, Okamoto Y, Nomura Y, Yamamoto E. Mechanical Characterization of Individual Needles in Microneedle Arrays: Factors Affecting Compression Test Results. Pharmaceutics 2024; 16:1480. [PMID: 39598602 PMCID: PMC11597646 DOI: 10.3390/pharmaceutics16111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Background: This study aims to investigate the impact of test conditions on the results of the compression testing of microneedle arrays (MNAs). Methods: Uniaxial compression tests were conducted on polyglycolic acid-fabricated biodegradable MNAs. Load-displacement curves were obtained for varying conditions, including the number of microneedles (MNs) compressed simultaneously, compression speeds, and compression angles. Subsequently, the buckling load and stiffness were calculated, and the MN deformation during compression was observed. Results: The buckling load and stiffness per MN decreased significantly with a simultaneous increase in compressed MNs. The mean buckling load and stiffness of 52 MNs in single-needle compression tests were 0.211 ± 0.008 N and 13.9 ± 1.3 N/mm, respectively, with no variation among the three MNAs. However, a significant difference in buckling load and stiffness was observed among the MNs within the MNAs. Additionally, buckling loads and stiffnesses were significantly lower in certain MNs at the same location in different MNAs. Buckling load and stiffness decreased significantly during inclined compression compared to during vertical compression. While the tests evaluate the mechanical properties of MNAs, test results may vary depending on test conditions. Conclusions: Compression testing of the individual MNs comprising an MNA helps evaluate the mechanical properties of MNs and ensure the quality of MNAs.
Collapse
|
10
|
Liang H, Chen J, Qiu G, Guo B, Qiu Y. Ultrasonication-Induced Preparation of High-Mechanical-Strength Microneedles Using Stable Silk Fibroin. Polymers (Basel) 2024; 16:3183. [PMID: 39599274 PMCID: PMC11598507 DOI: 10.3390/polym16223183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Silk fibroin (SF) is an ideal material for microneedle (MN) preparation. However, long extraction and short storage durations limit its application. Furthermore, MNs prepared from SF alone are easy to break during skin insertion. In this study, a regenerated SF solution was autoclaved and freeze-dried to produce a stable and water-soluble SF sponge. The freeze-dried SF (FD-SF) solution was ultrasonically treated before being used in the fabrication of MNs. The ultrasonically modified SFMNs (US-SFMNs) were evaluated in comparison to FD-SFMNs made from FD-SF and conventional SFMNs made from regenerated SF. The results indicated that the FD-SF could be completely dissolved in water and remained stable even after 8 months of storage. FTIR and XRD analyses showed that SF in US-SFMNs had increased β-sheet content and crystallization compared to FD-SFMNs, by 7.3% and 8.1%, respectively. The US-SFMNs had higher mechanical strength than conventional SFMNs and FD-SFMNs, with a fracture force of 1.55 N per needle and a rat skin insertion depth of 370 μm. The US-SFMNs also demonstrated enhanced transdermal drug delivery and enzymatic degradation in vitro. In conclusion, the autoclaving and freeze drying of SF, as well as ultrasonication-induced MN preparation, provide promising SF-based microneedles for transdermal drug delivery.
Collapse
Affiliation(s)
- Huihui Liang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
| | - Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
| | - Guirong Qiu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuqin Qiu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
11
|
Che H, Xu J, Wu D, Chen S, Liu C, Zhao C, Peng K. Reactive oxygen species-responsive polydopamine-PtCuTe nanoparticle-loaded microneedle system for promoting the healing of infected skin wounds. J Control Release 2024; 376:999-1013. [PMID: 39505217 DOI: 10.1016/j.jconrel.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Nanozymes, known for their high efficiency in scavenging reactive oxygen species (ROS), have received significant attention in promoting the healing of infected wounds. Herein, we reported a novel multifunctional PDA-PtCuTe nanozyme with excellent ROS scavenging, antibacterial, pro-angiogenic, anti-inflammatory, and immune regulatory properties. It was loaded onto microneedles (PTPP-MN) for treating infected wounds. In vitro experiments demonstrated its ability to scavenge ROS and exhibit antioxidant properties. Compared to PT-MN (11.03 ± 3.37 %) and PTP-MN (42.30 ± 2.60 %), the ROS scavenging rate of PTPP-MN reached 63.63 ± 4.42 %. The microneedle exhibits good biocompatibility, stimulating fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, it effectively eliminates ROS and provides antioxidant effects while inhibiting the viability of S. aureus and E. coli. Animal experiments showed that the PTPP-MN group achieved near-complete re-epithelialization by the third day compared to other groups. Histological observations revealed that the PTPP-MN group exhibited enhanced granulation tissue formation, epithelial regeneration, and angiogenesis. After PTPP-MN treatment, the local immune response shifted from a pro-inflammatory state to a pro-regenerative state. Our results indicate that PTPP-MN holds great promise for infected wound healing with reduced scar formation.
Collapse
Affiliation(s)
- Hongfan Che
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhi Xu
- Orthopedic Department of The Third People's Hospital of Jingdezhen, Jiangxi, 333000, China
| | - Dong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Siliang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chengkang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chongbao Zhao
- Imaging Department to the People's Hospital of Feng Xin Jiangxi, 330700, China
| | - Kun Peng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
12
|
Yang C, Zhao W, Zhang L, He L, Wang S, Wang J, Xiang M, Yuan X, Gou M. Intradermal Delivery of Cell Vaccine via Ice Microneedles for Cancer Treatment. Adv Healthc Mater 2024:e2400678. [PMID: 39499079 DOI: 10.1002/adhm.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Indexed: 11/07/2024]
Abstract
The living tumor cell vaccine (TCV) holds a promise for cancer immunotherapy. Microneedle arrays provide a tool to improve the immune response of vaccines by the intradermal administration in a painless manner. However, it remains challenges for microneedle arrays to deliver the living TCV intradermally. Here, an ice microneedle array delivered living TCVs is shown with sustained granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion for cancer treatment. The ice microneedle array is composed of ice microneedles and a matching polymer holder, which are customized fabricated by a static optical projection lithography (SOPL) technique. The living TCV consisted of irradiated melanoma cells transfected with nanoparticle-mediated GM-CSF plasmids. After the living TCV is readily loaded into the ice microneedle via a cryopreservation process, it could be efficiently delivered into the dermis by the microneedle device. Compared to the subcutaneous injection, intradermal administration led to the recruitment of more dendritic cells at the vaccination site and the increased infiltration of CD8+ T cells in the tumor. The ice microneedle array deliveres intradermal TCVs significantly inhibited melanoma growth and effectively prevented melanoma recurrence without obvious side effects. This work demonstrates a promising TCVs for melanoma treatment, which will inspire the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Chunli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Department of Oncology, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Wei Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Huahang Microcreate Technology Co., Ltd, #818 Shixing Road, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Liming He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Siyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Jie Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Maya Xiang
- Department of Chemistry, University of Washington-Seattle Campus, 1410 NE Campus Pkwy, Seattle, WA, 98195, USA
| | - Xin Yuan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
13
|
Wang F, Luo A, Chen D. Real-time EEG-based detection of driving fatigue using a novel semi-dry electrode with self-replenishment of conductive fluid. Comput Methods Biomech Biomed Engin 2024:1-18. [PMID: 39494681 DOI: 10.1080/10255842.2024.2423268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
A novel semi-dry electrode that can realize self-replenishment of conductive liquid is proposed in this study. Driving fatigue is detected by extracting the refined composite multiscale fluctuation dispersion entropy (RCMFDE) features in electroencephalogram (EEG) signals collected by this electrode. The results show that the new semi-dry electrode can automatically complete the conductive fluid supplement according to its own humidity conditions, which not only notably improves the effective working time, but also significantly reduces the skin impedance. By comparing with the classical entropy algorithms, the computational speed and the stability of the RCMFDE method are Substantially enhanced.
Collapse
Affiliation(s)
- Fuwang Wang
- School of Mechanic Engineering, Northeast Electric Power University, Jilin, China
| | - Anni Luo
- School of Mechanic Engineering, Northeast Electric Power University, Jilin, China
| | - Daping Chen
- School of Mechanic Engineering, Northeast Electric Power University, Jilin, China
| |
Collapse
|
14
|
Joshi V, Singh N, Datta P. Facile fabrication of degradable, serrated polyethylene diacrylate microneedles using stereolithography. Pharm Dev Technol 2024; 29:976-986. [PMID: 39364615 DOI: 10.1080/10837450.2024.2413146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Microneedles have the potential for minimally invasive drug delivery. However, they are constrained by absence of rapid, scalable fabrication methods to produce intricate arrays and serrations for enhanced adhesion. 3D printing techniques like stereolithography (SLA) are fast, scalable modalities but SLAs require non-degradable and stiff resins. This work attempts to overcome this limitation by utilizing a poly (ethylene glycol diacrylate) (PEGDA, F3) resin and demonstrating its compatibility with a commercial SLA printer. FESEM images showed high printing efficiency of customized bioinks (F3) similar to commercial resins using SLA 3D printer. Mechanical endurance tests of whole MNA showed that MNs array printed from F3 resin (485 ± 5.73 N) required considerably less force than commercial F1 resin (880 ± 32.4 N). Penetration performance of F1 and F3 was found to be 10.8 ± 2.06 N and 0.705 ± 0.03 N. In-vitro degradation study in PBS showed that MNs fabricated from F3 resin exhibited degradation after 7 days, which was not observed with the commercial F1 resin provided by the manufacturer. The histology of porcine skin exhibited formation of triangular pores with pore length of 548 μm and efficient penetration into the deeper dermal layer. In conclusion, PEGDA can be used as for fabricating degradable, serrated solid MNs over commercial resin.
Collapse
Affiliation(s)
- Vedant Joshi
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, WB, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, WB, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, WB, India
| |
Collapse
|
15
|
Yang B, Jiang Z, Feng X, Yang J, Lu C, Wu C, Pan X, Peng T. Development of Minodronic Acid-Loaded Dissolving Microneedles for Enhanced Osteoporosis Therapy: Influence of Drug Loading on the Bioavailability of Minodronic Acid. AAPS PharmSciTech 2024; 25:252. [PMID: 39443354 DOI: 10.1208/s12249-024-02963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoporosis is a metabolic bone disorder with impaired bone microstructure and increased bone fractures, seriously affecting the quality of life of patients. Among various bisphosphonates prescribed for managing osteoporosis, minodronic acid (MA) is the most potent inhibitor of bone context resorption. However, oral MA tablet is the only commercialized dosage form that has extremely low bioavailability, severe adverse reactions, and poor patient compliance. To tackle these issues, we developed MA-loaded dissolving microneedles (MA-MNs) with significantly improved bioavailability for osteoporosis therapy. We investigated the influence of drug loading on the physicochemical properties, transdermal permeation behavior, and pharmacokinetics of MA-MNs. The drug loading of MA-MNs exerted almost no effect on their morphology, mechanical property, and skin insertion ability, but it compromised the transdermal permeability and bioavailability of MA-MNs. Compared with oral MA, MA-MNs with the lowest drug loading (224.9 μg/patch) showed a 9-fold and 25.8-fold increase in peak concentration and bioavailability, respectively. This may be ascribed to the reason that the increased drug loading can generate higher burst release, higher drug residual rate, and drug supersaturation effect in skin tissues, eventually limiting drug absorption into the systemic circulation. Moreover, MA-MNs prolonged the half-life of MA and provided more steady plasma drug concentrations than intravenously injected MA, which helps to reduce dosing frequency and side effects. Therefore, dissolving MNs with optimized drug loading provides a promising alternative for bisphosphonate drug delivery.
Collapse
Affiliation(s)
- Beibei Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zeshi Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xiaoqian Feng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jingxin Yang
- Xinji Pharmaceutical Technology Co., Ltd, Guangzhou, 5111400, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
16
|
Zhu B, Zhu L, Li X, Zhao Z, Cao J, Qi M, Gao Z, Zhou L, Su B. A Wearable Integrated Microneedle Electrode Patch for Exercise Management in Diabetes. RESEARCH (WASHINGTON, D.C.) 2024; 7:0508. [PMID: 39434840 PMCID: PMC11491670 DOI: 10.34133/research.0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
Exercise is one of the preferred management strategies for diabetic patients, but the exercise mode including type, intensity, and duration time is quite different for each patient because of individual differences. Inadequate exercise has no effect on the blood glucose control, while overexercise may cause serious side effects, such as hypoglycemia and loss of blood glucose control. In this work, we report a closed-loop feedback mode for exercise management in diabetes. A minimally invasive, biocompatible microneedle electrode patch was fabricated and used for continuously monitoring the glucose in the interstitial fluid. Further, in conjunction with using a wireless electrochemical device, the glucose signals can be analyzed to output the potency of exercise and give advice on exercise management. A custom exercise given by this closed-loop feedback mode can reduce the used dose of insulin and avoid side effect during and after exercise. We believe that this work can provide a novel comprehensive guidance for diabetic patients.
Collapse
Affiliation(s)
- Boyu Zhu
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
| | - Lihang Zhu
- Department of Clinical Engineering, Second Affiliated Hospital, College of Medicine,
Zhejiang University, Hangzhou 310009, China
| | - Xinru Li
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
| | - Ziyi Zhao
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
| | - Jiayi Cao
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
| | - Min Qi
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
| | - Zhigang Gao
- General Surgery Department, Children’s Hospital,
Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry,
Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children’s Hospital,
Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
17
|
Mo X, Meng K, Li Z, Lan S, Ren Z, Fu X, Li C, Sun T, Xie D, Zhang Z, Chen HJ. An Integrated Microcurrent Delivery System Facilitates Human Parathyroid Hormone Delivery for Enhancing Osteoanabolic Effect. SMALL METHODS 2024:e2401144. [PMID: 39420694 DOI: 10.1002/smtd.202401144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Human parathyroid hormone (1-34) (PTH) exhibits osteoanabolic and osteocatabolic effects, with shorter plasma exposure times favoring bone formation. Subcutaneous injection (SCI) is the conventional delivery route for PTH but faces low delivery efficiency due to limited passive diffusion and the obstruction of the vascular endothelial barrier, leading to prolonged drug exposure times and reduced osteoanabolic effects. In this work, a microcurrent delivery system (MDS) based on multimicrochannel microneedle arrays (MMAs) is proposed, achieving high efficiency and safety for PTH transdermal delivery. The internal microchannels of the MMAs are fabricated using high-precision 3D printing technology, providing a concentrated and safe electric field that not only accelerates the movement of PTH but also reversibly increases vascular endothelial permeability by regulating the actin cytoskeleton and interendothelial junctions through Ca2+-dependent cAMP signaling, ultimately promoting PTH absorption and shortening exposure times. The MDS enhances the osteoanabolic effect of PTH in an osteoporosis model by inhibiting osteoclast differentiation on the bone surface compared to SCI. Moreover, histopathological analysis of the skin and organs demonstrated the good safety of PTH delivered by MDS in vivo. In addition to PTH, the MDS shows broad prospects for the high-efficiency transdermal delivery of macromolecular drugs.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Keyu Meng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zehui Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shanwei Lan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhengda Ren
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xihong Fu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Chenglin Li
- State Key Laboratory of Optoelectronic Materials and Technologies Province Key Laboratory of Display Material and Technology School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Tiancheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies Province Key Laboratory of Display Material and Technology School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Jiuan Chen
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| |
Collapse
|
18
|
Abdullah A, Ahmadinejad E, Tasoglu S. Optimizing Solid Microneedle Design: A Comprehensive ML-Augmented DOE Approach. ACS MEASUREMENT SCIENCE AU 2024; 4:504-514. [PMID: 39430965 PMCID: PMC11487659 DOI: 10.1021/acsmeasuresciau.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 10/22/2024]
Abstract
Microneedles (MNs), that is, a matrix of micrometer-scale needles, have diverse applications in drug delivery, skincare therapy, and health monitoring. MNs offer a minimally invasive alternative to hypodermic needles, characterized by rapid and painless procedures, cost-effective fabrication methods, and reduced tissue damage. This study explores four MN designs, cone-shaped, tapered cone-shaped, pyramidal with a square base, and pyramidal with a triangular-shaped base, and their optimization based on predefined criteria. The workflow encompasses three loading conditions: compressive load during insertion, critical buckling load, and bending loading resulting from incorrect insertion. Geometric parameters such as base radius/width, tip radius/width, height, and tapered angle tip influence the output criteria, namely, total deformation, critical buckling loads, factor of safety (FOS), and bending stress. The comprehensive framework employing a design of experiment approach within the ANSYS workbench toolbox establishes a mathematical model and a response surface fitting model. The resulting regression model, sensitivity chart, and response curve are used to create a multiobjective optimization problem that helps achieve an optimized MN geometrical design across the introduced four shapes, integrating machine learning (ML) techniques. This study contributes valuable insights into a potential ML-augmented optimization framework for MNs via needle designs to stay durable for various physiologically relevant conditions.
Collapse
Affiliation(s)
| | - Erfan Ahmadinejad
- Department
of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkiye
| | - Savas Tasoglu
- Department
of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkiye
- Koc
University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkiye
- Koç
University Translational Medicine Research Center (KUTTAM), Koç
University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Çengelköy, Istanbul 34684, Turkiye
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Sariyer, Istanbul 34450, Turkiye
| |
Collapse
|
19
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
20
|
Kim G, Ahn H, Chaj Ulloa J, Gao W. Microneedle sensors for dermal interstitial fluid analysis. MED-X 2024; 2:15. [PMID: 39363915 PMCID: PMC11445365 DOI: 10.1007/s44258-024-00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
Collapse
Affiliation(s)
- Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Hyunah Ahn
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Joshua Chaj Ulloa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
21
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
22
|
Zhang X, Zhou C, Chen T, Jiang Z, Lu C, Wu C, Pan X, Huang Z, Peng T. State-of-the-art strategies to enhance the mechanical properties of microneedles. Int J Pharm 2024; 663:124547. [PMID: 39097155 DOI: 10.1016/j.ijpharm.2024.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Microneedles (MNs) have gained increasing attention in the biomedical field, owing to their notable advantages over injectable and transdermal preparations. The mechanical properties of MNs are the key to determine whether MNs can puncture the skin for efficient drug delivery and therapeutic purposes. However, there is still lacking of a systemic summary on how to improve the mechanical properties of MNs. Herein, this review mainly analyzes the key factors affecting the mechanical properties of MNs from the theoretical point of view and puts forward improvement approaches. First, we analyzed the major stresses exerted on the MNs during skin puncture and described general methods to evaluate the mechanical properties of MNs. We then provided detail examples to elucidate how the physicochemical properties of single polymer, formulation compositions, and geometric parameters affected the mechanical properties of MNs. Overall, the mechanical strength of MNs can be enhanced by tuning the crosslinking density, crystallinity degree, and molecular weight of single polymer, introducing polysaccharides and nano-microparticles as reinforcers to form complex with polymer, and optimizing the geometric parameters of MNs. Therefore, this review will provide critical guidance on how to fabricate MNs with robust mechanical strength for successful transdermal drug delivery.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chunxian Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tianxiang Chen
- School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
| | - Zeshi Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China.
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
23
|
Kordyl O, Styrna Z, Wojtyłko M, Michniak-Kohn B, Osmałek T. Microneedle-based arrays - Breakthrough strategy for the treatment of bacterial and fungal skin infections. Microbes Infect 2024:105426. [PMID: 39326631 DOI: 10.1016/j.micinf.2024.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Currently, fungal and bacterial skin infections rank among the most challenging public health problems due to the increasing prevalence of microorganisms and the development of resistance to available drugs. A major issue in treating these infections with conventional topical medications is the poor penetration through the stratum corneum, the outermost layer of the skin. The concept of microneedles seems to be a future-proof approach for delivering drugs directly into deeper tissues. By bypassing the skin barrier, microneedle systems allow therapeutic substances to reach deeper layers more efficiently, significantly improving treatment outcomes. Nonetheless, the primary challenges regarding the effectiveness of microneedles involve selecting the appropriate size and shape, along with polymer composition and fabrication technology, to enable controlled and efficient drug release. This review offers a comprehensive overview of the latest knowledge on microneedle types and manufacturing techniques, highlighting their potential effectiveness in treating bacterial and fungal skin infections. It includes updated statistics on infection prevalence and provides a detailed examination of common bacterial and fungal diseases, focusing on their symptoms, causative species, and treatment methods. Additionally, the review addresses safety considerations, regulatory aspects, and future perspectives for microneedle-based therapeutic systems. It also underscores the importance of industrialization and clinical translation efforts, emphasizing the significant potential of microneedle technology for advancing medical applications.
Collapse
Affiliation(s)
- Oliwia Kordyl
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland
| | - Zuzanna Styrna
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznań, Poland.
| |
Collapse
|
24
|
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers (Basel) 2024; 16:2568. [PMID: 39339032 PMCID: PMC11434959 DOI: 10.3390/polym16182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint-target organ-ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems' promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiyue Mao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijia Han
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
25
|
Zheng Y, Li Z, Li S, Zhao P, Wang X, Lu S, Shi Y, Chang H. Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses. Acta Biomater 2024; 185:203-214. [PMID: 39053817 DOI: 10.1016/j.actbio.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Vaccines play a critical role in combating infectious diseases and cancers, yet improving their efficacy remains challenging. Here, we introduce a separable nanocomposite hydrogel microneedle (NHMN) patch designed for intradermal and sustained delivery of ovalbumin (OVA), a model antigen, to enhance adaptive immune responses. The NHMN patch consists of an array of OVA-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite (LAP), supported by a hyaluronic acid backing. The incorporation of LAP not only enhances the mechanical strength of the pure hydrogel microneedles but also significantly prolongs OVA release. Furthermore, in vitro cell experiments demonstrate that NHMNs effectively activate dendritic cells without compromising cell viability. Upon skin penetration, NHMNs detach from the backing as the hyaluronic acid rapidly dissolves upon contact with the skin interstitial fluid, thereby acting as antigen reservoirs to release antigens to abundant skin dendritic cells. NHMNs containing 0.5% w/v LAP achieved a 15-day OVA release in vivo. Immunization studies demonstrate that the intradermal and sustained release of OVA via NHMNs elicited stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. Given its easy to use, painless and minimally invasive features, the NHMN patch shows promise in improving vaccination accessibility and efficacy against a range of diseases. STATEMENT OF SIGNIFICANCE: The study introduces a separable nanocomposite hydrogel microneedle (NHMN) patch. This patch consists of an array of ovalbumin (OVA, a model antigen)-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite, with a hyaluronic acid backing, designed for intradermal and sustained delivery of antigens. This patch addresses several key challenges in traditional vaccination methods, including poor antigen uptake and presentation, and rapid systematic clearance. The incorporation of laponite enhances mechanical strength of microneedles, promotes dendritic cell activation, and significantly slows down antigen release. NHMN-based vaccination elicits stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. This NHMN patch holds great potential for improving the efficacy, accessibility, and patient comfort of vaccinations against a range of diseases.
Collapse
Affiliation(s)
- Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China
| | - Shaohua Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
26
|
Al-Nimry SS, Alkilani AZ, Alda'ajeh NA. Transdermal drug delivery of rizatriptan using microneedles array patch: preparation, characterization and ex-vivo/in-vivo study. Pharm Dev Technol 2024; 29:776-789. [PMID: 39159078 DOI: 10.1080/10837450.2024.2393218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Given the extensive first pass metabolism of rizatriptan in oral administration and its delayed absorption during a migraine attack as a result of gastric stasis, focus has been on transdermal delivery. The main purpose of this study is to prepare and assess transdermal formulation of rizatriptan, loaded on hydrogel microneedles delivery system, to avoid first pass metabolism and also improve its percutaneous permeation rate. Rizatriptan hydrogel microneedles were prepared using micromolding method and evaluated in terms of mechanical strength, encapsulation efficiency, permeation and in-vivo skin absorption. Different formulations of rizatriptan microneedles (F1-F5) were successfully prepared using different concentrations of carboxymethyl cellulose and gelatin type A. Rizatriptan hydrogel microneedles demonstrated favorable mechanical properties, including withstanding insertion forces, thereby enhancing its skin insertion ability. In permeation study, the percent cumulative drug released after 24 h ranged between 93.1-100% which means that microneedles were able to deliver the drug effectively. For in-vivo study, F3 formulation was selected due to its superior characteristics over other formulations as it exhibited the highest swelling capacity, and demonstrated favorable mechanical properties. Furthermore, F3 showcased the most controlled drug release over a 24-hour period. Relative bioavailability of F3 microneedles was 179.59% compared to oral administration based on the AUC0-24. The observed AUC0-24 in F3 microneedles was statistically significant and 1.80 times greater than that in oral administration. The higher rizatriptan level in the microneedle demonstrated adequate drug permeability through the rat skin, suggesting the potential of microneedles for enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nareman A Alda'ajeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
He M, Jin L, Wang F, Wang X, You Y, He H. Simple, ultrasensitive detection of superoxide anion radical mutations in melanoma mice with SERS microneedles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124292. [PMID: 38669980 DOI: 10.1016/j.saa.2024.124292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Elevated levels of superoxide anion radicals (O2·-) have been implicated in the pathogenesis of a variety of diseases, such as cancer, inflammatory diseases and autoimmune diseases. To determine the O2·- concentration for assisting disease detection, a method based on surface-enhanced Raman scattering (SERS) combined with transparent polymer microneedles has been developed. Photocrosslinked NOA61 is used to prepare microneedles with sulfhydryl group, which can contribute to anchor gold nanoparticles (Au NPs) functionalized by p-mercaptobenzoic acid (PATP). This work successfully constructed SERS microneedles for in situ detection. A REDOX reaction occurred between PATP and O2·-, resulting in the formation of dimethylaminoborane (DMAB) and a subsequent change in Raman signal. Based on the quantitative relationship between the change of peak area ratio at 1042 cm-1 and 1077 cm-1 and the concentration change of O2·-, a standard curve with a linear range of 0-480 ng/mL was constructed. The SERS microneedles were effectively employed to track melanoma progression in mice, establishing a fundamental correlation between O2·- concentration and melanoma stage, as confirmed by ELISA. The benefits of this approach, including convenience, in situ applicability, and low cost, are anticipated to offer novel insights for non-invasive in situ detection, potentially enhancing disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Miao He
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Lili Jin
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xin Wang
- Department of Traditional Chinese Medicine, The Second Military Medical University, Shanghai 200433, China
| | - Yanli You
- Department of Traditional Chinese Medicine, The Second Military Medical University, Shanghai 200433, China
| | - Hongyan He
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
28
|
Shin JY, Han D, Yoon KY, Jeong DH, Park YI. Clinical Safety and Efficacy Evaluation of a Dissolving Microneedle Patch Having Dual Anti-Wrinkle Effects With Safe and Long-Term Activities. Ann Dermatol 2024; 36:215-224. [PMID: 39082657 PMCID: PMC11291098 DOI: 10.5021/ad.23.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Anti-aging products are widely used, but the desire for safe and more efficient anti-aging products continues to increase. Dissolving microneedle patches (MNPs) have provided a more efficient transdermal drug delivery solution. MNP is a promising candidate for developing better anti-aging products. OBJECTIVE To develop a more efficient anti-aging MNP product, we fabricated a dual anti-wrinkle microneedle patch (named DA-MNP) using droplet extension (DEN®) technology and evaluated its skin puncture ability, safety, and efficacy through clinical studies. METHODS A DA-MNP comprising hyaluronic acid (HA) polymer backbone, acetyl octapeptide-3, and L-ascorbic acid 2-glucoside and sodium cyclic lysophosphatidic acid was fabricated using DEN® technology. Placebo MNPs comprising only HA were also fabricated. Twenty-four healthy subjects were enrolled in this comparative clinical study. The DA-MNP or placebo MNP was separately applied to the left and right eyes of subjects for overnight. Assessments, including wrinkle improvement, trans-epidermal water loss (TEWL), eye lifting and adverse effects were evaluated at each scheduled visit day for 28 days. RESULTS The DA-MNP showed mechanical strength enough for puncturing the stratum corneum. Compared to placebo MNP group, the DA-MNP treated group showed an effective eye wrinkles improvement and better anti-aging of skin, with reduced TEWL, enhanced skin elasticity and lifting, and no adverse effects. CONCLUSION The present study demonstrated that the fabricated DA-MNP exhibited fast acting on deep wrinkles and enhanced anti-aging efficacy, with no skin safety concern. Thus, this DA-MNP may serve as a new transdermal delivery solution for skin wrinkling and aging.
Collapse
Affiliation(s)
- Ju Yeop Shin
- Raphas Co., Ltd., Seoul, Korea
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Korea
| | | | | | | | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Korea.
| |
Collapse
|
29
|
Ali FR, Shoaib MH, Ali SA, Yousuf RI, Ahmed FR, Siddiqui F, Sarfaraz S, Raja R. Fabrication and evaluation of nanoemulsion based insulin loaded microneedles for transdermal drug delivery. Ther Deliv 2024; 15:605-617. [PMID: 39072401 PMCID: PMC11412143 DOI: 10.1080/20415990.2024.2377065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: Insulin therapy require self-administration of subcutaneous injection leading to painful and inconvenient drug therapy. The aim is to fabricate nanoemulsion (NE) based insulin loaded microneedles with improved bioavailability and patient compliance.Materials & methods: Different ratios of polyvinyl alcohol and polyvinylpyrrolidone as polymers were prepared through micro-molding technique for microneedles. Characterization of were performed using scanning electron microscope, differential scanning calorimetry, Fourier-transform infrared spectroscopy and circular dichroism. Mechanical strength, hygroscopicity and pain perception of these microneedles were also evaluated. In vitro release, permeation and in vivo PK/PD study of NE-based microneedles were conducted.Results: NE-based microneedles of insulin have improved bioavailability and quick response.Conclusion: Microneedles loaded with insulin can be effectively delivered insulin transdermally to treat diabetes with increased convenience and patient compliance.
Collapse
Affiliation(s)
- Fatima Ramzan Ali
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rameez Raja
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
30
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
31
|
Sharma MB, Abdelmohsen HAM, Kap Ö, Kilic V, Horzum N, Cheneler D, Hardy JG. Poly(2-Hydroxyethyl Methacrylate) Hydrogel-Based Microneedles for Bioactive Release. Bioengineering (Basel) 2024; 11:649. [PMID: 39061731 PMCID: PMC11273839 DOI: 10.3390/bioengineering11070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Microneedle arrays are minimally invasive devices that have been extensively investigated for the transdermal/intradermal delivery of drugs/bioactives. Here, we demonstrate the release of bioactive molecules (estradiol, melatonin and meropenem) from poly(2-hydroxyethyl methacrylate), pHEMA, hydrogel-based microneedle patches in vitro. The pHEMA hydrogel microneedles had mechanical properties that were sufficiently robust to penetrate soft tissues (exemplified here by phantom tissues). The bioactive release from the pHEMA hydrogel-based microneedles was fitted to various models (e.g., zero order, first order, second order). Such pHEMA microneedles have potential application in the transdermal delivery of bioactives (exemplified here by estradiol, melatonin and meropenem) for the treatment of various conditions.
Collapse
Affiliation(s)
- Manoj B. Sharma
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
- School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
| | - Hend A. M. Abdelmohsen
- School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
- Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Özlem Kap
- Department of Engineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye (N.H.)
| | - Volkan Kilic
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir 35620, Türkiye;
| | - Nesrin Horzum
- Department of Engineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye (N.H.)
| | - David Cheneler
- School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| |
Collapse
|
32
|
Nguyen HX, Kipping T, Banga AK. Polymeric Microneedles Enhance Transdermal Delivery of Therapeutics. Pharmaceutics 2024; 16:845. [PMID: 39065542 PMCID: PMC11280287 DOI: 10.3390/pharmaceutics16070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
This research presents the efficacy of polymeric microneedles in improving the transdermal permeation of methotrexate across human skin. These microneedles were fabricated from PLGA Expansorb® 50-2A and 50-8A and subjected to comprehensive characterization via scanning electron microscopy, Fourier-transform infrared spectroscopy, and mechanical analysis. We developed and assessed a methotrexate hydrogel for physicochemical and rheological properties. Dye binding, histological examinations, and assessments of skin integrity demonstrated the effective microporation of the skin by PLGA microneedles. We measured the dimensions of microchannels in the skin using scanning electron microscopy, pore uniformity analysis, and confocal microscopy. The skin permeation and disposition of methotrexate were researched in vitro. PLGA 50-8A microneedles appeared significantly longer, sharper, and more mechanically uniform than PLGA 50-2A needles. PLGA 50-8A needles generated substantially more microchannels, as well as deeper, larger, and more uniform channels in the skin than PLGA 50-2A needles. Microneedle insertion substantially reduced skin electrical resistance, accompanied by an elevation in transepidermal water loss values. PLGA 50-8A microneedle treatment provided a significantly higher cumulative delivery, flux, diffusion coefficient, permeability coefficient, and predicted steady-state plasma concentration; however, there was a shorter lag time than for PLGA 50-2A needles, base-treated, and untreated groups (p < 0.05). Conclusively, skin microporation using polymeric microneedles significantly improved the transdermal delivery of methotrexate.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K. Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
33
|
Jiang X, Wilkirson EC, Bailey AO, Russell WK, Lillehoj PB. Microneedle-based sampling of dermal interstitial fluid using a vacuum-assisted skin patch. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101975. [PMID: 38947182 PMCID: PMC11211974 DOI: 10.1016/j.xcrp.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 07/02/2024]
Abstract
Interstitial fluid (ISF) contains a wealth of biomolecules, yet it is underutilized for diagnostic testing due to a lack of rapid and simple techniques for collecting abundant amounts of fluid. Here, we report a simple and minimally invasive technique for rapidly sampling larger quantities of ISF from human skin. A microneedle array is used to generate micropores in skin from which ISF is extracted using a vacuum-assisted skin patch. Using this technique, an average of 20.8 μL of dermal ISF is collected in 25 min, which is an ∼6-fold improvement over existing sampling methods. Proteomic analysis of collected ISF reveals that it has nearly identical protein composition as blood, and >600 medically relevant biomarkers are identified. Toward this end, we demonstrate the detection of SARS-CoV-2 neutralizing antibodies in ISF collected from COVID-19 vaccinees using two commercial immunoassays, showcasing the utility of this technique for diagnostic testing.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Mechanical Engineering, Rice University, Houston 77005, TX, USA
| | | | - Aaron O. Bailey
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston 77550, TX, USA
| | - William K. Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston 77550, TX, USA
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston 77005, TX, USA
- Department of Bioengineering, Rice University, Houston 77030, TX, USA
| |
Collapse
|
34
|
Limcharoen B, Wanichwecharungruang S, Kröger M, Sansureerungsikul T, Schleusener J, Lena Klein A, Banlunara W, Meinke MC, Darvin ME. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution. Eur J Pharm Biopharm 2024; 199:114303. [PMID: 38657740 DOI: 10.1016/j.ejpb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Titiporn Sansureerungsikul
- Mineed Technology, 928 Block 28, Building D, Chulalongkorn 7 Alley, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| |
Collapse
|
35
|
Pang Y, Li Y, Chen K, Wu M, Zhang J, Sun Y, Xu Y, Wang X, Wang Q, Ning X, Kong D. Porous Microneedles Through Direct Ink Drawing with Nanocomposite Inks for Transdermal Collection of Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305838. [PMID: 38258379 DOI: 10.1002/smll.202305838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/19/2023] [Indexed: 01/24/2024]
Abstract
Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.
Collapse
Affiliation(s)
- Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
36
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
37
|
Wang Q, Liu Q, Zhong G, Xu T, Zhang X. Wearable Vertical Graphene-Based Microneedle Biosensor for Real-Time Ketogenic Diet Management. Anal Chem 2024; 96:8713-8720. [PMID: 38745346 DOI: 10.1021/acs.analchem.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ketogenic diets have attracted substantial interest in the treatment of chronic diseases, but there are health risks with long-term regimes. Despite the advancements in diagnostic and therapeutic methods in modern medicine, there is a huge gap in personalized health management of this dietary strategy. Hence, we present a wearable microneedle biosensor for real-time ketone and glucose monitoring. The microneedle array possesses excellent mechanical properties, allowing for consistent sampling of interstitial biomarkers while reducing the pain associated with skin puncture. Vertical graphene with outstanding electrical conductivity provides the resulting sensor with a high sensitivity of 234.18 μA mM-1 cm-2 and a low limit detection of 1.21 μM. When this fully integrated biosensor was used in human volunteers, it displayed an attractive analytical capability for tracking the dynamic metabolite levels. Moreover, the results of the on-body evaluation established a significant correlation with commercial blood measurements. Overall, this cost-effective and efficient sensing platform can accelerate the application of a ketogenic diet in personal nutrition and wellness management.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Geng Zhong
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tailin Xu
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
38
|
Monou PK, Andriotis E, Tzetzis D, Tzimtzimis E, Panteris E, Andreadis D, Demiri E, Vizirianakis IS, Fatouros DG. Evaluation of 3D-Printed Solid Microneedles Coated with Electrosprayed Polymeric Nanoparticles for Simultaneous Delivery of Rivastigmine and N-Acetyl Cysteine. ACS APPLIED BIO MATERIALS 2024; 7:2710-2724. [PMID: 38591866 DOI: 10.1021/acsabm.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Eleftherios Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
| | - Emmanouil Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Efterpi Demiri
- Clinic of Plastic and Reconstructive Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
39
|
Khairnar P, Phatale V, Shukla S, Tijani AO, Hedaoo A, Strauss J, Verana G, Vambhurkar G, Puri A, Srivastava S. Nanocarrier-Integrated Microneedles: Divulging the Potential of Novel Frontiers for Fostering the Management of Skin Ailments. Mol Pharm 2024; 21:2118-2147. [PMID: 38660711 DOI: 10.1021/acs.molpharmaceut.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Collapse
Affiliation(s)
- Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
40
|
He Y, He D, Fan L, Ren S, Wang L, Sun J. Application of hydrogel microneedles in the oral cavity. Biopolymers 2024; 115:e23573. [PMID: 38506560 DOI: 10.1002/bip.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.
Collapse
Affiliation(s)
- Yiyao He
- Graduate School of Dalian Medical University, Dalian, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Wang
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| |
Collapse
|
41
|
Jia B, Xia T, Wang X, Xu Y, Li B. Investigation of biosensing properties in magnetron sputtered metallized UV-curable polymer microneedle electrodes. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1008-1030. [PMID: 38386313 DOI: 10.1080/09205063.2024.2314360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024]
Abstract
Direct management and assessment of metal film properties applied to polymer microneedle (MN) biosensors remains difficult due to constraints inherent to their morphology. By simplifying the three-dimensional structure of MNs and adjusting the deposition time, different thicknesses of Au films were deposited on the UV-cured polymer planar and MN substrates. Several properties relevant to the biosensing of the Au films grown on the polymer surfaces were investigated. The results demonstrate the successful deposition of pure and stable Au nanoparticles onto the surface of UV-curable polymer materials. Initially, Au islands formed within the first minute of deposition; however, as the sputtering time extended, these islands transformed into Au nanoparticle films and disappeared. The hydrophilicity of the surface remains unchanged, while the surface resistance of the thin film decreases with increasing thickness, and the adhesion to the substrate decreases as the thickness increases. In short, a sputtering time of 5-6 min results in Au films with a thickness of 100-200 nm, which exhibit exceptional comprehensive biosensing performance. Additionally, MNs made of Au/UV-curable polymers and produced using magnetron sputtering maintain their original shape, enhance their mechanical characteristics, and gain new functionalities. The Au/UV-curable polymer MNs exhibited remarkable electrode performance despite being soaked in a 37 °C PBS solution for 14 days. These discoveries have important implications in terms of decreasing the dependence on valuable metals in MN biosensors, lowering production expenses, and providing guidance for the choice and design of materials for UV-curable polymer MN metallization films.
Collapse
Affiliation(s)
- Baoling Jia
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, Lanzhou University of Technology, Lanzhou, China
| | - Tiandong Xia
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, Lanzhou University of Technology, Lanzhou, China
| | - Xiaohui Wang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Yangtao Xu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, Lanzhou University of Technology, Lanzhou, China
| | - Bei Li
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
42
|
Gu Z, Zhao D, He H, Wang Z. SERS-Based Microneedle Biosensor for In Situ and Sensitive Detection of Tyrosinase. BIOSENSORS 2024; 14:202. [PMID: 38667195 PMCID: PMC11047863 DOI: 10.3390/bios14040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Tyrosinase (TYR) emerges as a key enzyme that exerts a regulatory influence on the synthesis of melanin, thereby assuming the role of a critical biomarker for the detection of melanoma. Detecting the authentic concentration of TYR in the skin remains a primary challenge. Distinguished from ex vivo detection methods, this study introduces a novel sensor platform that integrates a microneedle (MN) biosensor with surface-enhanced Raman spectroscopy (SERS) technology for the in situ detection of TYR in human skin. The platform utilized dopamine (DA)-functionalized gold nanoparticles (Au NPs) as the capturing substrate and 4-mercaptophenylboronic acid (4-MPBA)-modified silver nanoparticles (Ag NPs) acting as the SERS probe. Here, the Au NPs were functionalized with mercaptosuccinic acid (MSA) for DA capture. In the presence of TYR, DA immobilized on the MN is preferentially oxidized to dopamine quinone (DQ), a process that results in a decreased density of SERS probes on the platform. TYR concentration was detected through variations in the signal intensity emitted by the phenylboronic acid. The detection system was able to evaluate TYR concentrations within a linear range of 0.05 U/mL to 200 U/mL and showed robust anti-interference capabilities. The proposed platform, integrating MN-based in situ sensing, SERS technology, and TYR responsiveness, holds significant importance for diagnosing cutaneous melanoma.
Collapse
Affiliation(s)
- Zimeng Gu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Zhao
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyan He
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhui Wang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Bader N, Abu Ammar A. Incorporating surfactants into PCL microneedles for sustained release of a hydrophilic model drug. Int J Pharm 2024; 652:123826. [PMID: 38253267 DOI: 10.1016/j.ijpharm.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Polymeric microneedles (MNs) are widely used for sustained drug release due to their distinct advantages over other types of MNs. Poly-ε-caprolactone (PCL) stands out as a biodegradable and biocompatible hydrophobic polymer commonly employed in drug delivery applications. This study explores the impact of surfactants on the encapsulation and release rate of a model hydrophilic drug, minoxidil (MXD), from PCL MNs. Three nonionic surfactants, Tween 80, Span 60, and polyethylene glycol (PEG), were integrated into PCL MNs at varying concentrations. Compared to the other types of surfactants, PEG-containing PCL MNs exhibit enhanced insertion capabilities into a skin-simulant parafilm model and increased mechanical strength, suggesting facile penetration into the stratum corneum. Furthermore, MXD-PEG MNs show the highest encapsulation efficiency and are further characterized using FTIR, DSC and XRD. Their mechanical strength against different static forces was measured. The MNs exhibit a sustained release pattern over 20 days. Eventually, MXD-PEG MNs were subjected to penetration testing using chicken skin and required minimal insertion forces with no observed MN failure during experimentation even after compression with the maximum force applied (32 N per patch). Taken together, the present work demonstrates the feasibility of incorporating nonionic surfactants like PEG into the tips of hydrophobic PCL MNs for sustained delivery of a model hydrophilic drug. This formulation strategy can be used to improve patient compliance by allowing self-administration and achieving prolonged drug release.
Collapse
Affiliation(s)
- Nadeen Bader
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Aiman Abu Ammar
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel.
| |
Collapse
|
44
|
Creighton RL, Faber KA, Tobos CI, Doan MA, Guo T, Woodrow KA. Oral mucosal vaccination using integrated fiber microneedles. J Control Release 2024; 367:649-660. [PMID: 38295993 PMCID: PMC11010722 DOI: 10.1016/j.jconrel.2024.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
The oral mucosa is an attractive site for immunization due to its accessibility and ability to elicit local and systemic immune responses. However, evaluating oral mucosal immunogenicity has proven challenging due to the physical barriers and immunological complexity of the oral mucosa. Microneedles can overcome these physical barriers, but previous work has been limited in the scope of microneedle delivery site, geometry, and release kinetics, all of which are expected to affect physiological responses. Here, we develop integrated fiber microneedle devices, an oral dosage form with tunable geometries and material configurations capable of both burst and sustained release to controlled depths in the oral mucosa. Integrated fiber microneedles administered to either the buccal or sublingual mucosa result in seroconversion and antigen-specific interferon-γ secretion in splenocytes. The dynamics and magnitude of the resulting immune response can be modulated by tuning microneedle release kinetics. Optimal microneedle geometry is site-specific, with longer microneedles eliciting greater immunogenicity in the buccal mucosa, and shorter microneedles eliciting greater immunogenicity in the sublingual mucosa. The Th1/Th2 phenotype of the resulting immune response is also dependent on integrated fiber microneedle length. Together, these results establish integrated fiber microneedles as a multifunctional delivery system for the oral mucosa and motivate further exploration using tunable delivery systems to better understand oral mucosal immunity.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, 3720 15(th) Ave NE, Seattle, WA 98195, USA
| | - Kate A Faber
- Department of Bioengineering, University of Washington, 3720 15(th) Ave NE, Seattle, WA 98195, USA
| | - Carmen I Tobos
- Department of Bioengineering, University of Washington, 3720 15(th) Ave NE, Seattle, WA 98195, USA
| | - My-Anh Doan
- Department of Bioengineering, University of Washington, 3720 15(th) Ave NE, Seattle, WA 98195, USA
| | - Teri Guo
- Department of Bioengineering, University of Washington, 3720 15(th) Ave NE, Seattle, WA 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15(th) Ave NE, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Vander Straeten A, Sarmadi M, Daristotle JL, Kanelli M, Tostanoski LH, Collins J, Pardeshi A, Han J, Varshney D, Eshaghi B, Garcia J, Forster TA, Li G, Menon N, Pyon SL, Zhang L, Jacob-Dolan C, Powers OC, Hall K, Alsaiari SK, Wolf M, Tibbitt MW, Farra R, Barouch DH, Langer R, Jaklenec A. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat Biotechnol 2024; 42:510-517. [PMID: 37095347 PMCID: PMC10593912 DOI: 10.1038/s41587-023-01774-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Collapse
Affiliation(s)
- Aurélien Vander Straeten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morteza Sarmadi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John L Daristotle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maria Kanelli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joe Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Apurva Pardeshi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jooli Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dhruv Varshney
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Behnaz Eshaghi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johnny Garcia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy A Forster
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gary Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nandita Menon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney L Pyon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linzixuan Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Olivia C Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Hall
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shahad K Alsaiari
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
46
|
Che Ab Rahman A, Matteini P, Kim SH, Hwang B, Lim S. Development of stretchable microneedle arrays via single-step digital light-processing printing for delivery of rhodamine B into skin tissue. Int J Biol Macromol 2024; 262:129987. [PMID: 38342256 DOI: 10.1016/j.ijbiomac.2024.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
This paper introduces a novel approach for loading and releasing Rhodamine B (RhB) into the skin using minimally-invasive microneedle technology developed through digital light-processing (DLP) printing. Notably, this process involves the direct 3D fabrication of rigid microneedle arrays affixed to a flexible patch, marking a pioneering application of DLP printing in this context. The stretchable and durable design of the microneedle substrate enables it to adapt to dynamic movements associated with human activities. Moreover, the microneedle features a pore on each side of the pyramid needle, effectively optimizing its drug-loading capabilities. Results indicate that the microneedle patch can withstand up to 50 % strain without failure and successfully penetrates rat skin. In vitro drug release profiles, conducted through artificial and rat skin, were observed over a 70 h period. This study establishes the potential of a simple manufacturing process for the creation of pore-designed microneedle arrays with a stretchable substrate, showcasing their viability in transdermal drug delivery applications.
Collapse
Affiliation(s)
- Aqila Che Ab Rahman
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", Italian National Research Council, via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Byungil Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
47
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
48
|
Zhang M, Yang B, Ren T, Wang X, Chen H, Lu C, Wu C, Pan X, Peng T. Dual engine-driven bionic microneedles for early intervention and prolonged treatment of Alzheimer's disease. J Control Release 2024; 367:184-196. [PMID: 38242212 DOI: 10.1016/j.jconrel.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The microneedle (MN) delivery system presents an attractive administration route for patients with Alzheimer's disease (AD). However, the passive drug delivery mode and low drug loading of MNs often result in unsatisfactory therapeutic efficiency. To address these dilemmas, we developed dual engine-drive bionic MNs for robust AD treatment. Specifically, free rivastigmine (RVT) and RVT particles were co-loaded within the MNs to construct the valve and chambers of the guava, respectively, which can serve as an active engine to promote drug permeation by generating capillary force. K2CO3 and citric acid were introduced as a pneumatic engine into the MNs to promote the permeation of free RVT into deeper skin layers for early intervention in AD. Further, the RVT particles served as a drug depot to provide continuous drug release for prolonged AD treatment. Compared with free RVT-loaded MNs, the dual engine-driven bionic MNs showed an increase in drug loading, cumulative transdermal permeability, and normalized bioavailability of approximately 40%, 22%, and 49%, respectively. Pharmacodynamic studies further confirmed that the dual engine-driven bionic MNs were most effective in restoring memory and recognition functions in mice with short-term memory dysfunction. Therefore, the dual engine-driven bionic MNs hold great promise for highly efficient AD treatment.
Collapse
Affiliation(s)
- Minmin Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511436, China
| | - Beibei Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Tao Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xuewen Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Hangping Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511436, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
49
|
Wang G, Kato K, Aoki I, Ichinose S, Inoue D, Tottori S, Nishizawa M. Transdermal drug delivery using a porous microneedle device driven by a hydrogel electroosmotic pump. J Mater Chem B 2024; 12:1490-1494. [PMID: 38234189 DOI: 10.1039/d3tb02208k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Integrating a hydrogel electroosmotic pump with a parylene C-coated porous microneedle (PMN) is developed for transdermal drug delivery applications. The hydrogel pump is fabricated by combining an anionic and a cationic hydrogel to generate enhanced electroosmosis flow (EOF) to drive the transportation of molecules via PMN.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Kosuke Kato
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Izuru Aoki
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Sae Ichinose
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Daisuke Inoue
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Soichiro Tottori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
50
|
Ge R, Sun C, Su J, Tian M, Qiao Y, Li J, Du J, Wei W, Yang S, Wu C, Xiang Q, Xing Y, Dong H. Separable Microneedle for Integrated Hyperglycemia Sensing and Photothermal Responsive Metformin Release. Anal Chem 2024. [PMID: 38324763 DOI: 10.1021/acs.analchem.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Microdevices that offer hyperglycemia monitoring and controllable drug delivery are urgently needed for daily diabetes management. Herein, a theranostic separable double-layer microneedle (DLMN) patch consisting of a swellable GelMA supporting base layer for glycemia sensing and a phase-change material (PCM) arrowhead layer for hyperglycemia regulation has been fabricated. The Cu-TCPP(Fe)/glucose oxidase composite and 3,3',5,5'-tetramethylbenzidine coembedded in the supporting base layer permit a visible color shift at the base surface in the presence of glucose via a cascade reaction, allowing for the in situ detection of glucose in interstitial fluid. The PCM arrowhead layer is encapsulated with water monodispersity melanin nanoparticles from Sepia officinalis and metformin that is imparted with a near-infrared ray photothermal response feature, which is beneficial to the controllable release of metformin for suppression of hyperglycemia. By applying the DLMN patch to the streptozotocin-induced type 2 diabetic Sprague-Dawley rat model, the results demonstrated that it can effectively extract dermal interstitial fluid, read out glucose levels, and regulate hyperglycemia. This DLMN-integrated portable colorimetric sensor and self-regulated glucose level hold great promise for daily diabetes management.
Collapse
Affiliation(s)
- Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Meng Tian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jinze Li
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China
| | - Qin Xiang
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|