1
|
Ganji E, Burshell A, Khicha A, Lee KMN. Bone density in postmenopausal women with scoliosis is associated with markers of degenerative joint disease. Am J Hum Biol 2024; 36:e24130. [PMID: 38979712 DOI: 10.1002/ajhb.24130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE Bone mineral density (BMD) measured with dual x-ray absorptiometry (DXA) is the clinical standard for the diagnosis of osteoporosis and prediction of bone fracture risk. In the aging skeleton, osteoporosis is often concomitantly present with degenerative joint disease (DJD). METHODS In this study, we evaluated tissue-level changes in the differentially loaded concave (CC) and convex (CV) sides of the lumbar spine in a sample of postmenopausal women with scoliosis. We used a cumulative degeneration score to assess osteophyte formation, the severity of sclerotic morphology, and marrow changes as markers of DJD in the lumbar spine and examined the correlation between markers of DJD and BMD. RESULTS More severe osteophyte growth and sclerosis were present on the CC side of the spine. The degenerative score (DS) was higher on the CC side of the lumbar spine compared with the CV side. While CC BMD was positively correlated with CC DS and marrow, CV DS was not correlated with CV BMD. Marrow changes were correlated with DS on the CC lumbar spine. CONCLUSION These results highlight the importance of mechanoadaptive as well as broader inflammatory processes in the manifestation of degenerative changes and local mineral deposition at the lumbar spine. DXA-based BMD measurement of osteoporosis need to be contextualized within the biomechanical and degenerative conditions of a joint rather than using a strict threshold cutoff.
Collapse
Affiliation(s)
- Elahe Ganji
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Amisha Khicha
- University of Kansas School of Medicine, Wichita, Kansas, USA
| | - Katharine M N Lee
- Department of Anthropology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Tomé-Bermejo F, Bartolomé Gómez JF. [Translated article] Anatomical and biomechanical factors of osteoporotic vertebral fracture and the occurrence of cascade fractures. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00150-4. [PMID: 39271012 DOI: 10.1016/j.recot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis weakens the structural strength of bone to such an extent that normal daily activity may exceed the capacity of the vertebra to bear this load. Vertebral fracture and deformity is a hallmark of osteoporosis. The detriment of trabecular bone properties alone cannot explain the occurrence of osteoporotic vertebral fracture. The ability of the spine to bear and resist loads depends on the structural capacity of the vertebrae, but also on loading conditions arising from activities of daily living or low-energy trauma. This review describes the mechanical properties of the vertebral bone, the structural load-bearing capacity of the various elements forming the spine, the neuromuscular control of the trunk, as well as the biomechanics of the loads to which the spine is subjected in relation to the presence of osteoporosis and the risk of vertebral fracture. A better understanding of biomechanical factors may help to explain both the high incidence of osteoporotic vertebral fractures and their mechanism of production. Consideration of these issues may be important in the development of prevention and management strategies.
Collapse
Affiliation(s)
- F Tomé-Bermejo
- Hospital Universitario General de Villalba, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| | - J F Bartolomé Gómez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
3
|
Mern DS, Thomé C. Collagen II enrichment through scAAV6-RNAi-mediated inhibition of matrix-metalloproteinases 3 and 13 in degenerative nucleus-pulposus cells degenerative disc disease and biological treatment strategies. Exp Biol Med (Maywood) 2024; 249:10048. [PMID: 39286594 PMCID: PMC11402661 DOI: 10.3389/ebm.2024.10048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Intervertebral disc (IVD) degeneration damaging the extracellular matrix (ECM) of IVDs is the main cause of spine-associated disorders. Degenerative disc disease (DDD) is a multifaceted disorder, where environmental factors, inflammatory cytokines and catabolic enzymes act together. DDD starts typically due to imbalance between ECM biosynthesis and degradation within IVDs, especially through unbalanced degradation of aggrecan and collagen II in nucleus pulposus (NP). Current treatment approaches are primarily based on conservative or surgical therapies, which are insufficient for biological regeneration. The disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) and matrix metalloproteinases (MMPs) are the key proteolytic enzymes for degradation of aggrecan and collagens. Previously, high expression levels of ADAMTS4, ADAMTS5, MMP3 and MMP13, which are accompanied with low levels of aggrecan and collagen II, were demonstrated in degenerative human NP cells. Moreover, self-complementary adeno-associated virus type 6 (scAAV6) mediated inhibitions of ADAMTS4 and ADAMTS5 by RNA-interference (RNAi) could specifically enhance aggrecan level. Thus, MMPs are apparently the main degrading enzymes of collagen II in NP. Furthermore, scAAV6-mediated inhibitions of MMP3 and MMP13 have not yet been investigated. Therefore, we attempted to enhance the level of collagen II in degenerative NP cells by scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13. MRI was used to determine preoperative grading of IVD degeneration in patients. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting MMP3 or MMP13; and analysed by fluorescence microscopy, FACS, MTT assay, RT-qPCR, ELISA and western blotting. scAAV6-shRNRs have no impact on cell viability and proliferation, despite high transduction efficiencies (98.6%) and transduction units (1383 TU/Cell). Combined knockdown of MMP3 (92.8%) and MMP13 (90.9%) resulted in highest enhancement of collagen II (143.2%), whereby treatment effects were significant over 56 days (p < 0.001). Conclusively, scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13 help to progress less immunogenic and enduring biological treatments in DDD.
Collapse
|
4
|
Jentzsch T, Mantel KE, Slankamenac K, Osterhoff G, Werner CML. CT-based surrogate parameters for MRI-based disc height and endplate degeneration in the lumbar spine. BMC Med Imaging 2024; 24:213. [PMID: 39138416 PMCID: PMC11323600 DOI: 10.1186/s12880-024-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE This study investigated potential use of computed tomography (CT)-based parameters in the lumbar spine as a surrogate for magnetic resonance imaging (MRI)-based findings. METHODS In this retrospective study, all individuals, who had a lumbar spine CT scan and MRI between 2006 and 2012 were reviewed (n = 198). Disc height (DH) and endplate degeneration (ED) were evaluated between Th12/L1-L5/S1. Statistics consisted of Spearman correlation and univariate/multivariable regression (adjusting for age and gender). RESULTS The mean CT-DH increased kranio-caudally (8.04 millimeters (mm) at T12/L1, 9.17 mm at L1/2, 10.59 mm at L2/3, 11.34 mm at L3/4, 11.42 mm at L4/5 and 10.47 mm at L5/S1). MRI-ED was observed in 58 (29%) individuals. CT-DH and MRI-DH had strong to very strong correlations (rho 0.781-0.904, p < .001). MRI-DH showed higher absolute values than CT-DH (mean of 1.76 mm). There was a significant association between CT-DH and MRI-ED at L2/3 (p = .006), L3/4 (p = .002), L4/5 (p < .001) and L5/S1 (p < .001). A calculated cut-off point was set at 11 mm. CONCLUSIONS In the lumbar spine, there is a correlation between disc height on CT and MRI. This can be useful in trauma and emergency cases, where CT is readily available in the lack of an MRI. In addition, in the middle and lower part of the lumbar spine, loss of disc height on CT scans is associated with more pronounced endplate degeneration on MRIs. If the disc height on CT scans is lower than 11 mm, endplate degeneration on MRIs is likely more pronounced. LEVEL AND DESIGN Level III, a retrospective study.
Collapse
Affiliation(s)
- Thorsten Jentzsch
- Department of Traumatology, University Hospital Zürich, University of Zurich, Zurich, Switzerland.
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.
| | - Karin E Mantel
- Department of Traumatology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Ksenija Slankamenac
- Department of Traumatology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Georg Osterhoff
- Department of Traumatology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Clément M L Werner
- Department of Traumatology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Hayward S, Keogh PS, Miles AW, Gheduzzi S. The effect of structural changes on the low strain rate behaviour of the intervertebral disc. Proc Inst Mech Eng H 2024; 238:851-864. [PMID: 39180367 PMCID: PMC11459866 DOI: 10.1177/09544119241272915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/30/2024] [Indexed: 08/26/2024]
Abstract
The annuus fibrosus (AF) and nucleus pulposus (NP) of the intervertebral disc (IVD) work in conjunction to dissipate spinal loads. In this study we have isolated the contribution of the NP to the overall response of the disc and investigated the effect of extreme structural changes to the disc on the mechanical behaviour. Linear stiffness, overall load range, hysteresis area and total energy were used to evaluate the impact of these changes on the spine and surrounding structures. Six porcine lumbar isolated disc specimens were tested in 6 DOFs with a 400 N compressive axial preload at low strain rates in three conditions: intact (IN), after total nucleotomy (NN) and after the injection of bone cement into the nuclear void (SN). The latter two conditions, NN and SN, were chosen to emulate the effect of extreme changes to the NP on disc behaviour. When comparing with intact specimens, significant changes were noted primarily in axial compression-extension, mediolateral bending and flexion-extension. NN and SN cases demonstrated significant increases in linear stiffness, overall load range and total energy for mediolateral bending and flexion-extension compared to the intact (IN) state. SN also demonstrated a significant increase in total energy for axial compression-extension, and significant decreases in the elastic contribution to total energy in all axes except flexion-extension. These changes to total energy indicate that surrounding spinal structures would incur additional loading to produce the same motion in vivo after structural changes to the disc.
Collapse
Affiliation(s)
- Samantha Hayward
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Patrick S Keogh
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Anthony W Miles
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Sabina Gheduzzi
- Department of Mechanical Engineering, University of Bath, Bath, UK
| |
Collapse
|
6
|
Tomé-Bermejo F, Bartolomé Gómez JF. Anatomical and biomechanical factors of osteoporotic vertebral fracture and the occurrence of cascade fractures. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00112-7. [PMID: 38925424 DOI: 10.1016/j.recot.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis weakens the structural strength of bone to such an extent that normal daily activity may exceed the capacity of the vertebra to bear this load. Vertebral fracture and deformity is a hallmark of osteoporosis. The detriment of trabecular bone properties alone cannot explain the occurrence of osteoporotic vertebral fracture. The ability of the spine to bear and resist loads depends on the structural capacity of the vertebrae, but also on loading conditions arising from activities of daily living or low-energy trauma. This review describes the mechanical properties of the vertebral bone, the structural load-bearing capacity of the various elements forming the spine, the neuromuscular control of the trunk, as well as the biomechanics of the loads to which the spine is subjected in relation to the presence of osteoporosis and the risk of vertebral fracture. A better understanding of biomechanical factors may help to explain both the high incidence of osteoporotic vertebral fractures and their mechanism of production. Consideration of these issues may be important in the development of prevention and management strategies.
Collapse
Affiliation(s)
- F Tomé-Bermejo
- Hospital Universitario General de Villalba. Hospital Universitario Fundación Jiménez Díaz, Madrid, España.
| | - J F Bartolomé Gómez
- Instituto de Ciencia de Materiales de Madrid. Consejo Superior de Investigaciones Científicas, Madrid, España
| |
Collapse
|
7
|
Rivera Tapia ED, Meakin JR, Holsgrove TP. A novel in-vitro model of intervertebral disc degeneration using hyperphysiological loading. J Biomech 2024; 167:112068. [PMID: 38582004 DOI: 10.1016/j.jbiomech.2024.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Intervertebral disc (IVD) degeneration includes changes in tissue biomechanics, physical attributes, biochemical composition, disc microstructure, and cellularity, which can all affect the normal function of the IVD, and ultimately may lead to pain. The purpose of this research was to develop an in-vitro model of degeneration that includes the evaluation of physical, biomechanical, and structural parameters, and that does so over several load/recovery periods. Hyperphysiological loading was used as the degenerative initiator with three experimental groups employed using bovine coccygeal IVD specimens: Control; Single-Overload; and Double-Overload. An equilibrium stage comprising a static load followed by two load/recovery periods was followed by six further load/recovery periods. In the Control group all load/recovery periods were the same, comprising physiological cyclic loading. The overload groups differed in that hyperphysiological loading was applied during the 4th loading period (Single-Overload), or the 4th and 5th loading period (Double-Overload). Overloading led to a significant reduction in disc height compared to the Control group, which was not recovered in subsequent physiological load/recovery periods. However, there were no significant changes in stiffness. Overloading also led to significantly more microstructural damage compared to the Control group. Taking all outcome measures into account, the overload groups were evaluated as replicating clinically relevant aspects of moderate IVD degeneration. Further research into a potential dose-effect, and how more severe degeneration can be replicated would provide a model with the potential to evaluate new treatments and interventions for different stages of IVD degeneration.
Collapse
Affiliation(s)
- E D Rivera Tapia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - J R Meakin
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - T P Holsgrove
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
8
|
Nail-Ulloa I, Zabala M, Sesek R, Chen H, Schall MC, Gallagher S. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:1941. [PMID: 38544203 PMCID: PMC10976016 DOI: 10.3390/s24061941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
This study assesses the agreement of compressive and shear force estimates at the L5-S1 joint using inertial motion capture (IMC) within a musculoskeletal simulation model during manual lifting tasks, compared against a top-down optical motion capture (OMC)-based model. Thirty-six participants completed lifting and lowering tasks while wearing a modified Plug-in Gait marker set for the OMC and a full-body IMC set-up consisting of 17 sensors. The study focused on tasks with variable load weights, lifting heights, and trunk rotation angles. It was found that the IMC system consistently underestimated the compressive forces by an average of 34% (975.16 N) and the shear forces by 30% (291.77 N) compared with the OMC system. A critical observation was the discrepancy in joint angle measurements, particularly in trunk flexion, where the IMC-based model underestimated the angles by 10.92-11.19 degrees on average, with the extremes reaching up to 28 degrees. This underestimation was more pronounced in tasks involving greater flexion, notably impacting the force estimates. Additionally, this study highlights significant differences in the distance from the spine to the box during these tasks. On average, the IMC system showed an 8 cm shorter distance on the X axis and a 12-13 cm shorter distance on the Z axis during lifting and lowering, respectively, indicating a consistent underestimation of the segment length compared with the OMC system. These discrepancies in the joint angles and distances suggest potential limitations of the IMC system's sensor placement and model scaling. The load weight emerged as the most significant factor affecting force estimates, particularly at lower lifting heights, which involved more pronounced flexion movements. This study concludes that while the IMC system offers utility in ergonomic assessments, sensor placement and anthropometric modeling accuracy enhancements are imperative for more reliable force and kinematic estimations in occupational settings.
Collapse
Affiliation(s)
- Iván Nail-Ulloa
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (I.N.-U.); (R.S.); (S.G.)
- Institute of Industry and Management, Universidad Austral de Chile, Puerto Montt 5480000, Chile
| | - Michael Zabala
- Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA;
| | - Richard Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (I.N.-U.); (R.S.); (S.G.)
| | - Howard Chen
- Department of Industrial and Systems Engineering and Engineering Management, The University of Alabama at Huntsville, Huntsville, AL 35899, USA
| | - Mark C. Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (I.N.-U.); (R.S.); (S.G.)
| | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (I.N.-U.); (R.S.); (S.G.)
| |
Collapse
|
9
|
Oura P, Korpinen N, Machnicki AL, Junno JA. Deep learning in sex estimation from a peripheral quantitative computed tomography scan of the fourth lumbar vertebra-a proof-of-concept study. Forensic Sci Med Pathol 2023; 19:534-540. [PMID: 36773213 PMCID: PMC10752832 DOI: 10.1007/s12024-023-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Sex estimation is a key element in the analysis of unknown skeletal remains. The vertebrae display clear sex discrepancy and have proven accurate in conventional morphometric sex estimation. This proof-of-concept study aimed to investigate the possibility to develop a deep learning algorithm for sex estimation even from a single peripheral quantitative computed tomography (pQCT) slice of the fourth lumbar vertebra (L4). The study utilized a total of 117 vertebrae from the Terry Anatomical Collection. There were 58 male and 59 female cadavers, all of the white ethnicity, with the average age at death 49 years and a range of 24 to 77 years. A coronal pQCT scan was taken from the midway of the L4 corpus. Sex estimation was performed in a total of 19 neural network architectures implemented in the AIDeveloper software. Of the explored architectures, a LeNet5-based algorithm reached the highest accuracy of 86.4% in the test set. Sex-specific classification rates were 90.9% among males and 81.8% among females. This preliminary finding advances the field by encouraging and directing future research on artificial intelligence-based methods in sex estimation from individual skeletal traits such as the vertebrae. Combining quickly obtained imaging data with automated deep learning algorithms may establish a valuable pipeline for forensic anthropology and provide aid when combined with traditional methods.
Collapse
Affiliation(s)
- Petteri Oura
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland.
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
| | - Niina Korpinen
- Department of Archaeology, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Allison L Machnicki
- Center for Functional Anatomy and Evolution, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Juho-Antti Junno
- Department of Archaeology, Faculty of Humanities, University of Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Archaelogy, Faculty of Arts, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Fotakopoulos G, Georgakopoulou VE, Lempesis IG, Papalexis P, Sklapani P, Trakas N, Spandidos DA, Faropoulos K. Pathophysiology of cervical myelopathy (Review). Biomed Rep 2023; 19:84. [PMID: 37881604 PMCID: PMC10594073 DOI: 10.3892/br.2023.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Cervical myelopathy is a well-described medulla spinalis syndrome characterized by sensory disorders, such as pain, numbness, or paresthesia in the limbs, and motor disorders, such as muscle weakness, gait difficulties, spasticity, or hyperreflexia. If left untreated, cervical myelopathy can significantly affect the quality of life of patients, while in severe cases, it can cause disability or even quadriplegia. Cervical myelopathy is the final stage of spinal cord insult and can result from transgene dysplasias of the spinal cord, and acute or chronic injuries. Spondylosis is a common, multifactor cause of cervical myelopathy and affects various elements of the spine. The development of spondylotic changes in the spine is gradual during the patient's life and the symptoms are presented at a late stage, when significant damage has already been inflicted on the spinal cord. Spondylosis is widely considered a condition affecting the middle aged and elderly. Given the fact that the population is gradually becoming older, in the near future, clinicians may have to face an increased number of patients with spondylotic myelopathy.
Collapse
Affiliation(s)
- George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | | | - Ioannis G. Lempesis
- Department of Pathophysiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
11
|
Moon MS, Yu CG, Jeon JM, Wi SM. Usefulness of Percutaneous Pedicle Screw Fixation for Treatment of Lower Lumbar Burst (A3-A4) Fractures: Comparative Study with Thoracolumbar Junction Fractures. Indian J Orthop 2023; 57:1415-1422. [PMID: 37609026 PMCID: PMC10441996 DOI: 10.1007/s43465-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 08/24/2023]
Abstract
Background Percutaneous pedicle screw fixation (PPSF) without fusion has been recently recommended in the treatment of thoracolumbar fracture to reduce the adverse effects associated with the conventional open approaches and to restore range of motion. However, those studies report on the thoracolumbar junction, and there is no report on lower lumbar fracture. Purpose To assess effectiveness of PPSF without fusion for treating lower lumbar burst (A3 and A4) fractures. Methods A retrospective analysis was made to evaluate consecutive 50 patients with AO type A3 and A4 thoracolumbar fracture underwent PPSF. Patients were divided into a thoracolumbar junction (TLJ) group (T11-L2) and lower lumbar (LL) group (L3-5). The following items were measured and compared between the two groups. Vertebral height and consolidation, retropulsed fragment, sagittal curve and fixation failure were assessed with certain interval regularly. Results The average height at pre- and post-reduction were 56.2% (36.2-74.3), 95.3% (84.2-98.3) in TLJ group and 65.7% (45.7-86.2), 91% (73.1-100) in LL group. The average canal area occupancy rate at pre- and post-reduction were 46.1% (37.4%-67.5%), 38.1% (31.3%-40.8%) in TLJ group and 40.4% (15.0-65.7), 19.3% (9.4-26.6) in LL group. Consolidation was completed within 12 months after surgery in both groups. There was no significant difference between two groups in clinical and radiographic parameters except cobb angle loss. Conclusion Patients with lower lumbar fracture can be effectively managed with PPSF without fusion. PPSF following the implant removal can restore the movement of the lower lumbar spine, which is essential for daily life.
Collapse
Affiliation(s)
- Myung-Sang Moon
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Geun Yu
- Department of Orthopedic Surgery, Cheju Halla General Hospital, Jeju, Republic of Korea
| | - Jong Min Jeon
- Department of Orthopedic Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158, Paryong-ro, Masanhoewon-gu, Changwon-si, Gyeongsangnam-do 51353 Republic of Korea
| | - Seung Myung Wi
- Department of Orthopedic Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158, Paryong-ro, Masanhoewon-gu, Changwon-si, Gyeongsangnam-do 51353 Republic of Korea
| |
Collapse
|
12
|
Wang D, Shang Q, Mao J, Gao C, Wang J, Wang D, Wang H, Jia H, Peng P, Du M, Luo Z, Yang L. Phosphorylation of KRT8 (keratin 8) by excessive mechanical load-activated PKN (protein kinase N) impairs autophagosome initiation and contributes to disc degeneration. Autophagy 2023; 19:2485-2503. [PMID: 36897022 PMCID: PMC10392755 DOI: 10.1080/15548627.2023.2186099] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Excessive mechanical load (overloading) is a well-documented pathogenetic factor for many mechano stress-induced pathologies, i.e. intervertebral disc degeneration (IDD). Under overloading, the balance between anabolism and catabolism within nucleus pulposus (NP) cells are badly thrown off, and NP cells undergo apoptosis. However, little is known about how the overloading is transduced to the NP cells and contributes to disc degeneration. The current study shows that conditional knockout of Krt8 (keratin 8) within NP aggravates load-induced IDD in vivo, and overexpression of Krt8 endows NP cells greater resistance to overloading-induced apoptosis and degeneration in vitro. Discovery-driven experiments shows that phosphorylation of KRT8 on Ser43 by overloading activated RHOA-PKN (protein kinase N) impedes trafficking of Golgi resident small GTPase RAB33B, suppresses the autophagosome initiation and contributes to IDD. Overexpression of Krt8 and knockdown of Pkn1 and Pkn2, at an early stage of IDD, ameliorates disc degeneration; yet only knockdown of Pkn1 and Pkn2, when treated at late stage of IDD, shows a therapeutic effect. This study validates a protective role of Krt8 during overloading-induced IDD and demonstrates that targeting overloading activation of PKNs could be a novel and effective approach to mechano stress-induced pathologies with a wider window of therapeutic opportunity.Abbreviations: AAV: adeno-associated virus; AF: anulus fibrosus; ANOVA: analysis of variance; ATG: autophagy related; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; CEP: cartilaginous endplates; CHX: cycloheximide; cKO: conditional knockout; Cor: coronal plane; CT: computed tomography; Cy: coccygeal vertebra; D: aspartic acid; DEG: differentially expressed gene; DHI: disc height index; DIBA: dot immunobinding assay; dUTP: 2'-deoxyuridine 5'-triphosphate; ECM: extracellular matrix; EDTA: ethylene diamine tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPS: group-based prediction system; GSEA: gene set enrichment analysis; GTP: guanosine triphosphate; HE: hematoxylin-eosin; HRP: horseradish peroxidase; IDD: intervertebral disc degeneration; IF: immunofluorescence staining; IL1: interleukin 1; IVD: intervertebral disc; KEGG: Kyoto encyclopedia of genes and genomes; KRT8: keratin 8; KD: knockdown; KO: knockout; L: lumbar vertebra; LBP: low back pain; LC/MS: liquid chromatograph mass spectrometer; LSI: mouse lumbar instability model; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP3: matrix metallopeptidase 3; MRI: nuclear magnetic resonance imaging; NC: negative control; NP: nucleus pulposus; PBS: phosphate-buffered saline; PE: p-phycoerythrin; PFA: paraformaldehyde; PI: propidium iodide; PKN: protein kinase N; OE: overexpression; PTM: post translational modification; PVDF: polyvinylidene fluoride; qPCR: quantitative reverse-transcriptase polymerase chain reaction; RHOA: ras homolog family member A; RIPA: radio immunoprecipitation assay; RNA: ribonucleic acid; ROS: reactive oxygen species; RT: room temperature; TCM: rat tail compression-induced IDD model; TCS: mouse tail suturing compressive model; S: serine; Sag: sagittal plane; SD rats: Sprague-Dawley rats; shRNA: short hairpin RNA; siRNA: small interfering RNA; SOFG: safranin O-fast green; SQSTM1: sequestosome 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VG/ml: viral genomes per milliliter; WCL: whole cell lysate.
Collapse
Affiliation(s)
- Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Jie Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Mu Du
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| |
Collapse
|
13
|
Shenegelegn Mern D, Thomé C. Synergetic enrichment of aggrecan in nucleus pulposus cells by scAAV6-shRNA-mediated knockdown of aggrecanase-1 and aggrecanase-2. Exp Biol Med (Maywood) 2023; 248:1134-1144. [PMID: 37354087 PMCID: PMC10583755 DOI: 10.1177/15353702231171905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/07/2023] [Indexed: 06/26/2023] Open
Abstract
Degenerative disk disease (DDD) that aggravates structural deterioration of intervertebral disks (IVDs) can be accompanied by painful inflammation and immunopathological progressions. Current surgical or pharmacological therapies cannot repair the structure and function of IVDs. Nucleus pulposus (NP) cells are crucial for the preservation or restoration of IVDs by balancing the anabolic and catabolic factors affecting the extracellular matrix. Imbalanced anabolic and catabolic factors cause increased degradation of aggrecan. Aggrecanases A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS)4 and ADAMTS5 are the main degrading enzymes of aggrecan. Previously, we characterized adeno-associated virus (AAV6) as the most suitable serotype with marked NP cellular tropism and demonstrated that ADAMTS4 could be silenced by self-complementary adeno-associated virus grade 6 small helix ribonucleic acid (scAAV6-shRNA) in NP cells of degeneration grade III, which resulted in enrichment of aggrecan. Nonetheless, neither scAAV6-shRNA-mediated inhibition of ADAMTS5 nor joint inhibitions of ADAMTS4 and ADAMTS5 have been investigated, although both enzymes are regulated by analogous proinflammatory cytokines and have the same cleavage sites in aggrecan. Therefore, we attempted scAAV6-shRNA-mediated inhibitions of both enzymes in NP cells of degeneration grade IV to increase efficacies in treatments of DDD. The degeneration grade of IVDs in patients was determined by magnetic resonance imaging (MRI) before surgical operations. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting ADAMTS4 or ADAMTS5. Transduced cells were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR), fluorescence microscopy, flow cytometry-assisted cell sorting (FACS), MTT assay (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay), immunoblotting, and enzyme-linked immunosorbent assay (ELISA). Joint transduction of NP cells exhibited high transduction efficacies (98.1%), high transduction units (TU) (1381 TU/Cell), and no effect on cell viability or proliferation. Above all joint treatments resulted in effective knockdown of ADAMTS4 (92.8%) and ADAMTS5 (93.4%) along with additive enrichment of aggrecan (113.9%). Treatment effects were significant for more than 56 days after transduction (P < 0.001). In conclusion, scAAV6-shRNA-mediated combined molecular therapy could be very valuable for more effective, durable, and less immunogenic treatment approaches in DDD.
Collapse
Affiliation(s)
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
14
|
Almigdad A, Alazaydeh S, Mustafa MB, Alshawish M, Abdallat AA. Thoracolumbar spine fracture patterns, etiologies, and treatment modalities in Jordan. JOURNAL OF TRAUMA AND INJURY 2023; 36:98-104. [PMID: 39380694 PMCID: PMC11309452 DOI: 10.20408/jti.2022.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 10/10/2024] Open
Abstract
Purpose Spine fractures are a significant cause of long-term disability and socioeconomic burden. The incidence of spine fractures tends to increase with age, decreased bone density, and fall risk. In this study, we evaluated thoracolumbar fractures at a tertiary hospital in Jordan regarding their frequency, etiology, patterns, and treatment modalities. Methods The clinical and radiological records of 469 patients with thoracolumbar fracturesadmitted to King Hussein Medical City from July 2018 to August 2022 were evaluated regarding patients' age, sex, mechanism of injury, fracture level and pattern, and treatment modalities. Results The mean age of patients was 51.24±20.22 years, and men represented 52.7%. Compression injuries accounted for 97.2% of thoracolumbar fractures, and the thoracolumbar junction was the most common fracture location. Falling from the ground level was the most common mechanism and accounted for half of the injuries. Associated neurological injuries were identified in 3.8% of patients and were more common in younger patients. Pathological fractures were found in 12.4% and were more prevalent among elderly patients and women. Conclusions Traffic accidents and falling from height were the most common causes of spine fractures in patients younger than 40. However, 70% of spine fractures in women were caused by simple falls, reflecting the high prevalence of osteoporosis among women and the elderly. Therefore, traffic and work safety measures, as well as home safety measures and osteoporosis treatment for the elderly, should be recommended to reduce the risk of spine fractures.
Collapse
Affiliation(s)
- Ahmad Almigdad
- Department of Orthopedic Surgery, Royal Rehabilitation Center, King Hussein Medical City, Royal Medical Services, Amman, Jordan
| | - Sattam Alazaydeh
- Department of Orthopedic Surgery, Royal Rehabilitation Center, King Hussein Medical City, Royal Medical Services, Amman, Jordan
| | - Mohammad Bani Mustafa
- Department of Orthopedic Surgery, Royal Rehabilitation Center, King Hussein Medical City, Royal Medical Services, Amman, Jordan
| | - Mu'men Alshawish
- Department of Orthopedic Surgery, Royal Rehabilitation Center, King Hussein Medical City, Royal Medical Services, Amman, Jordan
| | - Anas Al Abdallat
- Department of Orthopedic Surgery, Royal Rehabilitation Center, King Hussein Medical City, Royal Medical Services, Amman, Jordan
| |
Collapse
|
15
|
Ramirez V, Ghezelbash F, Shirazi-Adl A, Bazrgari B. Trunk muscle forces and spinal loads during heavy deadlift: Effects of personalization, muscle wrapping, muscle lever arm, and lumbopelvic rhythm. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3680. [PMID: 36606738 DOI: 10.1002/cnm.3680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Heavy deadlift is used as a physical fitness screening tool in the U.S. Army. Despite the relevance of such a screening tool to military tasks performed by Service Members, the biomechanical impact of heavy deadlift and its risk of low-back injury remain unknown. A kinematics-driven musculoskeletal model of spine was implemented to investigate biomechanics of the lower back in a volunteer (23 years old, height of 1.82 m, and body mass of 98.8 kg) during a 68 kg deadlift. In search of protective mechanisms, effects of model personalization and variations in trunk musculature and lumbopelvic rhythm were also investigated. The net moment, compression and shear forces at the L5-S1 reached peaks of 684 Nm, 17.2 and 4.2 kN, respectively. Geometrical personalization and changes in lumbopelvic rhythm had the least effects on predictions while increases in muscle moment arms (40%) had the largest effects that caused, respectively, 32% and 36% decrease in the maximum compressive and shearing forces. Initiating wrapping of back muscles at farther distances from the spine had opposing effects on spinal loads; peak compression at the L5-S1 decreased by 12% whereas shear increased by 19%. Despite mechanisms considered, spinal loads during heavy deadlift exceed the existing evidence concerning the threshold of injury for spinal segments, suggesting the vulnerability to injury. Chronic exposure to such high-spinal loads may lead to (micro) fractures, degeneration, pathoanatomical changes and finally low-back pain.
Collapse
Affiliation(s)
- Vanessa Ramirez
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montréal, Québec, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montréal, Québec, Canada
| | - Babak Bazrgari
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
16
|
Biomechanical Comparison of Multilevel Lumbar Instrumented Fusions in Adult Spinal Deformity According to the Upper and Lower Fusion Levels: A Finite Element Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2534350. [PMID: 36506913 PMCID: PMC9729043 DOI: 10.1155/2022/2534350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
Multilevel lumbar fusion with posterior pedicle screw fixation is a widely performed surgical procedure for the management of adult spinal deformity. However, there has not been a comprehensive biomechanical study on the different types of fusion levels in terms of stability and possible complications. We aimed to investigate the biomechanical properties of multilevel lumbar fusion according to different types of upper and lower fusion levels. Six different types of fusions were performed using three-dimensional finite element models. Type A and B referred to the group of which upper fusion level was L1 and T10, respectively. Subtype 1, 2, and 3 referred to the group of which lower fusion level was L5, S1, and ilium, respectively (A1, L1-L5; A2, L1-S1; A3, L1-ilium; B1, T10-L5; B2, T10-S1; B3, T10-ilium). Flexion, extension, axial rotation, and lateral bending moments were applied, and the risk of screw loosening and failure and adjacent segment degeneration (ASD) was analyzed. Stress at the bone-screw interface of type B3 was lowest in overall motions. The risk of screw failure showed increasing pattern as the upper and lower levels extended in all motions. Proximal range of motion (ROM) increased as the lower fusion level changed from L5 to S1 and the ilium. For axial rotation, type B3 showed higher proximal ROM (16.2°) than type A3 (11.8°). In multilevel lumbar fusion surgery for adult spinal deformity, adding iliac screws and increasing the fusion level to T10-ilium may lower the risk of screw loosening. In terms of screw failure and proximal ASD, however, T10-ilium fusion has a higher potential risk compared with other fusion types. These results will contribute for surgeons to provide adequate patient education regarding screw failure and proximal ASD, when performing multilevel lumbar fusion.
Collapse
|
17
|
Semi-automatic method for pre-surgery scoliosis classification on X-ray images using Bending Asymmetry Index. Int J Comput Assist Radiol Surg 2022; 17:2239-2251. [PMID: 36085434 DOI: 10.1007/s11548-022-02740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Bending Asymmetry Index (BAI) has been proposed to characterize the types of scoliotic curve in three-dimensional ultrasound imaging. Scolioscan has demonstrated its validity and reliability in scoliosis assessment with manual assessment-based X-ray imaging. The objective of this study is to investigate the ultrasound-derived BAI method to X-ray imaging of scoliosis, with supplementary information provided for the pre-surgery planning. METHODS About 30 pre-surgery scoliosis subjects (9 males and 21 females; Cobb: 50.9 ± 19.7°, range 18°-115°) were investigated retrospectively. Each subject underwent three-posture X-ray scanning supine on a plain mattress on the same day. BAI is an indicator to distinguish structural or non-structural curves through the spine flexibility information obtained from lateral bending spinal profiles. BAI was calculated semi-automatically with manual annotation of vertebral centroids and pelvis level inclination adjustment. BAI classification was validated with the scoliotic curve type and traditional Lenke classification using side-bending Cobb angle measurement (S-Cobb). RESULTS 82 curves from 30 pre-surgery scoliosis patients were included. The correlation coefficient was R2 = 0.730 (p < 0.05) between BAI and S-Cobb. In terms of scoliotic curve type classification, all curves were correctly classified; out of 30 subjects, 1 case was confirmed as misclassified when applying to Lenke classification earlier, thus has been adjusted. CONCLUSION BAI method has demonstrated its inter-modality versatility in X-ray imaging application. The curve type classification and the pre-surgery Lenke classification both indicated promising performances upon the exploratory dataset. A fully-automated of BAI measurement is surely an interesting direction to continue our endeavor. Deep learning on the vertebral-level segmentation should be involved in further study.
Collapse
|
18
|
In-vitro models of disc degeneration - A review of methods and clinical relevance. J Biomech 2022; 142:111260. [PMID: 36027637 DOI: 10.1016/j.jbiomech.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
The intervertebral disc (IVD) provides flexibility, acts as a shock absorber, and transmits load. Degeneration of the IVD includes alterations in the biomechanics, extracellular matrix (ECM), and cellular activity. These changes are not always perceived, however, IVD degeneration can lead to severe health problems including long-term disability. To understand the pathogenesis of IVD degeneration and suitable testing methods for emerging treatments and therapies, this review documents in-vitro models of IVD degeneration including physical disruption, hyperphysiological loading, ECM degradation by enzyme digestion, or a combination of these methods. This paper reviews and critically analyses the models of degeneration published since the year 2000 in either in human or animal specimens. The results are categorised in terms of the IVD biomechanics, physical attributes, ECM composition, tissue damage and cellularity to evaluate the models with respect to natural human degeneration, and to provide recommendations for clinically relevant models for the various stages of degeneration. There is no one model that replicates the wide range of degenerative changes that occur as part of normal degeneration. However, cyclic overloading replicates many aspects of degeneration, with the advantage of a dose-response allowing the tuning of damage initiated. Models of severe degeneration are currently lacking, but there is potential that combining cyclic overloading and enzymatic digestion will provide model that closely resembles human IVD degeneration. This will provide an effective way to investigate the effects of severe degeneration, and the evaluation of treatments for the IVD, which would generally be indicated at this advanced stage of degeneration.
Collapse
|
19
|
Frey M, Blanchard A, Skinner I, De Carvalho D. Effect of a 'spine offloading' chair design on seated height and posture. ERGONOMICS 2022; 65:976-986. [PMID: 34839811 DOI: 10.1080/00140139.2021.2007290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
A prototype chair with anterior chest and arm supports has been designed to reduce compressive spine loads. The purpose of this study was to compare the effects of this offloading design on seated height compared to a control configuration of the same chair. 20 males sat on each configuration for 1 hour. Seated height, perceived pain, spine angles, seat pressure, and participant experience were measured. Spine height loss was significantly reduced in the offloading (-0.75 ± 3.79 mm) compared to the control configuration (-6.16 ± 4.27 mm, p < 0.001), and participants sat significantly more anterior on the seat pan in the offloading (20.56 ± 1.67 cm) compared to control configuration (18.03 ± 1.92 cm, p < 0.001). There were no differences in spine angles or perceived back and gluteal pain between configurations. This design appears to be a promising approach to protecting the back during sitting when engaging in forward leaning tasks where the offloading effect of a backrest may be minimised. Practitioner summary: A prototype chair with anterior chest and arm supports designed to offload the spine was shown to significantly reduce seated height loss during 1-hour of sitting compared to a control configuration. While participants perceived the offloading design to be more supportive, no differences in perceived pain or posture were found.
Collapse
Affiliation(s)
- Mona Frey
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Adam Blanchard
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| | - Ian Skinner
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| | - Diana De Carvalho
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
20
|
Wang C, Li X, Guo Y, Du W, Guo H, Chen W. The Kinematic and Kinetic Responses of the Trunk and Lower Extremity Joints during Walking with and without the Spinal Orthosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116952. [PMID: 35682535 PMCID: PMC9180275 DOI: 10.3390/ijerph19116952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023]
Abstract
Spinal orthoses are an effective option for restoring the spine to its original position and controlling poor posture. However, the effects of poor posture and spinal orthoses on the kinematics and kinetics of trunk and lower extremity joints remain unclear. A six-camera Vicon motion capture system and two AMTI force plates were employed to collect gait parameters, including joint angle (spine, thorax, hip, knee, and ankle), range of motion (ROM), and ground reaction forces (GRFs). Furthermore, joint moments and joint reaction forces (JRFs) were calculated using a full-body musculoskeletal model in OpenSim. One-way repeated-measures ANOVA (p < 0.05) was used to compare significant differences among three trial conditions. These three conditions were walking in a normal posture, poor posture, and spinal orthosis. The results showed that spine ROM in the coronal and transverse plane was significantly lower when walking with a spinal orthosis compared to walking in normal and poor posture (p < 0.05). Compared to normal posture, the lumbar moments and back compressive forces were significantly increased when walking in poor posture (p < 0.05). However, when walking with a spinal orthosis, there was a significant decrease in trunk moments and reaction forces compared to walking in poor posture (p < 0.05). Individuals with poor posture could potentially induce instability and disorders, as evidenced by an increase in trunk moments and JRF compared to the normal posture. Spinal orthosis not only restricts spine ROM but also reduces the load on the spine and thus increases balance and stability.
Collapse
|
21
|
Wen L, Lin X, Li C, Zhao Y, Yu Z, Han X. Sagittal imbalance of the spine is associated with poor sitting posture among primary and secondary school students in China: a cross-sectional study. BMC Musculoskelet Disord 2022; 23:98. [PMID: 35090408 PMCID: PMC8800310 DOI: 10.1186/s12891-022-05021-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Long-term poor posture may affect the morphological development of the spine. However, there is no definite answer as to how writing posture affects students’ spine. This study attempted to compare the sagittal curvature of the spine between sitting and standing postures in adolescents to reveal the variation rule of spinal sagittal curvature of students with learning posture, and to discover the key factors that may affect students’ spinal health. Methods 1138 participants (male, 604; female, 534; age range, 6–18 years) from three schools in Tianjin, China, including 570 primary school students and 568 secondary school students. This study used SpineScan and PA200 Station Posture Assessment System to assess the sagittal curvature of the spine for three postures: sitting on a chair in upright position, seated at a desk while reading/writing, and standing in natural relaxed position. Analyze the difference between spine angle of the three postures and the correlation between the sagittal plane angle of the spine and body posture. Results The mean sagittal angle of the spine changed when the participants were in reading/writing position compared to standing position, with the lumbar lordosis angle significantly decreased (p < 0.05) and the thoracic kyphosis angle significantly increased (p < 0.05). The TKA and LLA angles were abnormal in 33 and 52% of students in reading/writing posture respectively. There was a significant correlation between sitting posture and standing spinal Angle and were positively correlated with the height of the teenager (p < 0.05). By contrast, a higher percentage of TKA and LLA subjects in the standard reading/writing posture reference range maintained normal spinal shape while standing. Conclusions The angle of thoracic kyphosis significantly increased from standing posture to upright sitting, reading/writing posture, while lumbar lordosis significantly decreased or even disappeared. There was a significant correlation between sagittal angle of spine in different postures. The poor sitting posture associated with sagittal angle abnormalities impact the shape of the spine such that sagittal imbalance was also observed when students in natural standing posture. Height is an important factor affecting the sitting spine shape of students.
Collapse
|
22
|
Ramirez VJ, Bazrgari B, Gao F, Samaan M. Low Back Biomechanics during Repetitive Deadlifts: A Narrative Review. IISE Trans Occup Ergon Hum Factors 2022. [PMID: 34875981 DOI: 10.1080/24725838.2021.2015642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OCCUPATIONAL APPLICATIONSHeavy deadlifting is used as a screening tool or training protocol for recruitment and retention in physically-demanding occupations, especially in the military. Spinal loads experienced during heavy deadlifts, particularly shearing forces, are well above recommended thresholds for lumbar spine injury in occupational settings. Although members of the noted occupation likely have stronger musculoskeletal systems compared to the general population, experiencing shearing forces that are 2 to 4 times larger than the threshold of injury, particularly under repetitive deadlift, may transform a screening tool or training protocol to an occupationally-harmful physical activity.
Collapse
Affiliation(s)
| | - Babak Bazrgari
- Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Fan Gao
- Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Michael Samaan
- Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
23
|
Lopes MA, Coleman RR, Cremata EJ. Radiography and Clinical Decision-Making in Chiropractic. Dose Response 2021; 19:15593258211044844. [PMID: 34675758 PMCID: PMC8524714 DOI: 10.1177/15593258211044844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The concern over x-ray exposure risks can overshadow the potential benefit of radiography, especially in cases where manual therapy is employed. Spinal malalignment cannot be accurately visualized without imaging. Manual therapy and the load tolerances of injured spinal tissues raise different criteria for the use of x-rays for spinal disorders than in medical practice. Current regulatory bodies rely on radiography risk assessments based on Linear-No-Threshold (LNT) risk models. There is a need to consider radiography guidelines for chiropractic which are different from those for medical practice. Radiography practice guidelines are summaries dominated by frequentist interpretations in the analysis of data from studies. In contrast, clinicians often employ a pseudo-Bayesian form of reasoning during the clinical decision-making process. The overrepresentation of frequentist perspectives in evidence-based practice guidelines alter decision-making away from practical assessment of a patient's needs, toward an overly cautious standard applied to patients without regard to their risk/benefit likelihoods relating to radiography. Guidelines for radiography in chiropractic to fully assess the condition of the spine and spinal alignment prior to manual therapy, especially with high velocity, low amplitude spinal manipulation (HVLA-SM), should necessarily differ from those used in medical practice.
Collapse
Affiliation(s)
- Mark A. Lopes
- Gonstead Clinical Studies Society, Santa Cruz, CA, USA
| | | | | |
Collapse
|
24
|
Yang D, Lee T, Lai K, Wong Y, Wong L, Yang J, Lam T, Castelein R, Cheng J, Zheng Y. A novel classification method for mild adolescent idiopathic scoliosis using 3D ultrasound imaging. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Abstract
When other measures for material conditions are scarce or unreliable, the use of height is now common to evaluate economic conditions during economic development. However, throughout US economic development, height data by gender have been slow to emerge. Throughout the late 19th and early 20th centuries, female and male statures remained constant. Agricultural workers had taller statures than workers in other occupations, and the female agricultural height premium was over twice that of males. For both females and males, individuals with fairer complexions were taller than their darker complexioned counterparts. Gender collectively had the greatest explanatory effect associated with stature, followed by age and nativity. Socioeconomic status and birth period had the smallest collective effects with stature.
Collapse
|
26
|
Wang W, Zhou C, Guo R, Cha T, Li G. Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis. Comput Methods Biomech Biomed Engin 2021; 24:1730-1741. [PMID: 34121532 DOI: 10.1080/10255842.2021.1914023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accurate biomechanical investigation of human intervertebral discs (IVDs) is difficult because of their complicated structural and material features. AIM To investigate probabilistic distributions of the biomechanical responses of the IVD by considering varying nonlinear structural and material properties using a stochastic finite element (FE) model. METHODS A FE model of a L3-4 disc was reconstructed, including the nucleus pulposus (NP), annular matrix and fibers. A Monte Carlo method was used to randomly generate 500 sets of the nonlinear material properties and fiber orientations of the disc that were implemented into the FE model. The FE model was analyzed under seven loading conditions: a 500 N compressive force, a 7.5Nm moment simulating flexion, extension, left-right lateral bending, and left-right axial rotation, respectively. The distributions of the ranges of motion (ROMs), intradiscal pressures (IDP), fiber stresses and matrix strains of the disc were analyzed. RESULTS Under the compressive load, the displacement varied between 0.29 mm and 0.76 mm. Under the 7.5Nm moment, the ROMs varied between 3.0° and 6.0° in primary rotations. The IDPs varied within 0.3 MPa under all the loading conditions. The maximal fiber stress (3.22 ± 0.64 MPa) and matrix strain (0.27 ± 0.12%) were observed under the flexion and extension moments, respectively. CONCLUSION The IVD biomechanics could be dramatically affected by the structural and material parameters used to construct the FE model. The stochastic FE model that includes the probabilistic distributions of the structural and material parameters provides a useful approach to analyze the statistical ranges of the biomechanical responses of the IVDs.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA
| |
Collapse
|
27
|
Investigation into the Hybrid Production of a Superelastic Shape Memory Alloy with Additively Manufactured Structures for Medical Implants. MATERIALS 2021; 14:ma14113098. [PMID: 34198784 PMCID: PMC8200991 DOI: 10.3390/ma14113098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022]
Abstract
The demographic change in and the higher incidence of degenerative bone disease have resulted in an increase in the number of patients with osteoporotic bone tissue causing. amongst other issues, implant loosening. Revision surgery to treat and correct the loosenings should be avoided, because of the additional patient stress and high treatment costs. Shape memory alloys (SMA) can help to increase the anchorage stability of implants due to their superelastic behavior. The present study investigates the potential of hybridizing NiTi SMA sheets with additively manufactured Ti6Al4V anchoring structures using laser powder bed fusion (LPBF) technology to functionalize a pedicle screw. Different scanning strategies are evaluated, aiming for minimized warpage of the NiTi SMA sheet. For biomechanical tests, functional samples were manufactured. A good connection between the additively manufactured Ti6Al4V anchoring structures and NiTi SMA substrate could be observed though crack formation occurring at the transition area between the two materials. These cracks do not propagate during biomechanical testing, nor do they lead to flaking structures. In summary, the hybrid manufacturing of a NiTi SMA substrate with additively manufactured Ti6Al4V structures is suitable for medical implants.
Collapse
|
28
|
Punarselvam E, Sikkandar MY, Bakouri M, Prakash NB, Jayasankar T, Sudhakar S. RETRCATED ARTICLE: Different loading condition and angle measurement of human lumbar spine MRI image using ANSYS. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2021; 12:4991-5004. [DOI: 10.1007/s12652-020-01939-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/28/2020] [Indexed: 08/29/2023]
|
29
|
Zhan JW, Wang SQ, Feng MS, Gao JH, Wei X, Yu J, Yin XL, Yin H, Sun K, Chen M, Xie R, Zhang P, Zhu LG. Effects of Axial Compression and Distraction on Vascular Bud and VEGFA Expression in the Vertebral Endplate of an Ex Vivo Rabbit Spinal Motion Segment Culture Model. Spine (Phila Pa 1976) 2021; 46:421-432. [PMID: 33186278 DOI: 10.1097/brs.0000000000003816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An ex vivo study of the rabbit's vertebral endplate. OBJECTIVE The aim of this study was to assess the effect of axial compression and distraction on vascular buds and vascular endothelial growth factor (VEGFA) expression of the vertebral endplate (VEP). SUMMARY OF BACKGROUND DATA The abnormal load can lead to intervertebral disc degeneration (IDD), whereas axial distraction can delay this process. The effects of different mechanical loads on the intervertebral disc (IVD) have been hypothesized to be related to changes in the vascular buds of the VEP; moreover, the process that might involve the vascular endothelial growth factor (VEGF) within the VEP. METHODS Rabbit spinal segments (n = 40) were harvested and randomly classified into four groups: Control group, no stress was applied; Group A, a constant compressive load applied; Group B, compression load removed for a fixed time daily on a continuous basis, and substituted with a distraction load for 30 minutes; and Group C, compression removed for 30 minutes for a fixed period daily on a continuous basis. Tissue specimens were collected before the culture (day 0) and on day 14 post-culture of each group for analysis of IVDs' morphology, and protein and mRNA expression of Aggrecan, COL2al, VEGFA, and vascular endothelial growth factor receptor 2 of the VEPs. RESULTS Application of axial distraction and dynamic load compression significantly delayed time- and constant compression-mediated VEP changes and IDD. Moreover, the degree of degeneration was associated with loss of vascular buds, as well as the downregulation of VEGFA and its receptor. CONCLUSION The regulation of vascular buds and VEGF expression in the VEP represents one of the mechanisms of axial distraction and dynamic loading.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Jia-Wen Zhan
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Is active sitting on a dynamic office chair controlled by the trunk muscles? PLoS One 2020; 15:e0242854. [PMID: 33253292 PMCID: PMC7703901 DOI: 10.1371/journal.pone.0242854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/10/2020] [Indexed: 12/02/2022] Open
Abstract
Today’s office chairs are not known to promote active sitting or to activate the lumbar trunk muscles, both of which functions are ergonomically recommended. This study investigated a newly developed dynamic office chair with a moveable seat, specifically designed to promote trunk muscle controlled active sitting. The study aimed to determine the means by which the seat movement was controlled during active sitting. This was accomplished by quantifying trunk and thigh muscular activity and body kinematics. Additionally, the effect of increased spinal motion on muscular activity and body kinematics was analysed. Ten subjects were equipped with reflective body markers and surface electromyography on three lumbar back muscles (multifidus, iliocostalis, longissimus) and two thigh muscles (vastus lateralis and medialis). Subjects performed a reading task during static and active sitting in spontaneous and maximum ranges of motion in a simulated office laboratory setting. The temporal muscle activation pattern, average muscle activity and body segment kinematics were analysed and compared using Friedman and post-hoc Wilcoxon tests (p≤0.05). Active sitting on the new chair significantly affected the lumbar trunk muscles, with characteristic cyclic unloading/loading in response to the seat movement. Neither thigh muscle activity nor lateral body weight shift were substantially affected by active sitting. When participants increased their range of motion, the lumbar back muscles were activated for longer and relaxation times were shorter. The characteristic activity pattern of the lumbar trunk muscles was shown to be the most likely dominant factor in controlling seat movement during active sitting. Consequently, the new chair may have a potential positive impact on back health during prolonged sitting. Further studies are necessary to analyse the frequency and intensity of active sitting during daily office work.
Collapse
|
31
|
Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Exp Biol Med (Maywood) 2020; 246:483-512. [PMID: 33175609 DOI: 10.1177/1535370220969123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.
Collapse
Affiliation(s)
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
32
|
Rosker ZM, Rosker J, Sarabon N. Impairments of Postural Balance in Surgically Treated Lumbar Disc Herniation Patients. J Appl Biomech 2020; 36:228-234. [PMID: 32570214 DOI: 10.1123/jab.2019-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
Abstract
Reports on body sway control following microdiscectomy lack reports on side-specific balance deficits as well as the effects of trunk balance control deficits on body sway during upright stances. About 3 weeks post microdiscectomy, the body sway of 27 patients and 25 controls was measured while standing in an upright quiet stance with feet positioned parallel on an unstable support surface, a tandem stance with the involved leg positioned in front or at the back, a single-leg stance with both legs, and sitting on an unstable surface. Velocity, average amplitude, and frequency-direction-specific parameters were analyzed from the center of pressure movement, measured by the force plate. Statistically significant differences between the 2 groups were observed for the medial-lateral body sway frequency in parallel stance on a stable and unstable support surface and for the sitting balance task in medial-lateral body sway parameters. Medium to high correlations were observed between body sway during sitting and the parallel stance, as well as between the tandem and single-legged stances. Following microdiscectomy, deficits in postural balance were side specific, as expected by the nature of the pathology. In addition, the results of this study confirmed the connection between proximal balance control deficits and balance during upright quiet balance tasks.
Collapse
Affiliation(s)
| | | | - Nejc Sarabon
- University of Primorska
- Science to Practice (S2P)
| |
Collapse
|
33
|
HUBNER ANDRÉRAFAEL, GARCIA MATEUSMEIRA, MAIA RODRIGOALVESVIEIRA, GASPARIN DANIEL, ISRAEL CHARLESLEONARDO, SPINELLI LEANDRODEFREITAS. MECHANICAL BEHAVIOR OF THORACOLUMBAR CORONAL SPLIT FRACTURES: FINITE ELEMENT ANALYSIS. COLUNA/COLUMNA 2020. [DOI: 10.1590/s1808-185120201903223027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Objective To analyze the behavior of thoracolumbar fractures of the coronal split type using the finite element method. Methods Two comparative studies were conducted through simulation of coronal split fractures in a finite model in which the first lumbar vertebra (L1) was considered to be fractured. In the first case, the fracture line was considered to have occurred in the middle of the vertebral body (50%), while in the second model, the fracture line occurred in the anterior quarter of the vertebral body (25%). The maximum von Mises stress values were compared, as well as the axial displacement between fragments of the fractured vertebra. Results The stress levels found for the fracture located at half of the vertebral body were 43% higher (264.88 MPa x 151.16 MPa) than those for the fracture located at the anterior 25% of the vertebra, and the axial displacement of the 50% fractured body was also greater (1.19 mm x 1.10 mm). Conclusions Coronal split fractures located in the anterior quarter of the vertebral body incurred less stress and displacements and are more amenable to conservative treatment than 50% fractures occurring in the middle of the vertebral body. Level of Evidence III; Experimental study.
Collapse
Affiliation(s)
| | | | | | | | - CHARLES LEONARDO ISRAEL
- Universidade de Passo Fundo, Brazil; Universidade de Passo Fundo, Brazil; Universidade de Passo Fundo, Brazil
| | - LEANDRO DE FREITAS SPINELLI
- Universidade de Passo Fundo, Brazil; Universidade de Passo Fundo, Brazil; Universidade de Passo Fundo, Brazil; Santa Casa de Misericórdia de Porto Alegre, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| |
Collapse
|
34
|
Zhan JW, Wang SQ, Feng MS, Wei X, Yu J, Yin XL, Han T, Zhu LG. Constant compression decreases vascular bud and VEGFA expression in a rabbit vertebral endplate ex vivo culture model. PLoS One 2020; 15:e0234747. [PMID: 32584845 PMCID: PMC7316323 DOI: 10.1371/journal.pone.0234747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
SUMMARY OF BACKGROUND DATA The vascular buds in the vertebral endplate (VEP) are the structural foundation of nutrient exchange in the intervertebral disc (IVD). VEGF is closely related to angiogenesis in the endplate and intervertebral disc degeneration (IDD). OBJECTIVE To investigate the effects of static load on vascular buds and VEGF expression in the VEP and to further clarify the relation between IDD and VEGF. METHODS IVD motion segments were harvested from rabbit lumbar spines and cultured under no-loading conditions (controls) or in custom-made apparatuses under a constant compressive load (0.5 MPa) for up to 14 days. Tissue integrity and the number of vascular buds were determined, and the concentrations and expression of Aggrecan, COL2a1, and VEGFA in the VEPs were assessed after 3, 7, and 14 days of culturing and then compared with those of fresh tissues. RESULTS Under the constant compression, the morphological integrity of the VEPs was gradually disrupted, and immunohistochemistry results showed a significant decrease in the levels of Agg and COL2a1. During the static load, the number of vascular buds in the VEPs was gradually reduced from the early stage of culture, and ELISA showed that the constant compressive load caused a significant decrease in the VEGFA and VEGFR2 protein concentrations, which were consistent with the immunohistochemistry results. Western blot and RT-PCR results also showed that the loading state caused a significant decrease in VEGFA expression compared with that of fresh and control samples. CONCLUSIONS Constant compression caused degeneration of the VEP as well as a decreased number of vascular buds, thereby accelerating disc degeneration. VEGFA is involved in this process. We anticipate that regulating the expression of VEGFA may improve the condition of the lesions to the vascular buds in the endplates, thus enhancing the nutritional supply function in IVD and providing new therapeutic targets and strategies for the effective prevention and treatment of IDD.
Collapse
Affiliation(s)
- Jia-Wen Zhan
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shang-Quan Wang
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min-Shan Feng
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Scientific Research Office, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Yu
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xun-Lu Yin
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Han
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Guo Zhu
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Perceptions of low back pain in elite gymnastics: A multi-disciplinary qualitative focus group study. Phys Ther Sport 2020; 44:33-40. [PMID: 32375075 DOI: 10.1016/j.ptsp.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To explore the multidisciplinary team experience of Low Back Pain (LBP) in elite gymnastics. DESIGN A qualitative focus group. SETTING British Gymnastics. PARTICIPANTS Ten coaching, sports science and medicine multidisciplinary team members working with British gymnasts. MAIN OUTCOME MEASURES A topic guide informed by literature/expert opinion enabled discussion that was recorded/transcribed verbatim. Initial inductive analytic process developed theoretical insights. Manual coding using constant comparative methods categorised meaningful themes and sub-themes. RESULTS Two key aspects were identified. Emerging themes for LBP presentation included: early identification LBP and influence of multidisciplinary team members on outcomes; factors influencing LBP reporting e.g. coach-athlete relationship; frequent presentations of LBP and accepted norms; athlete history and physical examination e.g. training load. Emerging themes for causation of LBP included: intrinsic risk factors e.g. growth and maturation; extrinsic risk factors e.g. equipment. CONCLUSIONS Individual responses of a gymnast to experiencing LBP were important across all themes. Some LBP was perceived as normal. The coach-athlete relationship and support team are crucial decision-makers around training load and adaptation. Early detection will help minimise time loss from training/performance to expedite healing.
Collapse
|
36
|
Lin CC, Hua SH, Lin CL, Cheng CH, Liao JC, Lin CF. Impact of Prolonged Tablet Computer Usage with Head Forward and Neck Flexion Posture on Pain Intensity, Cervical Joint Position Sense and Balance Control in Mechanical Neck Pain Subjects. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00525-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Shuldiner J, Tur-Sinai A, Bentur N. Musculoskeletal Pain Medication Use in Middle Age and Older Adults in 15 European Countries and Israel. Pain Manag Nurs 2019; 21:165-171. [PMID: 31837952 DOI: 10.1016/j.pmn.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/14/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The experience of musculoskeletal pain is widespread among adults and entails high costs to both individuals and society. Few studies look at disparities in pain management. AIMS To examine factors associated with the presence of musculoskeletal pain and the use of pain medication use among individuals aged 50+. DESIGN Cross-sectional analysis of data from the SHARE. PARTICIPANTS 64,281 community-dwelling individuals in 15 European countries and Israel. METHODS Bivariate analysis and logistic regression were used to identify factors associated with the presence of musculoskeletal pain and pain medication use. RESULTS Among our population, the prevalence of musculoskeletal pain at the time of the survey was 40.1%. Women had more pain than men (odds ratio [OR] = 1.477, confidence interval [CI] = 1.428-1.528), those who were 60-69 years old had less pain than younger individuals (OR = 0.927, CI = 0.883-0.973), whereas those who were 80+ years old had more pain than younger individuals (OR = 1.280, CI = 1.199-1.367). About 50% of those with musculoskeletal pain take no medication to manage it. Predictors of pain medication use include male sex (OR = 1.468, CI = 1.389-1.553), more education (OR = 1.034, CI = 1.023-1.041), and better ability to cope economically (OR = 1.446, CI = 1.368-1.527). Those over 70 are less likely than younger individuals to be taking medication to manage their pain (70-79: OR = 0.822, CI = 0.761-0.887), (80+: OR = 0.619, CI = 0.566-0.677). CONCLUSIONS Nurses should be aware of the association of education and income with pain-medication use, which suggests that pain medication use is less accessible to those with fewer resources. Pain is a significant public-health problem, and access to medicine deserves attention from nurses, healthcare workers and policymakers.
Collapse
Affiliation(s)
| | - Aviad Tur-Sinai
- Department of Health Systems Management, The Max Stern Yezreel Valley College, Yezreel Valley, Emek Yezreel, Israel; School of Nursing, University of Rochester Medical Center, New York, NY
| | | |
Collapse
|
38
|
Tur-Sinai A, Shuldiner J, Bentur N. Sociodemographic inequality in joint-pain medication use among community-dwelling older adults in Israel. HEALTH & SOCIAL CARE IN THE COMMUNITY 2019; 27:1167-1174. [PMID: 30969452 DOI: 10.1111/hsc.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Joint pain is a common experience among adults aged 65 and over. Although pain management is multifaceted, medication is essential in it. The paper examines the use of medication among older adults with joint pain in Israel and asks whether socioeconomic factors are associated with this usage. The data, harvested, from the Survey of Health, Aging and Retirement in Europe (SHARE), include 1,294 randomly selected community-dwelling individuals aged 65 and over in Israel. Bivariate analysis and logistic regression are used to identify factors associated with the presence of joint pain medication use. About 38% of respondents report experiencing joint pain and 45% of those who so report are not taking prescription medication. Back pain is the most common location, reported by 64% of individuals who report joint pain. Taking medication is independently associated with younger age (OR = 0.965, 95% CI = 0.939-0.991), more education (OR = 1.044, 95% CI = 0.998-1.091), and better ability to cope economically (OR = 1.964, 95% CI = 1.314-2.936). However, older age and ability to cope economically are independently associated with women (OR = 0.964, 95% CI = 0.932-0.998 and OR = 2.438, 95% CI = 1.474-4.032, respectively) but not with men. It is suggested that socioeconomic inequality exists in healthcare access among adults aged 65 and over. Since income and gender are strongly associated with taking pain medication, physicians should follow-up on women and less affluent people to ensure that medication prescribed has been obtained. Policymakers should consider programs that would facilitate better access to pain medication among vulnerable older individuals.
Collapse
Affiliation(s)
- Aviad Tur-Sinai
- Department of Health Systems Management, The Max Stern Yezreel Valley College, Emek Yezreel, Israel
| | | | | |
Collapse
|
39
|
Somovilla-Gómez F, Lostado-Lorza R, Corral-Bobadilla M, Escribano-García R. Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. Biomech Model Mechanobiol 2019; 19:351-387. [DOI: 10.1007/s10237-019-01215-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/17/2019] [Indexed: 11/24/2022]
|
40
|
Kent P, O'Sullivan P, Smith A, Haines T, Campbell A, McGregor AH, Hartvigsen J, O'Sullivan K, Vickery A, Caneiro JP, Schütze R, Laird RA, Attwell S, Hancock M. RESTORE-Cognitive functional therapy with or without movement sensor biofeedback versus usual care for chronic, disabling low back pain: study protocol for a randomised controlled trial. BMJ Open 2019; 9:e031133. [PMID: 31427344 PMCID: PMC6701662 DOI: 10.1136/bmjopen-2019-031133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) is the leading cause of disability globally and its costs exceed those of cancer and diabetes combined. Recent evidence suggests that individualised cognitive and movement rehabilitation combined with lifestyle advice (cognitive functional therapy (CFT)) may produce larger and more sustained effects than traditional approaches, and movement sensor biofeedback may enhance outcomes. Therefore, this three-arm randomised controlled trial (RCT) aims to compare the clinical effectiveness and economic efficiency of individualised CFT delivered with or without movement sensor biofeedback, with usual care for patients with chronic, disabling LBP. METHODS AND ANALYSIS Pragmatic, three-arm, randomised, parallel group, superiority RCT comparing usual care (n=164) with CFT (n=164) and CFT-plus-movement-sensor-biofeedback (n=164). Inclusion criteria include: adults with a current episode of LBP >3 months; sought primary care ≥6 weeks ago for this episode of LBP; average LBP intensity of ≥4 (0-10 scale); at least moderate pain-related interference with work or daily activities. The CFT-only and CFT-plus-movement-sensor-biofeedback participants will receive seven treatment sessions over 12 weeks plus a 'booster' session at 26 weeks. All participants will be assessed at baseline, 3, 6, 13, 26, 40 and 52 weeks. The primary outcome is pain-related physical activity limitation (Roland Morris Disability Questionnaire). Linear mixed models will be used to assess the effect of treatment on physical activity limitation across all time points, with the primary comparison being a formal test of adjusted mean differences between groups at 13 weeks. For the economic (cost-utility) analysis, the primary outcome of clinical effect will be quality-adjusted life years measured across the 12-month follow-up using the EuroQol EQ-5D-5L . ETHICS AND DISSEMINATION Approved by Curtin University Human Research Ethics Committee (HRE2018-0062, 6 Feb 2018). Study findings will be disseminated through publication in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12618001396213).
Collapse
Affiliation(s)
- Peter Kent
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - P O'Sullivan
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Anne Smith
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Terry Haines
- Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Amity Campbell
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Alison H McGregor
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jan Hartvigsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Nordic Institute of Chiropractic and Clinical Biomechanics, Odense, Denmark
| | - Kieran O'Sullivan
- Sports Spine Centre, Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Alistair Vickery
- General Practice, The University of Western Australia, Crawley, Western Australia, Australia
| | - J P Caneiro
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Robert Schütze
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | | | - Stephanie Attwell
- Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| | - Mark Hancock
- Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Rezaei A, Giambini H, Carlson KD, Xu H, Uthamaraj S, Dragomir-Daescu D, Yaszemski MJ, Lu L. Mechanical testing setups affect spine segment fracture outcomes. J Mech Behav Biomed Mater 2019; 100:103399. [PMID: 31479817 DOI: 10.1016/j.jmbbm.2019.103399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/10/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022]
Abstract
The purpose of the work presented here was to establish an experimental testing configuration that would generate a bending compression fracture in a laboratory setting. To this end, we designed and fabricated a fixture to accommodate a three level spine segment and to be able to perform mechanical testing by applying an off-centric compressive loading to create a flexion-type motion. Forces and moments occurring during testing were measured with a six-channel load cell. The initial testing configuration (Fixture A) included plates connected to the superior potted vertebral body and to the ball-socket joint of the testing system ram. Surprisingly, while all cadaveric specimens underwent a similar off-centric compressive loading, most of the specimens showed extension outcomes as opposed to the intended pure-flexion motion. The extension was due to fixture size and weight; by applying an off-centric load directly on the top plate, unintended large shear forces were generated. To resolve the issue, several modifications were made to the original fixture configuration. These modifications included the removal of the superior plates and the implementation of wedges at the superior surface of the fixture (Fixture B). A synthetic sample was used during this modification phase to minimize the number of cadaveric specimens while optimizing the process. The best outcomes were consistently observed when a 15°-wedge was used to provide flexion-type loading. Cadaveric specimens were then experimentally tested to fracture using the modified testing configuration (Fixture B). A comparison between both fixtures, A and B, revealed that almost all biomechanical parameters, including force, moment, and displacement data, were affected by the testing setup. These results suggest that fixture design and implementation for testing is of extreme importance, and can influence the fracture properties and affect the intended motion.
Collapse
Affiliation(s)
- Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hugo Giambini
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kent D Carlson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. J Biomech 2019; 87:107-113. [PMID: 30905402 DOI: 10.1016/j.jbiomech.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 01/12/2023]
Abstract
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load - FL, axial load - AL, and combined load - CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion-extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a "physiologic" in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.
Collapse
|
43
|
Abstract
BACKGROUND Dance is a physical pursuit that involves loading the spine through repetitive dynamic movements and lifting tasks. As such, low back pain (LBP) and low back injury (LBI) have been identified as common health problems in contemporary and classical ballet dancers. However, clarity regarding the experience of LBP and LBI in dance is lacking. OBJECTIVES To systematically review and synthesize the epidemiology of LBP and LBI in dance populations. METHODS A comprehensive search of 6 electronic databases, back catalogs of dance science-specific journals, and reference lists of relevant articles and a forward citation search were performed. RESULTS Fifty full-text articles were included in the final systematic review. There was considerable methodological heterogeneity among the included studies. The median (range) point, yearly, and lifetime prevalence of LBP was 27% (17%-39%), 73% (41%-82%), and 50% (17%-88%), respectively. The lower back contributed to 11% (4%-22%) of time loss and 11% (5%-23%) of medical-attention injuries. CONCLUSION Dancers are vulnerable to LBP and LBI. The use of definitions that are sensitive to the complexity of LBP and LBI would facilitate improved understanding of the problem within dance, inform health care strategies, and allow for monitoring LBP-specific intervention outcomes. J Orthop Sports Phys Ther 2019;49(4):239-252. Epub 18 Jan 2019. doi:10.2519/jospt.2019.8609.
Collapse
|
44
|
Hu BW, Lv X, Chen SF, Shao ZW. Application of Finite Element Analysis for Investigation of Intervertebral Disc Degeneration: from Laboratory to Clinic. Curr Med Sci 2019; 39:7-15. [PMID: 30868485 DOI: 10.1007/s11596-019-1993-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/06/2018] [Indexed: 01/06/2023]
Abstract
Due to the ethical concern and inability to detect inner stress distributions of intervertebral disc (IVD), traditional methods for investigation of intervertebral disc degeneration (IVDD) have significant limitations. Many researchers have demonstrated that finite element analysis (FEA) is an effective tool for the research of IVDD. However, the specific application of FEA for investigation of IVDD has not been systematically elucidated before. In the present review, we summarize the current finite element models (FEM) used for the investigation of IVDD, including the poroelastic nonlinear FEM, diffusive-reactive theory model and cell-activity coupled mechano-electrochemical theory model. We further elaborate the use of FEA for the research of IVDD pathogenesis especially for nutrition and biomechanics associated etiology, and the biological, biomechanical and clinical influences of IVDD. In addition, the application of FEA for evaluation and exploration of various treatments for IVDD is also elucidated. We conclude that FEA is an excellent technique for research of IVDD, which could be used to explore the etiology, biology and biomechanics of IVDD. In the future, FEA may help us to achieve the goal of individualized precision therapy.
Collapse
Affiliation(s)
- Bin-Wu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Song-Feng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zeng-Wu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Baer JL, Vasavada A, Cohen RG. Neck posture is influenced by anticipation of stepping. Hum Mov Sci 2019; 64:108-122. [PMID: 30710861 DOI: 10.1016/j.humov.2019.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 12/31/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Postural deviations such as forward head posture (FHP) are associated with adverse health effects. The causes of these deviations are poorly understood. We hypothesized that anticipating target-directed movement could cause the head to get "ahead of" the body, interfering with optimal head/neck posture, and that the effect may be exacerbated by task difficulty and/or poor inhibitory control. METHOD We assessed posture in 45 healthy young adults standing quietly and when they anticipated walking to place a tray: in a simple condition and in conditions requiring that they bend low or balance an object on the tray. We defined FHP as neck angle relative to torso; we also measured head angle relative to neck and total neck length. We assessed inhibitory control using a Go/No-Go task, Stroop task, and Mindful Attention Awareness Scale (MAAS). RESULTS FHP increased when participants anticipated movement, particularly for more difficult movements. Worse Stroop performance and lower MAAS scores correlated with higher FHP. False alarms on the Go/No-Go task correlated with a more extended head relative to the neck and with shortening of the neck when anticipating movement. CONCLUSIONS Maintaining neutral posture may require inhibition of an impulse to put the head forward of the body when anticipating target-directed movement.
Collapse
Affiliation(s)
- Jason L Baer
- Department of Psychology & Communication Studies, University of Idaho, Moscow, ID, United States.
| | - Anita Vasavada
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States; Department of Integrative Physiology and Neuroscience, WSU, United States
| | - Rajal G Cohen
- Department of Psychology & Communication Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
46
|
Syamala KR, Ailneni RC, Kim JH, Hwang J. Armrests and back support reduced biomechanical loading in the neck and upper extremities during mobile phone use. APPLIED ERGONOMICS 2018; 73:48-54. [PMID: 30098642 DOI: 10.1016/j.apergo.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Mobile phone use is known to be associated with musculoskeletal pain in the neck and upper extremities because of related physical risk factors, including awkward postures. A chair that provides adequate support (armrests and back support) may reduce biomechanical loading in the neck and shoulder regions. Therefore, we conducted a repeated-measures laboratory study with 20 participants (23 ± 1.9 years; 10 males) to determine whether armrests and back support during mobile phone use reduced head/neck flexion, gravitational moment, and muscle activity in the neck and shoulder regions. The results showed that the chair support (armrests and back support) reduced head/neck flexion (p < 0.001), gravitational moment (p < 0.001), and muscle activity (p < 0.01) in the neck and shoulder regions significantly compared to no chair support. These results indicate that a chair with adequate support can be an effective intervention to reduce the biomechanical exposures and associated muscular pain in the neck and shoulders during mobile phone use.
Collapse
Affiliation(s)
- Kartheek Reddy Syamala
- Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA
| | - Ravi Charan Ailneni
- Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA
| | - Jeong Ho Kim
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Jaejin Hwang
- Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
47
|
Wang T, Pelletier MH, Christou C, Oliver R, Mobbs RJ, Walsh WR. A novel in vivo large animal model of lumbar spinal joint degeneration. Spine J 2018; 18:1896-1909. [PMID: 29800709 DOI: 10.1016/j.spinee.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degenerative disc disease (DDD) is a common, widespread socioeconomic problem. Appropriate large animal models of DDD are required for improved understanding and to serve as preclinical test beds for therapeutic strategies. PURPOSE To evaluate the effects of short and medium duration immobilization on the sheep lumbar intervertebral disc (IVD) and facet joints (FJs), and to establish a large animal model for DDD research. STUDY DESIGN An in vivo sheep model evaluating the effect of short- and medium-term immobilization on disc degeneration. METHODS Eighteen sheep were equally randomized into three groups: short-term (6-week) immobilization (n=6), medium-term (26-week) immobilization (n=6), and control (no surgery) (n=6). Immobilization of L3-L4 was achieved with pedicle screw and rod implantation, the IVD was kept intact, and the annulus and end plates were not disrupted. The IVD and FJs were assessed with planar radiography, computerized tomography (CT), magnetic resonance imaging (MRI), pure moment biomechanical testing, and histologic analysis. RESULTS Disc height was reduced for 6- and 26-week immobilization groups. The MRI and histologic analysis demonstrated significant disc degeneration for both immobilized groups compared with control, but no statistical difference was detected between short- and medium-term duration. Progressive degenerative changes in FJs were observed with micro-CT and histologic end points. Immobilization significantly reduced lateral bending and flexion-extension range of motion. CONCLUSIONS The mechanical environment set up by immobilization alone is capable of inducing lumbar disc degeneration at both 6 and 26 weeks in sheep. Longer duration immobilization did not advance disc degeneration process beyond of that found with short duration. The present model produces a degenerative disc with intact annulus and without acute injury, more closely representing the scenario common in human disc degeneration. This provides a suitable large animal in vivo model for the evaluation of the new therapies for disc degeneration. Further studies would do well to examine the effect of remobilization after immobilization in this model.
Collapse
Affiliation(s)
- Tian Wang
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Matthew H Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Chris Christou
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Rema Oliver
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Ralph J Mobbs
- Neurospine Clinic, Prince of Wales Hospital, University of New South Wales, Barker St, Randwick, Sydney, NSW 2031, Australia
| | - William R Walsh
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
48
|
Masni-Azian, Tanaka M. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Comput Biol Med 2018; 98:26-38. [DOI: 10.1016/j.compbiomed.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/29/2022]
|
49
|
Funabashi M, Nougarou F, Descarreaux M, Prasad N, Kawchuk GN. Does the application site of spinal manipulative therapy alter spinal tissues loading? Spine J 2018; 18:1041-1052. [PMID: 29355792 DOI: 10.1016/j.spinee.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Previous studies found that the intervertebral disc (IVD) experiences the greatest loads during spinal manipulation therapy (SMT). PURPOSE Based on that, this study aimed to determine if loads experienced by spinal tissues are significantly altered when the application site of SMT is changed. STUDY DESIGN A biomechanical robotic serial dissection study. SAMPLE Thirteen porcine cadaveric motion segments. OUTCOME MEASURES Forces experienced by lumbar spinal tissues. METHODS A servo-controlled linear actuator provided standardized 300 N SMT simulations to six different cutaneous locations of the porcine lumbar spine: L2-L3 and L3-L4 facet joints (FJ), L3 and L4 transverse processes (TVP), and the space between the FJs and the TVPs (BTW). Vertebral kinematics were tracked optically using indwelling bone pins; the motion segment was removed and mounted in a parallel robot equipped with a six-axis load cell. Movements of each SMT application at each site were replayed by the robot with the intact specimen and following the sequential removal of spinal ligaments, FJs and IVD. Forces induced by SMT were recorded, and specific axes were analyzed using linear mixed models. RESULTS Analyses yielded a significant difference (p<.05) in spinal structures loads as a function of the application site. Spinal manipulative therapy application at the L3 vertebra caused vertebral movements and forces between L3 and L4 spinal segment in the opposite direction to when SMT was applied at L4 vertebra. Additionally, SMT applications over the soft tissue between adjacent vertebrae significantly decreased spinal structure loads. CONCLUSION Applying SMT with a constant force at different spinal levels creates different relative kinetics of the spinal segments and load spinal tissues in significantly different magnitudes.
Collapse
Affiliation(s)
- Martha Funabashi
- Department of Physical Therapy, University of Alberta, 8205 114 Street, University of Alberta, Edmonton, Alberta, T6G 2G4, Canada.
| | - François Nougarou
- Département de génie électrique et informatique, Université du Québec à Trois-Rivières, Léon-Provancher Pavillion, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Martin Descarreaux
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières, Albert-Tessier Pavillion, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Narasimha Prasad
- Department of Mathematical and Statistical Sciences, University of Alberta, CAB 632, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Gregory N Kawchuk
- Department of Physical Therapy, University of Alberta, 8205 114 Street, University of Alberta, Edmonton, Alberta, T6G 2G4, Canada
| |
Collapse
|
50
|
Larger vertebral endplate concavities cause higher failure load and work at failure under high-rate impact loading of rabbit spinal explants. J Mech Behav Biomed Mater 2018; 80:104-110. [DOI: 10.1016/j.jmbbm.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
|