1
|
Leandro de Albuquerque G, da Silva Souza V, Matheus Santos da Silva Calado C, da Silva Araújo MA, da Silva Fraga LR, Bulcão Visco D, Manhães-de-Castro R, Elisa Toscano A. Perinatal anoxia associated with sensorimotor restriction causes muscle atrophy and microglial activation: Meta-analysis of preclinical studies with implications for cerebral palsy. Neuroscience 2024; 563:93-109. [PMID: 39515512 DOI: 10.1016/j.neuroscience.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Several experimental cerebral palsy models have been created to investigate cellular and molecular mechanisms involved in this condition and develop new therapeutic strategies. The model that has come closest to a motor phenotype similar to cerebral palsy is the one that combines perinatal anoxia with hindlimb sensorimotor restriction, as it induces visible changes at the peripheral and central levels. This systematic review with meta-analysis presents the impact of the cerebral palsy model that associates perinatal anoxia with hindlimb sensorimotor restriction on the nervous, muscular and skeletal systems. Studies with perinatal anoxia associated with sensorimotor restriction and which evaluated outcomes related to skeletal, muscle, or nervous tissue were recovered from the databases: Embase, PubMed, Scopus, and Web of Science. The methodological and quantitative assessment was performed after eligibility screening (PROSPERO - ID: CRD42023477770). After screening of 4,641 articles, 21 studies with a moderate quality of evidence were chosen to be included in this review and 11 articles were included in the meta-analysis. The results of the meta-analysis reported a significant reduction in the media area of the soleus muscle fibers, increased number of glia cells and glia/neuron index in the somatosensory cortex, increased microglial activation in the hippocampus, and no changes in the corpus callosum thickness or neuron cells. The combination of perinatal anoxia and sensorimotor restriction entails muscle deficits and excessive activation of glial cells in brain areas. These results contribute to a methodological refinement of cerebral palsy models and favor new studies proposed for methodological elucidation in animal experimentation.
Collapse
Affiliation(s)
- Glayciele Leandro de Albuquerque
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil
| | - Vanessa da Silva Souza
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil
| | - Caio Matheus Santos da Silva Calado
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil
| | - Marcos Antônio da Silva Araújo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil
| | - Lucas Rafael da Silva Fraga
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil; Laboratory of Neurofunctional, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco 50670-420, Brazil; Nursing Unit, Vitoria Academic Center, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco 55608-680, Brazil.
| |
Collapse
|
2
|
Rivares C, Vignaud A, Noort W, Baan G, Koopmans B, Loos M, Wüst RCI, Kalinichev M, Jaspers RT. Muscle type-specific effects of bilateral abobotulinumtoxinA injection on muscle growth and contractile function in spastic mice. FASEB J 2024; 38:e70141. [PMID: 39560920 PMCID: PMC11636637 DOI: 10.1096/fj.202302258r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Intramuscular injection of botulinum neurotoxin type A (BoNT-A) is commonly used to improve or maintain the joint range of motion in young children with spasticity. However, the effectiveness of BoNT-A treatment is variable and movement limitations are recurrent. Here we show long-term effects of a single, bilateral abobotulinumtoxinA (aboBoNT-A) injection in the gastrocnemius medialis and soleus muscles of wild-type and spastic (B6.Cg-Glrbspa/J with a mutation in the glycine receptor) mice at a young age (6-7 days). Specifically, we evaluated the impact of aboBoNT-A-A on gait, physical performance, and spontaneous physical behavior, as well as on contractile force characteristics, morphology, and histological phenotype of soleus and gastrocnemius muscles by comparing their results to those of saline-injected controls up to 9 weeks after the injection. The detailed time course of the study specifies the timing of the aboBoNT-A injection at 1 week, the period of behavioral studies from 4-9 weeks, and the age of the mice (10 weeks) at the time of contractile force characteristics and histology assessments. In spastic mice, aboBoNT-A injection had a minor and very specific effect on physical performance, by only modestly increasing stride length as a function of age. aboBoNT-A injection caused a reduction in the force-generating capacity and a slightly smaller physiological cross-sectional area in gastrocnemius medialis, but not in soleus. Reduced physiological cross-sectional area in aboBoNT-A-injected muscles was due to a lower number of muscle fibers, rather than reduced muscle fiber cross-sectional area. The percentage of slow-type muscle fibers and mitochondrial succinate dehydrogenase activity were increased, which was associated with an improved muscle endurance capacity. In conclusion, aboBoNT-A injection reduced the number of muscle fibers, causing muscle hypertrophy in remaining fibers and a shift towards more oxidative fibers, resulting in an improved endurance capacity and gait. This study proposed potential cellular mechanisms for the therapeutic efficacy of aboBoNT-A in spasticity.
Collapse
Affiliation(s)
- Cintia Rivares
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | | | - Wendy Noort
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Guus Baan
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | | | - Maarten Loos
- Innoser LaboratoriesZernikedreef 9Leiden2333 CKThe Netherlands
| | - Rob C. I. Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | | | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
3
|
Clewes K, Hammond C, Dong Y, Meyer M, Lowe E, Rose J. Neuromuscular impairments of cerebral palsy: contributions to gait abnormalities and implications for treatment. Front Hum Neurosci 2024; 18:1445793. [PMID: 39359619 PMCID: PMC11445151 DOI: 10.3389/fnhum.2024.1445793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Identification of neuromuscular impairments in cerebral palsy (CP) is essential to providing effective treatment. However, clinical recognition of neuromuscular impairments in CP and their contribution to gait abnormalities is limited, resulting in suboptimal treatment outcomes. While CP is the most common childhood movement disorder, clinical evaluations often do not accurately identify and delineate the primary neuromuscular and secondary musculoskeletal impairments or their specific impact on mobility. Here we discuss the primary neuromuscular impairments of CP that arise from early brain injury and the progressive secondary musculoskeletal impairments, with a focus on spastic CP, the most common form of CP. Spastic CP is characterized by four primary interrelated neuromuscular impairments: 1. muscle weakness, 2. short muscle-tendon units due to slow muscle growth relative to skeletal growth, 3. muscle spasticity characterized by increased sensitivity to stretch, and 4. impaired selective motor control including flexor and extensor muscle synergies. Specific gait events are affected by the four primary neuromuscular impairments of spastic CP and their delineation can improve evaluation to guide targeted treatment, prevent deformities and improve mobility. Emerging information on neural correlates of neuromuscular impairments in CP provides the clinician with a more complete context with which to evaluate and develop effective treatment plans. Specifically, addressing the primary neuromuscular impairments and reducing secondary musculoskeletal impairments are important treatment goals. This perspective on neuromuscular mechanisms underlying gait abnormalities in spastic CP aims to inform clinical evaluation of CP, focus treatment more strategically, and guide research priorities to provide targeted treatments for CP.
Collapse
Affiliation(s)
- Kylie Clewes
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
| | - Claire Hammond
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Yiwen Dong
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Mary Meyer
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
| | - Evan Lowe
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
| | - Jessica Rose
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Rabbi MF, Davico G, Lloyd DG, Carty CP, Diamond LE, Pizzolato C. Muscle synergy-informed neuromusculoskeletal modelling to estimate knee contact forces in children with cerebral palsy. Biomech Model Mechanobiol 2024; 23:1077-1090. [PMID: 38459157 PMCID: PMC11101562 DOI: 10.1007/s10237-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Cerebral palsy (CP) includes a group of neurological conditions caused by damage to the developing brain, resulting in maladaptive alterations of muscle coordination and movement. Estimates of joint moments and contact forces during locomotion are important to establish the trajectory of disease progression and plan appropriate surgical interventions in children with CP. Joint moments and contact forces can be estimated using electromyogram (EMG)-informed neuromusculoskeletal models, but a reduced number of EMG sensors would facilitate translation of these computational methods to clinics. This study developed and evaluated a muscle synergy-informed neuromusculoskeletal modelling approach using EMG recordings from three to four muscles to estimate joint moments and knee contact forces of children with CP and typically developing (TD) children during walking. Using only three to four experimental EMG sensors attached to a single leg and leveraging an EMG database of walking data of TD children, the synergy-informed approach estimated total knee contact forces comparable to those estimated by EMG-assisted approaches that used 13 EMG sensors (children with CP, n = 3, R2 = 0.95 ± 0.01, RMSE = 0.40 ± 0.14 BW; TD controls, n = 3, R2 = 0.93 ± 0.07, RMSE = 0.19 ± 0.05 BW). The proposed synergy-informed neuromusculoskeletal modelling approach could enable rapid evaluation of joint biomechanics in children with unimpaired and impaired motor control within a clinical environment.
Collapse
Affiliation(s)
- Mohammad Fazle Rabbi
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Giorgio Davico
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, 40136, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Christopher P Carty
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Orthopaedic Surgery, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, 4101, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia.
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
5
|
Goyal V, Gordon KE, Sukal-Moulton T. Children with bilateral cerebral palsy use their hip joint to complete a step-up task. Front Hum Neurosci 2024; 18:1343457. [PMID: 38445098 PMCID: PMC10912305 DOI: 10.3389/fnhum.2024.1343457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Performance in stair-climbing is largely associated with disruptions to mobility and community participation in children with cerebral palsy (CP). It is important to understand the nature of motor impairments responsible for making stairs a challenge in children with bilateral CP to clarify underlying causes of impaired mobility. In pediatric clinical populations, sensitive measurements of movement quality can be captured during the initial step of stair ascent. Thus, the purpose of this study was to quantify the lower limb joint moments of children with bilateral CP during the stance phases of a step-up task. Participants performed multiple stepping trials in a university gait laboratory. Outcome measures included extensor support moments (the sum of hip, knee, and ankle sagittal plane moments), hip abduction moments, and their timing. We recruited seven participants per group. We found that peak support and hip abduction moments were similar in the bilateral CP group compared to the typical development (TD) group. We also found that children with bilateral CP timed their peak moments closer together and increasingly depended on the hip joint to complete the task, especially in their more affected (MA) lower limb. Our investigation highlights some underlying causes that may make stair climbing a challenge for the CP population, including a loss of selective voluntary motor control (SVMC), and provides a possible treatment approach to strengthen lower limb muscles.
Collapse
Affiliation(s)
- Vatsala Goyal
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Keith E. Gordon
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Edward Hines Jr. Veterans Administration Hospital, Hines, IL, United States
| | - Theresa Sukal-Moulton
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Ravera EP, Rozumalski A. Selective dorsal rhizotomy and its effect on muscle force during walking: A comprehensive study. J Biomech 2024; 164:111968. [PMID: 38325195 DOI: 10.1016/j.jbiomech.2024.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/03/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Selective dorsal rhizotomy (SDR) is commonly used to permanently reduce spasticity in children with cerebral palsy (CP). However, studies have yielded varying results regarding muscle strength and activity after SDR. Some studies indicate weakness or no changes, while a recent study using NMSK simulations demonstrates improvements in muscle forces during walking. These findings suggest that SDR may alleviate spasticity, reducing dynamic muscle constraints and enhancing muscle force without altering muscle activity during walking in children with CP. In this study, we combined NMSK simulations with physical examinations to assess children with CP who underwent SDR, comparing them to well-matched peers who did not undergo the procedure. Each group (SDR and No-SDR) included 81 children, with pre- and post-SDR assessments. Both groups were well-matched in terms of demographics, clinical characteristics, and gait parameters. The results of the physical examination indicate that SDR significantly reduces spasticity without impacting muscle strength. Furthermore, our findings show no significant differences in gait deviation index improvements and walking speed between the two groups. Additionally, there were no statistically significant changes in muscle activity during walking before and after SDR for both groups. NMSK results demonstrate a significant increase in muscle force in the semimembranosus and calf muscles during walking, compared to children with CP who received other clinical treatments. Our findings confirm that although SDR does not significantly impact muscle strength compared to other treatments, it creates a more favorable dynamic environment for suboptimal muscle force production, which is essential for walking.
Collapse
Affiliation(s)
- Emiliano Pablo Ravera
- Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina; Human Movement Research Laboratory, School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina.
| | - Adam Rozumalski
- The James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN, United States of America.
| |
Collapse
|
7
|
Kaya Keles CS, Ates F. How mechanics of individual muscle-tendon units define knee and ankle joint function in health and cerebral palsy-a narrative review. Front Bioeng Biotechnol 2023; 11:1287385. [PMID: 38116195 PMCID: PMC10728775 DOI: 10.3389/fbioe.2023.1287385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
This study reviews the relationship between muscle-tendon biomechanics and joint function, with a particular focus on how cerebral palsy (CP) affects this relationship. In healthy individuals, muscle size is a critical determinant of strength, with muscle volume, cross-sectional area, and moment arm correlating with knee and ankle joint torque for different isometric/isokinetic contractions. However, in CP, impaired muscle growth contributes to joint pathophysiology even though only a limited number of studies have investigated the impact of deficits in muscle size on pathological joint function. As muscles are the primary factors determining joint torque, in this review two main approaches used for muscle force quantification are discussed. The direct quantification of individual muscle forces from their relevant tendons through intraoperative approaches holds a high potential for characterizing healthy and diseased muscles but poses challenges due to the invasive nature of the technique. On the other hand, musculoskeletal models, using an inverse dynamic approach, can predict muscle forces, but rely on several assumptions and have inherent limitations. Neither technique has become established in routine clinical practice. Nevertheless, identifying the relative contribution of each muscle to the overall joint moment would be key for diagnosis and formulating efficient treatment strategies for patients with CP. This review emphasizes the necessity of implementing the intraoperative approach into general surgical practice, particularly for joint correction operations in diverse patient groups. Obtaining in vivo data directly would enhance musculoskeletal models, providing more accurate force estimations. This integrated approach can improve the clinicians' decision-making process and advance treatment strategies by predicting changes at the muscle and joint levels before interventions, thus, holding the potential to significantly enhance clinical outcomes.
Collapse
|
8
|
Veerkamp K, Carty CP, Waterval NFJ, Geijtenbeek T, Buizer AI, Lloyd DG, Harlaar J, van der Krogt MM. Predicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia. J Appl Biomech 2023; 39:334-346. [PMID: 37532263 DOI: 10.1123/jab.2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 08/04/2023]
Abstract
Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.
Collapse
Affiliation(s)
- Kirsten Veerkamp
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD,Australia
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD,Australia
- Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD,Australia
| | - Christopher P Carty
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD,Australia
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD,Australia
- Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD,Australia
- Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, QLD,Australia
| | - Niels F J Waterval
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam,The Netherlands
| | - Thomas Geijtenbeek
- Department of Biomechanical Engineering, Delft University of Technology, Delft,The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam,The Netherlands
| | - David G Lloyd
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD,Australia
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD,Australia
- Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD,Australia
| | - Jaap Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft,The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus Medical Center, Rotterdam,The Netherlands
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
| |
Collapse
|
9
|
Kruse A, Habersack A, Weide G, Jaspers RT, Svehlik M, Tilp M. Eight weeks of proprioceptive neuromuscular facilitation stretching and static stretching do not affect muscle-tendon properties, muscle strength, and joint function in children with spastic cerebral palsy. Clin Biomech (Bristol, Avon) 2023; 107:106011. [PMID: 37329655 DOI: 10.1016/j.clinbiomech.2023.106011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND While the effect of static stretching for individuals with cerebral palsy is questionable, recent results suggest that the combination with activation seems promising to improve muscle-tendon properties and function. Therefore, this study analyzed the effects of 8-week proprioceptive neuromuscular facilitation stretching on the gastrocnemius medialis muscle-tendon properties, muscle strength, and the ankle joint in children with spastic cerebral palsy in comparison to static stretching. METHODS Initially, 24 children with spastic cerebral palsy were randomly assigned to a static stretching (10.7 ± 1.8 years) or proprioceptive neuromuscular facilitation stretching group (10.9 ± 2.6 years). Plantar flexors were manually stretched at home for 300 s and ∼ 250-270 s per day four times a week for eight weeks, respectively. Assessments of ankle joint function (e.g., range of motion), muscle-tendon properties, and isometric muscle strength were conducted using 3D motion capture, 2D ultrasound, dynamometry, and electromyography. A mixed analysis of variance was used for the statistical analysis. FINDINGS Stretching adherence was high in the proprioceptive neuromuscular facilitation stretching (93.1%) and static stretching group (94.4%). No significant changes (p > 0.05) were observed in ankle joint function, muscle-tendon properties, and isometric muscle strength after both interventions. Moreover, no differences (p > 0.05) were found between the stretching techniques. INTERPRETATION The findings support the idea that manual stretching (neither proprioceptive neuromuscular facilitation stretching nor static stretching) performed in isolation for eight weeks may not be appropriate to evoke significant changes in muscle-tendon properties, voluntary muscle strength, or joint function in children with spastic cerebral palsy. CLINICAL TRIAL REGISTRATION NUMBER NCT04570358.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria.
| | - Andreas Habersack
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria; Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Guido Weide
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Richard T Jaspers
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Martin Svehlik
- Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
10
|
Ebrahimi A, Martin JA, Schwartz MH, Novacheck TF, Thelen DG. American Society of Biomechanics Clinical Biomechanics Award 2021: Redistribution of muscle-tendon work in children with cerebral palsy who walk in crouch. Clin Biomech (Bristol, Avon) 2023; 102:105871. [PMID: 36701840 PMCID: PMC10017182 DOI: 10.1016/j.clinbiomech.2023.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous study showed the triceps surae exhibits spring-like behavior about the ankle during walking in children with cerebral palsy. Thus, the work generated by the triceps surae is diminished relative to typically developing children. This study investigated whether the quadriceps offset the lack of triceps surae work production in children with cerebral palsy who walk in crouch. METHODS Seven children with cerebral palsy (8-16 yrs) and 14 typically developing controls (8-17 yrs) walked overground at their preferred speed in a motion analysis laboratory. Shear wave tensiometers were used to track patellar and Achilles tendon loading throughout the gait cycle. Tendon force measures were coupled with muscle-tendon kinematic estimates to characterize the net work generated by the quadriceps and triceps surae about the knee and ankle, respectively. FINDINGS Children with cerebral palsy generated significantly less triceps surae work when compared to controls (P < 0.001). The reverse was true at the knee. Children with cerebral palsy generated positive net work from the quadriceps about the knee, which exceeded the net quadriceps work generated by controls (P = 0.028). INTERPRETATION There was a marked difference in functional behavior of the triceps surae and quadriceps in children with cerebral palsy who walk in crouch. In particular, the triceps surae of children with cerebral palsy exhibited spring-like behavior about the ankle while the quadriceps exhibited more motor-like behavior about the knee. This redistribution in work could partly be associated with the elevated energetic cost of walking in children with cerebral palsy and is relevant to consider when planning treatments to correct crouch gait.
Collapse
Affiliation(s)
| | | | - Michael H Schwartz
- Gillette Children's, St. Paul, MN, USA; University of Minnesota, Minneapolis, MN, USA
| | - Tom F Novacheck
- Gillette Children's, St. Paul, MN, USA; University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
11
|
Brendecke E, Tsitlakidis S, Götze M, Hagmann S, Ates F. Quantifying the effects of achilles tendon lengthening surgery: An intraoperative approach. Front Physiol 2023; 14:1143292. [PMID: 36950296 PMCID: PMC10025307 DOI: 10.3389/fphys.2023.1143292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Achilles tendon lengthening (ATL) is frequently used in the treatment of foot deformities. However, there is currently no objective method to determine the optimal muscle length during surgery. We developed an intraoperative approach to evaluate the passive and active forces of the triceps surae muscle group before and after ATL and aimed to test the following hypotheses: 1) the ankle passive range of motion (ROM) increases, 2) passive muscle forces decrease post-ATL, and 3) forces measured from patients with non-neurological and neurological conditions demonstrate different characteristics. Passive forces at various ankle joint positions were measured in ten patients (11.3 ± 3.0 years old) pre- and post-ATL using a force transducer attached to the Achilles tendon. In six patients, active isometric forces were measured by stimulating the triceps surae supramaximally. Passive forces decreased by 94.3% (p < 0.0001), and ROM increased by 89.4% (p < 0.0001) post-ATL. The pre-ATL passive forces were 70.8% ± 15.1% lower in patients with idiopathic foot deformities than in patients with neurological conditions (p < 0.001). The peak active force of 209.8 ± 114.3 N was achieved at an ankle angle of 38.3° ± 16.0°, where the passive force was 6.3 ± 6.7 N. The inter-individual variability was substantial in both groups. In conclusion, the hypotheses posed were supported. The present findings suggest that muscle passive and active force production as well as the inter-individual variability should be considered when planning further treatment.
Collapse
Affiliation(s)
- Elena Brendecke
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
| | - Stefanos Tsitlakidis
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Götze
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Filiz Ates
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Filiz Ates,
| |
Collapse
|
12
|
Ebrahimi A, Schwartz MH, Martin JA, Novacheck TF, Thelen DG. Atypical triceps surae force and work patterns underlying gait in children with cerebral palsy. J Orthop Res 2022; 40:2763-2770. [PMID: 35212418 PMCID: PMC9402799 DOI: 10.1002/jor.25307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/25/2021] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to quantitatively assess Achilles tendon mechanical behavior during gait in children with cerebral palsy (CP). We used a newly designed noninvasive sensor to measure Achilles tendon force in 11 children with CP (4F, 8-16 years old) and 15 typically developing children (controls) (9F, 8-17 years old) during overground walking. Mechanical work loop plots (force-displacement plots) were generated by combining muscle-tendon kinetics, kinematics, and EMG activity to evaluate the Achilles tendon work generated about the ankle. Work loop patterns in children with CP were substantially different than those seen in controls. Notably, children with CP showed significantly diminished work production at their preferred speed compared to controls at their preferred speed and slower speeds. Despite testing a heterogeneous population of children with CP, we observed a homogenous spring-like muscle-tendon behavior in these participants. This is in contrast with control participants who used their plantar flexors like a motor during gait. Statement of Clinical Significance: These data demonstrate the potential for using skin-mounted sensors to objectively evaluate muscle contributions to work production in pathological gait.
Collapse
Affiliation(s)
- Anahid Ebrahimi
- Mechanical Engineering DepartmentUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael H. Schwartz
- Center for Gait & Motion AnalysisGillette Children's Specialty HealthcareSt. PaulMinnesotaUSA
| | - Jack A. Martin
- Mechanical Engineering DepartmentUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tom F. Novacheck
- Center for Gait & Motion AnalysisGillette Children's Specialty HealthcareSt. PaulMinnesotaUSA
| | - Darryl G. Thelen
- Mechanical Engineering DepartmentUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
13
|
Personalisation of Plantarflexor Musculotendon Model Parameters in Children with Cerebral Palsy. Ann Biomed Eng 2022; 51:938-950. [PMID: 36380165 PMCID: PMC10122634 DOI: 10.1007/s10439-022-03107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
AbstractNeuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate personalised parameters that capture the mechanical behaviour of the plantarflexors in children with CP and typically developing (TD) children. Ankle angle (using motion capture), torque (using a load-cell), and medial gastrocnemius fascicle lengths (using ultrasound) were measured during slow passive ankle dorsiflexion rotation for thirteen children with spastic CP and thirteen TD children. Per subject, the measured rotation was input to a scaled OpenSim model to simulate the torque and fascicle length output. Musculotendon model parameters were personalised by the best match between simulated and experimental torque–angle and fascicle length-angle curves according to a least-squares fit. Personalised tendon slack lengths were significantly longer and optimal fibre lengths significantly shorter in CP than model defaults and than in TD. Personalised tendon compliance was substantially higher in both groups compared to the model default. The presented method to personalise musculotendon parameters will likely yield more accurate simulations of subject-specific muscle mechanics, to help us understand the effects of altered musculotendon properties in CP.
Collapse
|
14
|
Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins (Basel) 2022; 14:toxins14110772. [PMID: 36356022 PMCID: PMC9692445 DOI: 10.3390/toxins14110772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Spasticity, following the neurological disorder of cerebral palsy (CP), describes a pathological condition, the central feature of which is involuntary and prolonged muscle contraction. The persistent resistance of spastic muscles to stretching is often followed by structural and mechanical changes in musculature. This leads to functional limitations at the respective joint. Focal injection of botulinum toxin type-A (BTX-A) is effectively used to manage spasticity and improve the quality of life of the patients. By blocking acetylcholine release at the neuromuscular junction and causing temporary muscle paralysis, BTX-A aims to reduce spasticity and hereby improve joint function. However, recent studies have indicated some contradictory effects such as increased muscle stiffness or a narrower range of active force production. The potential of these toxin- and atrophy-related alterations in worsening the condition of spastic muscles that are already subjected to changes should be further investigated and quantified. By focusing on the effects of BTX-A on muscle biomechanics and overall function in children with CP, this review deals with which of these goals have been achieved and to what extent, and what can await us in the future.
Collapse
|
15
|
Elnaggar RK, Alghamdi MS, Alenazi AM, Alghadier M, Mahmoud MZ, Elsayed AEA, Hassan IAM, Abonour AA. Mechanical and Morphological Changes of the Plantar Flexor Musculotendinous Unit in Children with Unilateral Cerebral Palsy Following 12 Weeks of Plyometric Exercise: A Randomized Controlled Trial. CHILDREN 2022; 9:children9111604. [PMID: 36360332 PMCID: PMC9688148 DOI: 10.3390/children9111604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
To investigate how plyometric exercise (PLYO-Ex) affects mechanics and morphometrics of the plantar flexor musculotendinous unit in children with unilateral cerebral palsy, 38 participants (aged 10–16 years) were allocated at random to either the PLYO-Ex group (n = 19; received 24 sessions of plyometric muscle loading, conducted 2 times a week for 3 months in succession) or the control group (n = 19; underwent traditional physical therapy for the same frequency and duration). Measurements were taken pre- and post-intervention. Standard ultrasound imaging was applied to evaluate morphometrics of the gastrocnemius muscle and Achilles tendon unit and an isokinetic dynamometer was used to evaluate maximum voluntary isometric plantar flexors contraction (IVCmax). With controlling for pre-treatment values, significant post-treatment changes favoring the PLYO-Ex group were observed for morphological (tendon (p = 0.003, η2p = 0.23) length; belly length (p = 0.001, η2p = 0.27); tendon thickness (p = 0.035, η2p = 0.35); muscle thickness (p = 0.013, η2p = 0.17); fascicle length (p = 0.009, η2p = 0.18); pennation angle (p = 0.015, η2p = 0.16)) and mechanical and material properties (IVCmax (p = 0.009, η2p = 0.18); tendon’s elongation (p = 0.012, η2p = 0.17), stiffness (p = 0.027, η2p = 0.13); stress (p = 0.006, η2p = 0.20); strain (p = 0.004, η2p = 0.21)). In conclusion, plyometric exercise induces significant adaptations within the musculotendinous unit of the plantar flexors in children with unilateral cerebral palsy. These adaptations could improve muscular efficiency and consequently optimize physical/functional performance.
Collapse
Affiliation(s)
- Ragab K. Elnaggar
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Mohammed S. Alghamdi
- Department of Physical Therapy, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqeel M. Alenazi
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Mshari Alghadier
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Mustafa Z. Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Abbas Elbakry A. Elsayed
- Pediatric Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
- Pediatric Department, Faculty of Medicine, Alazhar University, Assiut 71524, Egypt
| | - Ismail Abdelfattah M. Hassan
- Pediatric and Neonatology Specialist, New Medical Center, Royal hospital, Khalifa City, Abu Dhabi 35233, United Arab Emirates
| | - Asmaa A. Abonour
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza 12613, Egypt
| |
Collapse
|
16
|
Greve KR, Joseph CF, Berry BE, Schadl K, Rose J. Neuromuscular electrical stimulation to augment lower limb exercise and mobility in individuals with spastic cerebral palsy: A scoping review. Front Physiol 2022; 13:951899. [PMID: 36111153 PMCID: PMC9468780 DOI: 10.3389/fphys.2022.951899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Neuromuscular Electrical Stimulation (NMES) is an emerging assistive technology applied through surface or implanted electrodes to augment skeletal muscle contraction. NMES has the potential to improve function while reducing the neuromuscular impairments of spastic cerebral palsy (CP). This scoping review examines the application of NMES to augment lower extremity exercises for individuals with spastic CP and reports the effects of NMES on neuromuscular impairments and function in spastic CP, to provide a foundation of knowledge to guide research and development of more effective treatment. Methods: A literature review of Scopus, Medline, Embase, and CINAHL databases were searched from 2001 to 2 November 2021 with identified inclusion and exclusion criteria. Results: Out of 168 publications identified, 33 articles were included. Articles on three NMES applications were identified, including NMES-assisted strengthening, NMES-assisted gait, and NMES for spasticity reduction. NMES-assisted strengthening included the use of therapeutic exercises and cycling. NMES-assisted gait included the use of NMES to improve gait patterns. NMES-spasticity reduction included the use of transcutaneous electrical stimulation or NMES to decrease tone. Thirteen studies investigated NMES-assisted strengthening, eleven investigated therapeutic exercise and demonstrated significant improvements in muscle structure, strength, gross motor skills, walking speed, and functional mobility; three studies investigated NMES-assisted cycling and demonstrated improved gross motor skills and walking distance or speed. Eleven studies investigated NMES-assisted gait and demonstrated improved muscle structure, strength, selective motor control, gross motor skills, and gait mechanics. Seven studies investigated NMES for spasticity reduction, and five of the seven studies demonstrated reduced spasticity. Conclusion: A growing body of evidence supports the use of NMES-assisted strengthening, NMES-assisted gait, and NMES for spasticity reduction to improve functional mobility for individuals with spastic CP. Evidence for NMES to augment exercise in individuals with spastic CP remains limited. NMES protocols and parameters require further clarity to translate knowledge to clinicians. Future research should be completed to provide richer evidence to transition to more robust clinical practice.
Collapse
Affiliation(s)
- Kelly R. Greve
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati, College of Allied Health Sciences, Cincinnati, OH, United States
| | - Christopher F. Joseph
- Department of Physical Therapy, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Blake E. Berry
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati, College of Allied Health Sciences, Cincinnati, OH, United States
| | - Kornel Schadl
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Children’s Health, Stanford, CA, United States
| | - Jessica Rose
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Children’s Health, Stanford, CA, United States
| |
Collapse
|
17
|
Individual muscle force–energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation. J Biomech 2022; 139:111141. [DOI: 10.1016/j.jbiomech.2022.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
18
|
Cha SM, Shin HD, Shin JW. Primary repair of extensor pollicis longus rupture after volar locking plating for distal radial fracture. HAND SURGERY & REHABILITATION 2022; 41:500-507. [DOI: 10.1016/j.hansur.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 12/01/2022]
|
19
|
Handsfield GG, Williams S, Khuu S, Lichtwark G, Stott NS. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 2022; 23:233. [PMID: 35272643 PMCID: PMC8908685 DOI: 10.1186/s12891-022-05110-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy (CP) is caused by a static lesion to the brain occurring in utero or up to the first 2 years of life; it often manifests as musculoskeletal impairments and movement disorders including spasticity and contractures. Variable manifestation of the pathology across individuals, coupled with differing mechanics and treatments, leads to a heterogeneous collection of clinical phenotypes that affect muscles and individuals differently. Growth of muscles in CP deviates from typical development, evident as early as 15 months of age. Muscles in CP may be reduced in volume by as much as 40%, may be shorter in length, present longer tendons, and may have fewer sarcomeres in series that are overstretched compared to typical. Macroscale and functional deficits are likely mediated by dysfunction at the cellular level, which manifests as impaired growth. Within muscle fibres, satellite cells are decreased by as much as 40-70% and the regenerative capacity of remaining satellite cells appears compromised. Impaired muscle regeneration in CP is coupled with extracellular matrix expansion and increased pro-inflammatory gene expression; resultant muscles are smaller, stiffer, and weaker than typical muscle. These differences may contribute to individuals with CP participating in less physical activity, thus decreasing opportunities for mechanical loading, commencing a vicious cycle of muscle disuse and secondary sarcopenia. This narrative review describes the effects of CP on skeletal muscles encompassing substantive changes from whole muscle function to cell-level effects and the effects of common treatments. We discuss growth and mechanics of skeletal muscles in CP and propose areas where future work is needed to understand these interactions, particularly the link between neural insult and cell-level manifestation of CP.
Collapse
Affiliation(s)
- Geoffrey G Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand.
| | - Sîan Williams
- Liggins Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
- School of Allied Health, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Stephanie Khuu
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| | - Glen Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, QLD, St Lucia, 4072, Australia
| | - N Susan Stott
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| |
Collapse
|
20
|
Rivares C, Vignaud A, Noort W, Koopmans B, Loos M, Kalinichev M, Jaspers RT. Glycine receptor subunit-ß -deficiency in a mouse model of spasticity results in attenuated physical performance, growth and muscle strength. Am J Physiol Regul Integr Comp Physiol 2022; 322:R368-R388. [PMID: 35108108 PMCID: PMC9054346 DOI: 10.1152/ajpregu.00242.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spasticity is the most common neurological disorder associated with increased muscle contraction causing impaired movement and gait. The aim of this study was to characterize the physical performance, skeletal muscle function, and phenotype of mice with a hereditary spastic mutation (B6.Cg-Glrbspa/J). Motor function, gait, and physical activity of juvenile and adult spastic mice and the morphological, histological, and mechanical characteristics of their soleus and gastrocnemius medialis muscles were compared with those of their wild-type (WT) littermates. Spastic mice showed attenuated growth, impaired motor function, and low physical activity. Gait of spastic mice was characterized by a typical hopping pattern. Spastic mice showed lower muscle forces, which were related to the smaller physiological cross-sectional area of spastic muscles. The muscle-tendon complex length-force relationship of adult gastrocnemius medialis was shifted toward shorter lengths, which was explained by attenuated longitudinal tibia growth. Spastic gastrocnemius medialis was more fatigue resistant than WT gastrocnemius medialis. This was largely explained by a higher mitochondrial content in muscle fibers and relatively higher percentage of slow-type muscle fibers. Muscles of juvenile spastic mice showed similar differences compared with WT juvenile mice, but these were less pronounced than between adult mice. This study shows that in spastic mice, disturbed motor function and gait is likely to be the result of hyperactivity of skeletal muscle and impaired skeletal muscle growth, which progress with age.
Collapse
Affiliation(s)
- Cintia Rivares
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Wendy Noort
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, the Netherlands
| | | | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Fang Y, Orekhov G, Lerner ZF. Improving the Energy Cost of Incline Walking and Stair Ascent with Ankle Exoskeleton Assistance in Cerebral Palsy. IEEE Trans Biomed Eng 2021; 69:2143-2152. [PMID: 34941495 DOI: 10.1109/tbme.2021.3137447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Many individuals with cerebral palsy (CP) experience gait deficits resulting in metabolically-inefficient ambulation that is exacerbated by graded walking terrains. The primary goal of this study was to clinically-validate the accuracy and efficacy of adaptive ankle exoskeleton assistance during steady-state incline walking and stair ascent in individuals with CP. Exploratory goals were to assess safety and feasibility of using adaptive ankle exoskeleton assistance in real-world mixed-terrain settings. METHODS We used a novel battery-powered ankle exoskeleton to provide adaptive ankle plantar-flexor assistance during stance phase. Seven ambulatory individuals with CP completed the study. RESULTS Adaptive controller accuracy was 85% for incline walking and 81% for stair-stepping relative to the biological ankle moment. Assistance improved energy cost of steady-state incline walking by 14% (p = 0.004) and stair ascent by 21% (p = 0.001) compared to walking without the device. Assistance reduced the muscular demand for the soleus and vastus lateralis during both activities. All participants were able to safely complete the real-world mixed-terrain route, with adaptive ankle assistance resulting in improved outcomes compared to walking with the device providing zero-torque; no group-level differences were found compared to walking without the device, yet individuals with more impairment exhibited a marked improvement. CONCLUSION Adaptive ankle exoskeleton assistance can improve the energy cost of steady-state incline walking and stair ascent in individuals with CP. SIGNIFICANCE As the first study to demonstrate safety and performance benefits of ankle assistance on graded terrains in CP, these findings encourage further investigation in free-living settings.
Collapse
|
22
|
Orekhov G, Fang Y, Cuddeback CF, Lerner ZF. Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton. J Neuroeng Rehabil 2021; 18:163. [PMID: 34758857 PMCID: PMC8579560 DOI: 10.1186/s12984-021-00954-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ankle exoskeletons can improve walking mechanics and energetics, but few untethered devices have demonstrated improved performance and usability across a wide range of users and terrains. Our goal was to design and validate a lightweight untethered ankle exoskeleton that was effective across moderate-to-high intensity ambulation in children through adults with and without walking impairment. METHODS Following benchtop validation of custom hardware, we assessed the group-level improvements in walking economy while wearing the device in a diverse unimpaired cohort (n = 6, body mass = 42-92 kg). We also conducted a maximal exertion experiment on a stair stepping machine in a small cohort of individuals with cerebral palsy (CP, n = 5, age = 11-33 years, GMFCS I-III, body mass = 40-71 kg). Device usability metrics (device don and setup times and System Usability Score) were assessed in both cohorts. RESULTS There was a 9.9 ± 2.6% (p = 0.012, range = 0-18%) reduction in metabolic power during exoskeleton-assisted inclined walking compared to no device in the unimpaired cohort. The cohort with CP was able to ascend 38.4 ± 23.6% (p = 0.013, range = 3-132%) more floors compared to no device without increasing metabolic power (p = 0.49) or perceived exertion (p = 0.50). Users with CP had mean device don and setup times of 3.5 ± 0.7 min and 28 ± 6 s, respectively. Unimpaired users had a mean don time of 1.5 ± 0.2 min and setup time of 14 ± 1 s. The average exoskeleton score on the System Usability Scale was 81.8 ± 8.4 ("excellent"). CONCLUSIONS Our battery-powered ankle exoskeleton was easy to use for our participants, with initial evidence supporting effectiveness across different terrains for unimpaired adults, and children and adults with CP. Trial registration Prospectively registered at ClinicalTrials.gov (NCT04119063) on October 8, 2019.
Collapse
Affiliation(s)
- Greg Orekhov
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGR Bldg 69, Flagstaff, AZ, 86011, USA
| | - Ying Fang
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGR Bldg 69, Flagstaff, AZ, 86011, USA
| | - Chance F Cuddeback
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGR Bldg 69, Flagstaff, AZ, 86011, USA
| | - Zachary F Lerner
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGR Bldg 69, Flagstaff, AZ, 86011, USA.
- College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, USA.
| |
Collapse
|
23
|
Harkness‐Armstrong C, Maganaris C, Walton R, Wright DM, Bass A, Baltzopoulos V, O’Brien TD. Muscle architecture and passive lengthening properties of the gastrocnemius medialis and Achilles tendon in children who idiopathically toe-walk. J Anat 2021; 239:839-846. [PMID: 34109625 PMCID: PMC8450476 DOI: 10.1111/joa.13464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
Children who idiopathically toe-walk (ITW) habitually operate at greater plantarflexion angles and thus, at shorter muscle-tendon unit (MTU) lengths than typically developing (TD) children. Therefore, it is often assumed that habitual use of the gastrocnemius muscle in this way will cause remodelling of the muscle-tendon architecture compared to TD children. However, the gastrocnemius muscle architecture of children who ITW has never been measured. It is essential that we gain a better understanding of these muscle-tendon properties, to ensure that appropriate clinical interventions can be provided for these children. Five children who ITW (age 8 ± 2 years) and 14 TD children (age 10 ± 2 years) participated in this study. Ultrasound was combined with isokinetic dynamometry and surface electromyography, to measure muscle architecture at common positions and passive lengthening properties of the gastrocnemius muscle and tendon across full range of motion. Regardless of which common condition groups were compared under, both the absolute and normalised to MTU muscle belly and fascicle lengths were always longer, and the Achilles tendon length was always shorter in children who ITW than TD children (p < 0.05; large effect sizes). The passive lengthening properties of the muscle and tendon were not different between groups (p > 0.05); however, passive joint stiffness was greater in children who ITW at maximum dorsiflexion (p = 0.001) and at a joint moment common to all participants (p = 0.029). Consequently, the findings of this pilot study indicate a remodelling of the relative MTU that does not support the concept that children who ITW commonly experience muscle shortening. Therefore, greater consideration of the muscle and tendon properties are required when prescribing clinical interventions that aim to lengthen the MTU, and treatments may be better targeted at the Achilles tendon in children who ITW.
Collapse
Affiliation(s)
| | - Constantinos Maganaris
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Roger Walton
- Alder Hey Children’s NHS Foundation TrustLiverpoolUK
| | | | - Alfie Bass
- Alder Hey Children’s NHS Foundation TrustLiverpoolUK
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Thomas D. O’Brien
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
24
|
Stafilidis S, Kopper-Zisser C. Ankle joint rotation and exerted moment during plantarflexion dependents on measuring- and fixation method. PLoS One 2021; 16:e0253015. [PMID: 34464390 PMCID: PMC8407569 DOI: 10.1371/journal.pone.0253015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
We examined the effect of ankle joint fixation vs increased foot pressure (aiming to reduce dynamometer-subject elasticity (DSE)) on the exerted moment during plantarflexion contraction. We also examined the joint rotation in dependence of the measuring site (forefoot, rearfoot) and the foot condition (fixed, free). We hypothesized higher exerted moments due to reduced DSE compared to fixed condition and an effect of fixation on the joint rotation in dependence of the measuring site. Fourteen healthy individuals (28.7±6.9y) completed in randomized order maximal isometric plantarflexions in four different positions (0-3-6-9 cm) and two ankle joint conditions (fixed-free). Kinematics of the rear- and forefoot were obtained synchronously. We found higher moment in the fixed compared to the free condition at all positions. The maximum moment in the fixed condition did not differ at any position. At the fixed condition, the forefoot rotation did not differ at any position (~5°) while at free condition we observed a significant rotation reduction (form ~12 to ~5°). The rearfoot rotation did not differ between conditions at any position while a significant joint angle reduction was observed (~10 to ~6° and ~12 to ~6°; fixed-free respectively). The results indicate that with appropriate foot fixation the maximum moment can be achieved irrespective of the position. With the foot secured, the measuring site influences the rotational outcome. We suggest that for a minimization of the joint rotation a fixation and the forefoot-measuring site should be preferred. Additionally, for unconstrained foot kinematic observations both measuring sites can be obtained.
Collapse
Affiliation(s)
- Savvas Stafilidis
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Institute of Sport Science, Sport, University of Vienna, Vienna, Austria
- * E-mail:
| | - Carina Kopper-Zisser
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Institute of Sport Science, Sport, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Brierty A, Walsh HPJ, Jeffries P, Graham D, Horan S, Carty C. Dynamic muscle-tendon length following zone 2 calf lengthening surgery in two populations with equinus gait: Idiopathic Toe Walkers and Cerebral Palsy. Clin Biomech (Bristol, Avon) 2021; 84:105323. [PMID: 33770533 DOI: 10.1016/j.clinbiomech.2021.105323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Two populations commonly presenting with equinus gait are Idiopathic Toe-Walkers and children with Cerebral Palsy. Surgical intervention to treat equinus is defined by three zones. Zone three surgery, performed at the Achilles tendon, is most commonly used clinically. There is however, evidence from simulation studies that zone two surgery, performed at the muscle belly, might provide better functional outcomes. The purpose of this study was to investigate the effect of zone two calf-lengthening on post-operative gait in these populations. METHODS A retrospective audit of the Queensland Children's Motion Analysis Service database identified 17 toe-walkers (mean age 10.13 (SD 2.625)) and 11 Cerebral Palsy (mean age 9.72 (SD 4.04)) participants that received calf-lengthening surgery for plantarflexion contracture and had pre- and post-surgery 3D gait analysis. Inverse kinematics, dynamics, and muscle analysis were performed in OpenSim (v3.3) using a modified gait2392 model. Pre to post-surgery comparisons were performed in MATLAB using statistical parametric mapping. Dependent variables included ankle kinematics, powers and muscle-tendon length estimates. FINDINGS The primary outcome of this study was that ankle dorsiflexion increased in both Idiopathic Toe Walking and Cerebral Palsy groups post-calf lengthening across 90% and 85% of the gait cycle respectively. There was an increase in modelled muscle-tendon lengths, specifically in the medial gastrocnemius, of 78% (toe-walkers), and 100% (Cerebral Palsy) of the gait cycle. Power generation during push-off was not affected. INTERPRETATION Overall, the results appear to support the efficacy of zone 2 calf-lengthening for children with Cerebral Palsy and Idiopathic Toe Walking.
Collapse
Affiliation(s)
- Alexis Brierty
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Parklands Dr, Southport, QLD 4215, Australia; Queensland Children's Motion Analysis Service (QCMAS), Children's Health Queensland Hospital and Health Service, 62 Graham St, South Brisbane, QLD 4101, Australia.
| | - Henry Patrick John Walsh
- Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia
| | - Paula Jeffries
- Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia
| | - David Graham
- Department of Health and Human Development, Montana State University, 250 Reid Hall, Bozeman, MT 59717, United States
| | - Sean Horan
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Parklands Dr, Southport, QLD 4215, Australia
| | - Chris Carty
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Parklands Dr, Southport, QLD 4215, Australia; Queensland Children's Motion Analysis Service (QCMAS), Children's Health Queensland Hospital and Health Service, 62 Graham St, South Brisbane, QLD 4101, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia
| |
Collapse
|
26
|
O'Brien SM, Carroll TJ, Barber LA, Lichtwark GA. Plantar flexor voluntary activation capacity, strength and function in cerebral palsy. Eur J Appl Physiol 2021; 121:1733-1741. [PMID: 33687530 DOI: 10.1007/s00421-021-04638-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Distal lower limb motor impairment impacts gait mechanics in individuals with cerebral palsy (CP), however, the contribution of impairments of muscle activation to reduced gross motor function (GMF) is not clear. This study aimed to investigate deficits in plantar flexion voluntary activation capacity in CP compared to typically developed (TD) peers, and evaluate relationships between voluntary activation capacity, strength and GMF. METHODS Fifteen ambulant individuals with spastic CP (23 ± 6 years, GMFCS I-III) and 14 TD (22 ± 2 years) people participated. Plantar- and dorsiflexion strength were assessed with a dynamometer. Voluntary activation capacity was assessed using the interpolated twitch technique via single twitch supramaximal tibial nerve stimulation. GMF was assessed using the timed upstairs test, 10 m walk test, muscle power sprint test and six-minute walk test. RESULTS Plantar- and dorsiflexion strength were 55.6% and 60.7% lower in CP than TD (p < 0.001). Although voluntary activation capacity was 17.9% lower on average for CP than TD (p = 0.039), 46.7% of individuals with CP achieved a sufficiently high activation to fall within one standard deviation of the TD mean. Plantar flexion voluntary activation capacity did not correlate with strength (R2 = 0.092, p = 0.314) or GMF measures in the high functioning CP group (GMFCS I-II). CONCLUSION In contrast to previous research, plantar flexion activation capacity did not strongly predict weakness or reduced GMF. We propose that muscle size contributes more to weakness than voluntary activation capacity in high functioning individuals with CP and that relationships between muscle activation and functional capacity are complicated by effects at multiple joints.
Collapse
Affiliation(s)
- Shari M O'Brien
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia. .,Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Australia.
| | - Timothy J Carroll
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia.,Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Australia
| | - Lee A Barber
- School of Allied Health Sciences, Griffith University, Brisbane, Australia.,Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia.,Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Is there a relationship between muscle-tendon properties and a variety of functional tasks in children with spastic cerebral palsy? Gait Posture 2021; 85:14-19. [PMID: 33487525 DOI: 10.1016/j.gaitpost.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cerebral palsy (CP) is the most common motor and movement disability in childhood. The mechano-morphological alterations of the spastic muscle itself as well as the functional limitations in CP are well documented. However, the relationship between muscle tendon properties and functional tests in CP remains unknown. RESEARCH QUESTION The aim of this study was to explore the relationship between spastic muscle mechano-morphological properties and functional performance in children with CP. METHODS This study included retrospective data from 22 children with spastic cerebral palsy with a mean age of 12.8 years (19 GMFCS I/3 GMFC II, 15 male/7 female, 8 unilateral involved/14 bilateral). Mechano-morphological properties of gastrocnemius (GM) and Achilles tendon (AT) were correlated with a variety of functional measures, maximal isometric strength, the Muscle Power Sprint test (MPST), 6-minute walk test (6MWT) and 3D-gait analysis using the Pearson Coefficient. RESULTS Muscle-tendon properties were normalized to remove anthropometric dimensions because of strong associations with anthropometric data. Higher isometric muscle strength was related to longer normalized GM fascicle lengths (r = 0.67, p < 0.01). The distance reached in the 6MWT positively correlated with normalized GM fascicle lengths (r = 0.61, p < 0.01). Higher AT stiffness was associated with faster performance in the MPST (r = 0.77, p < 0.01). Finally, there was an association between ankle power and both longer normalized AT length and shorter muscle belly (r = 0.60 and r = 0.54, p < 0.01). SIGNIFICANCE The findings of this study give more insight into the function specific adaptations of a spastic muscle-tendon unit. While walking, assessed through the 6MWT, was related to normalized gastrocnemius fascicle length, sprint performance was associated with an increased AT stiffness. These results provide a better understanding of the relationship between functional tasks and spastic muscle-tendon properties, which offers potential for improved and targeted interventions in CP.
Collapse
|
28
|
ARSLAN YUNUSZIYA, KARABULUT DERYA. SENSITIVITY OF MODEL-PREDICTED MUSCLE FORCES OF PATIENTS WITH CEREBRAL PALSY TO VARIATIONS IN MUSCLE-TENDON PARAMETERS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational musculoskeletal modeling and simulation platforms are efficient tools to gain insight into the muscular coordination of patients with motor disabilities such as cerebral palsy (CP). Muscle force predictions from simulation programs are influenced by the architectural and contractile properties of muscle-tendon units. In this study, we aimed to evaluate the sensitivity of major lower limb muscle forces in patients with CP to changes in muscle-tendon parameters. Open-access datasets of children with CP ([Formula: see text]) and healthy children ([Formula: see text]) were considered. Monte Carlo analysis was executed to specify how sensitive the muscle forces to perturbations between [Formula: see text]% and [Formula: see text]% of the nominal value of the maximum isometric muscle force, optimal muscle fiber length, muscle pennation angle, tendon slack length, and maximum contraction velocity of muscle. The sensitivity analysis revealed that muscle forces of CP patients and healthy individuals were most sensitive to perturbations in the tendon slack length ([Formula: see text]), while forces of CP patients were more sensitive to tendon slack length when compared to the healthy group ([Formula: see text]). Muscle forces of patients and healthy individuals were insensitive to the other four parameters ([Formula: see text]), except for the gracilis and sartorius muscles in which the proportion of optimal muscle fiber length to tendon slack length is higher than 1; forces of these two muscles were also sensitive to the optimal muscle fiber length. The results of this study are expected to contribute to our understanding of which parameters should be personalized when conducting musculoskeletal modeling and simulation of patients with CP.
Collapse
Affiliation(s)
- YUNUS ZIYA ARSLAN
- Department of Robotics and Intelligent Systems, The Institute of the Graduate Studies in Science and Engineering, Turkish-German University, Beykoz, Istanbul 34820, Turkey
| | - DERYA KARABULUT
- Department of Mechanical Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
29
|
Pingel J, Kampmann ML, Andersen JD, Wong C, Døssing S, Børsting C, Nielsen JB. Gene expressions in cerebral palsy subjects reveal structural and functional changes in the gastrocnemius muscle that are closely associated with passive muscle stiffness. Cell Tissue Res 2021; 384:513-526. [PMID: 33515289 DOI: 10.1007/s00441-020-03399-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023]
Abstract
Cerebral palsy (CP) is a non-progressive motor disorder that affects posture and gait due to contracture development. The purpose of this study is to analyze a possible relation between muscle stiffness and gene expression levels in muscle tissue of children with CP. Next-generation sequencing (NGS) of gene transcripts was carried out in muscle biopsies from gastrocnemius muscle (n = 13 children with CP and n = 13 typical developed (TD) children). Passive stiffness of the ankle plantarflexors was measured. Structural changes of the basement membranes and the sarcomere length were measured. Twelve pre-defined gene target sub-categories of muscle function, structure and metabolism showed significant differences between muscle tissue of CP and TD children. Passive stiffness was significantly correlated to gene expression levels of HSPG2 (p = 0.02; R2 = 0.67), PRELP (p = 0.002; R2 = 0.84), RYR3 (p = 0.04; R2 = 0.66), C COL5A3 (p = 0.0007; R2 = 0.88), ASPH (p = 0.002; R2 = 0.82) and COL4A6 (p = 0.03; R2 = 0.97). Morphological differences in the basement membrane were observed between children with CP and TD children. The sarcomere length was significantly increased in children with CP when compared with TD (p = 0.04). These findings show that gene targets in the categories: calcium handling, basement membrane and collagens, were significantly correlated to passive muscle stiffness. A Reactome pathway analysis showed that pathways involved in DNA repair, ECM proteoglycans and ion homeostasis were amongst the most upregulated pathways in CP, while pathways involved in collagen fibril crosslinking, collagen fibril assembly and collagen turnover were amongst the most downregulated pathways when compared with TD children. These results underline that contracture formation and motor impairment in CP is an interplay between multiple factors.
Collapse
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Christian Wong
- Department of Orthopedic Surgery, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | - Simon Døssing
- Institute of Sports Medicine, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg, 2400, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.,Institute of Sports Medicine, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg, 2400, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Helene Elsass Center, Research & Development, 2920, Charlottenlund, Denmark
| |
Collapse
|
30
|
Pingel J, Pacolet A, Elfving B, Ledri LN. Intramuscular BoNT/A injections cause an inflammatory response in the muscle tissue of rats. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211039942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives The purpose of the present study was to investigate whether intramuscular BoNT/A injections cause an systemic inflammatory response and a local inflammatory response in the muscle tissue. Methods Thirty-two male Sprague Dawley rats treated with BoNT/A (i.m., 1IU) were divided in four groups, depending on the time of BoNT/A injection (2 days before, 1, 2, and 4 weeks before the experiment). Bio-Plex Pro Rat Cytokine 23-plex Multiplex Assay (Bio-Rad, USA). Results Systemic inflammation: 17 cytokines (IL1-α ( p = 0.005), IL-1β ( p = 0.01), IL-2 ( p = 0.04), IL-4 ( p = 0.03), IL-6 ( p = 0.03), IL-10 ( p = 0.02), IL12(p70) ( p = 0.03), IL-13 ( p = 0.04), IL-17 ( p = 0.03), GM-CSF ( p = 0.03), INF-γ ( p = 0.03), MIP-1α ( p = 0.03), MIP-3α ( p = 0.04), RANTES ( p = 0.001), TNF-α ( p = 0.04), vascular endothelial growth factor ( p = 0.03), and MCP-1 ( p = 0.02)) showed significantly higher expression levels 2 days after intramuscular BoNT/A injections compared to other time points (1, 2, and 4 weeks). Local inflammation: 12 cytokines (IL-1β ( p = 0.02), IL-6 ( p = 0.002), IL-10 ( p = 0.02), IL-13 ( p = 0.04), IL-17 ( p = 0.02), TNF-α ( p = 0.001), GM-CSF ( p = 0.01), M-CSF ( p = 0.04), MIP-1α ( p = 0.04), MIP-3α ( p = 0.002), RANTES ( p = 0.02), and MCP-1( p = 0.004)) showed higher expression levels 2 and/or 4 weeks after intramuscular BoNT/A injections compared to the other time points (2 days and 1 week). Conclusion Intramuscular BoNT/A injections result in a rapid systemic inflammatory response that only lasts a couple of days. At the same time, intramuscular BoNT/A injections cause an inflammatory response locally in the muscle with significantly higher cytokine levels 2 and/or 4 weeks after injections.
Collapse
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Pacolet
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Litsa N Ledri
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
The mechanisms of adaptation for muscle fascicle length changes with exercise: Implications for spastic muscle. Med Hypotheses 2020; 144:110199. [PMID: 33254508 DOI: 10.1016/j.mehy.2020.110199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/23/2022]
Abstract
We are proposing optimal training conditions that can lead to an increase in the number of serial sarcomeres (SSN) and muscle fascicle length (FL) in spastic muscles. Therapeutic interventions for increasing FL in clinical populations with neurological origin, in whom relative shortness of muscle fascicles contributed to the presentation of symptoms such as spasticity, contracture, and limited functional abilities, do not generally meet these conditions, and therefore, result in less than satisfactory outcomes. Based on a review of literature, we argue that protocols of exercise interventions that led to sarcomerogenesis, and increases in SSN and FL in healthy animal and human models satisfied three criteria: 1) all involved eccentric exercise at appropriately high velocity; 2) resulted in positive strain of muscle fascicles; and 3) momentary deactivation in the stretched muscle. Accordingly, to increase FL in spastic muscles, new exercise protocols in which the three presumed criteria are satisfied, must be developed, and long-term muscle architectural and functional adaptations to such trainings must be examined.
Collapse
|
32
|
Zhou GQ, Huo EZ, Yuan M, Zhou P, Wang RL, Wang KN, Chen Y, He XP. A Single-Shot Region-Adaptive Network for Myotendinous Junction Segmentation in Muscular Ultrasound Images. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2531-2542. [PMID: 32167889 DOI: 10.1109/tuffc.2020.2979481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tracking the myotendinous junction (MTJ) in consecutive ultrasound images is crucial for understanding the mechanics and pathological conditions of the muscle-tendon unit. However, the lack of reliable and efficient identification of MTJ due to poor image quality and boundary ambiguity restricts its application in motion analysis. In recent years, with the rapid development of deep learning, the region-based convolution neural network (RCNN) has shown great potential in the field of simultaneous objection detection and instance segmentation in medical images. This article proposes a region-adaptive network (RAN) to localize MTJ region and to segment it in a single shot. Our model learns about the salient information of MTJ with the help of a composite architecture. Herein, a region-based multitask learning network explores the region containing MTJ, while a parallel end-to-end U-shaped path extracts the MTJ structure from the adaptively selected region for combating data imbalance and boundary ambiguity. By demonstrating the ultrasound images of the gastrocnemius, we showed that the RAN achieves superior segmentation performance when compared with the state-of-the-art Mask RCNN method with an average Dice score of 80.1%. Our proposed method is robust and reliable for advanced muscle and tendon function examinations obtained by ultrasound imaging.
Collapse
|
33
|
Weide G, Huijing PA, Bar-On L, Sloot L, Buizer AI, Becher JG, Harlaar J, Jaspers RT. Gastrocnemius Medialis Muscle Geometry and Extensibility in Typically Developing Children and Children With Spastic Paresis Aged 6-13 Years. Front Physiol 2020; 11:528522. [PMID: 33329011 PMCID: PMC7719761 DOI: 10.3389/fphys.2020.528522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Gait of children with spastic paresis (SP) is frequently characterized by a reduced ankle range of motion, presumably due to reduced extensibility of the triceps surae (TS) muscle. Little is known about how morphological muscle characteristics in SP children are affected. The aim of this study was to compare gastrocnemius medialis (GM) muscle geometry and extensibility in children with SP with those of typically developing (TD) children and assess how GM morphology is related to its extensibility. Thirteen children with SP, of which 10 with a diagnosis of spastic cerebral palsy and three with SP of unknown etiology (mean age 9.7 ± 2.1 years; GMFCS: I-III), and 14 TD children (mean age 9.3 ± 1.7 years) took part in this study. GM geometry was assessed using 3D ultrasound imaging at 0 and 4 Nm externally imposed dorsal flexion ankle moments. GM extensibility was defined as its absolute length change between the externally applied 0 and 4 Nm moments. Anthropometric variables and GM extensibility did not differ between the SP and TD groups. While in both groups, GM muscle volume correlated with body mass, the slope of the regression line in TD was substantially higher than that in SP (TD = 3.3 ml/kg; SP = 1.3 ml/kg, p < 0.01). In TD, GM fascicle length increased with age, lower leg length and body mass, whereas in SP children, fascicle length did not correlate with any of these variables. However, the increase in GM physiological cross-sectional area as a function of body mass did not differ between SP and TD children. Increases in lengths of tendinous structures in children with SP exceeded those observed in TD children (TD = 0.85 cm/cm; SP = 1.16 cm/cm, p < 0.01) and even exceeded lower-leg length increases. In addition, only for children with SP, body mass (r = -0.61), height (r = -0.66), muscle volume (r = - 0.66), physiological cross-sectional area (r = - 0.59), and tendon length (r = -0.68) showed a negative association with GM extensibility. Such negative associations were not found for TD children. In conclusion, physiological cross-sectional area and length of the tendinous structures are positively associated with age and negatively associated with extensibility in children with SP.
Collapse
Affiliation(s)
- Guido Weide
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter A. Huijing
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lizeth Sloot
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Annemieke I. Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jules G. Becher
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Hösl M, Kruse A, Tilp M, Svehlik M, Böhm H, Zehentbauer A, Arampatzis A. Impact of Altered Gastrocnemius Morphometrics and Fascicle Behavior on Walking Patterns in Children With Spastic Cerebral Palsy. Front Physiol 2020; 11:518134. [PMID: 33178029 PMCID: PMC7597072 DOI: 10.3389/fphys.2020.518134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Spastic cerebral palsy (SCP) affects neural control, deteriorates muscle morphometrics, and may progressively impair functional walking ability. Upon passive testing, gastrocnemius medialis (GM) muscle bellies or fascicles are typically shorter, thinner, and less extensible. Relationships between muscle and gait parameters might help to understand gait pathology and pathogenesis of spastic muscles. The current aim was to link resting and dynamic GM morphometrics and contractile fascicle behavior (both excursion and velocity) during walking to determinants of gait. We explored the associations between gait variables and ultrasonography of the GM muscle belly captured during rest and during gait in children with SCP [n = 15, gross motor function classification system (GMFCS) levels I and II, age: 7–16 years] and age-matched healthy peers (n = 17). The SCP children’s plantar flexors were 27% weaker. They walked 12% slower with more knee flexion produced 42% less peak ankle push-off power (all p < 0.05) and 7/15 landed on their forefoot. During the stance phase, fascicles in SCP on average operated on 9% shorter length (normalized to rest length) and displayed less and slower fascicle shortening (37 and 30.6%, respectively) during push-off (all p ≤ 0.024). Correlation analyses in SCP patients revealed that (1) longer-resting fascicles and thicker muscle bellies are positively correlated with walking speed and negatively to knee flexion (r = 0.60–0.69, p < 0.0127) but not to better ankle kinematics; (2) reduced muscle strength was associated with the extent of eccentric fascicle excursion (r = −0.57, p = 0.015); and (3) a shorter operating length of the fascicles was correlated with push-off power (r = −0.58, p = 0.013). Only in controls, a correlation (r = 0.61, p = 0.0054) between slower fascicle shortening velocity and push-off power was found. Our results indicate that a thicker gastrocnemius muscle belly and longer gastrocnemius muscle fascicles may be reasonable morphometric properties that should be targeted in interventions for individuals with SCP, since GM muscle atrophy may be related to decreases in walking speed and undesired knee flexion during gait. Furthermore, children with SCP and weaker gastrocnemius muscle may be more susceptible to chronic eccentric muscle overloading. The relationship between shorter operating length of the fascicles and push-off power may further support the idea of a compensation mechanism for the longer sarcomeres found in children with SCP. Nevertheless, more studies are needed to support our explorative findings.
Collapse
Affiliation(s)
- Matthias Hösl
- Gait and Motion Analysis Laboratory, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Annika Kruse
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Martin Svehlik
- Paediatric Orthopaedics Unit, Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Harald Böhm
- Gait Laboratory, Orthopedic Children's Hospital Aschau, Aschau im Chiemgau, Germany
| | - Antonia Zehentbauer
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt University of Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
35
|
Gallinger TL, Fletcher JR, MacIntosh BR. Mechanisms of reduced plantarflexor function in Cerebral palsy: smaller triceps surae moment arm and reduced muscle force. J Biomech 2020; 110:109959. [PMID: 32827781 DOI: 10.1016/j.jbiomech.2020.109959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
Both muscle forces, and moment arm (MA) could contribute to reduced muscle moment in people with Cerebral Palsy (CP). Current reports in CP are conflicting. The tendon travel method of estimating MA requires constant force, but passive force is high and variable in CP, and range of motion is limited. Therefore, the purpose of this study was to examine triceps surae muscle MA in 12 subjects with mild to moderate CP (15-32 years) and 10 typically developing peers (TD, 17-26 years) by tendon travel and by visually measuring the apparent MA. MA was calculated at 90° and at a reference angle (∼106°) with zero net passive moment. The tendon travel (28.8 ± 5.6 mm) and visual methods (29.1 ± 5.5 mm) yielded similar MA in CP (p = 0.94) at the reference angle. TD had significantly larger triceps surae muscle MA than CP subjects (p = 0.002), 35.4 ± 4.1 mm at the reference angle for tendon travel and 35.4 ± 3.6 mm by the visual method. Test/retest revealed less bias (0.8 mm) using the visual method. Calculated active peak isometric force was significantly less in CP (1983.8 ± 887.0 N) than TD (4104.9 ± 1154.9 N, p < 0.001). There are challenges in estimating MA in CP, but the visual method is more reliable. Although a shorter moment arm would reduce the joint moment, joint angular velocity for a given velocity of muscle shortening would be enhanced. Strength training may mitigate the effects of the smaller moment arm and reduced joint moment generated in those with CP.
Collapse
Affiliation(s)
- Tessa L Gallinger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Functional anatomy, histology and biomechanics of the human Achilles tendon — A comprehensive review. Ann Anat 2020; 229:151461. [DOI: 10.1016/j.aanat.2020.151461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
|
37
|
Kalkman BM, Bar-On L, O'Brien TD, Maganaris CN. Stretching Interventions in Children With Cerebral Palsy: Why Are They Ineffective in Improving Muscle Function and How Can We Better Their Outcome? Front Physiol 2020; 11:131. [PMID: 32153428 PMCID: PMC7047287 DOI: 10.3389/fphys.2020.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
Hyper-resistance at the joint is one of the most common symptoms in children with cerebral palsy (CP). Alterations to the structure and mechanical properties of the musculoskeletal system, such as a decreased muscle length and an increased joint stiffness are typically managed conservatively, by means of physiotherapy involving stretching exercises. However, the effectiveness of stretching-based interventions for improving function is poor. This may be due to the behavior of a spastic muscle during stretch, which is poorly understood. The main aim of this paper is to provide a mechanistic explanation as to why the effectiveness of stretching is limited in children with CP and consider clinically relevant means by which this shortcoming can be tackled. To do this, we review the current literature regarding muscle and tendon plasticity in response to stretching in children with CP. First, we discuss how muscle and tendon interact based on their morphology and mechanical properties to provide a certain range of motion at the joint. We then consider the effect of traditional stretching exercises on these muscle and tendon properties. Finally, we examine possible strategies to increase the effectiveness of stretching therapies and we highlight areas of further research that have the potential to improve the outcome of non-invasive interventions in children with cerebral palsy.
Collapse
Affiliation(s)
- Barbara M Kalkman
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, VC University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Thomas D O'Brien
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Constantinos N Maganaris
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
38
|
Falisse A, Pitto L, Kainz H, Hoang H, Wesseling M, Van Rossom S, Papageorgiou E, Bar-On L, Hallemans A, Desloovere K, Molenaers G, Van Campenhout A, De Groote F, Jonkers I. Physics-Based Simulations to Predict the Differential Effects of Motor Control and Musculoskeletal Deficits on Gait Dysfunction in Cerebral Palsy: A Retrospective Case Study. Front Hum Neurosci 2020; 14:40. [PMID: 32132911 PMCID: PMC7040166 DOI: 10.3389/fnhum.2020.00040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 12/05/2022] Open
Abstract
Physics-based simulations of walking have the theoretical potential to support clinical decision-making by predicting the functional outcome of treatments in terms of walking performance. Yet before using such simulations in clinical practice, their ability to identify the main treatment targets in specific patients needs to be demonstrated. In this study, we generated predictive simulations of walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced neuromuscular control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon properties by personalizing Hill-type muscle-tendon parameters based on data collected during functional movements, simpler neuromuscular control by reducing the number of independent muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were the primary cause of the crouch gait pattern observed for this child, which is in agreement with the clinical examination. These results suggest that muscle-tendon properties should be the primary target of interventions aiming to restore an upright gait pattern for this child. This suggestion is in line with the gait analysis following muscle-tendon property and bone deformity corrections. Future work should extend this single case analysis to more patients in order to validate the ability of our physics-based simulations to capture the gait patterns of individual patients pre- and post-treatment. Such validation would open the door for identifying targeted treatment strategies with the aim of designing optimized interventions for neuro-musculoskeletal disorders.
Collapse
Affiliation(s)
| | - Lorenzo Pitto
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Hans Kainz
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Hoa Hoang
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | | | - Sam Van Rossom
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | | | - Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
| | - Ann Hallemans
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Guy Molenaers
- Department of Orthopaedic Surgery, UZ Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Orthopaedic Surgery, UZ Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Ilse Jonkers
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Increasing level of neuromusculoskeletal model personalisation to investigate joint contact forces in cerebral palsy: A twin case study. Clin Biomech (Bristol, Avon) 2020; 72:141-149. [PMID: 31877532 DOI: 10.1016/j.clinbiomech.2019.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cerebral palsy is a complex neuromuscular disorder that affects the sufferers in multiple different ways. Neuromusculoskeletal models are promising tools that can be used to plan patient-specific treatments for cerebral palsy. However, current neuromusculoskeletal models are typically scaled from generic adult templates that poorly represent paediatric populations. Furthermore, muscle activations are commonly computed via optimisation methods, which may not reproduce co-contraction observed in cerebral palsy. Alternatively, calibrated EMG-informed approaches within OpenSim can capture pathology-related muscle activation abnormalities, possibly enabling more feasible estimations of muscle and joint contact forces. METHODS Two identical twin brothers, aged 13, one with unilateral cerebral palsy and the other typically developing, were enrolled in the study. Four neuromusculoskeletal models with increasing subject-specificity were built in OpenSim and CEINMS combining literature findings, experimental motion capture, EMG and MR data for both participants. The physiological and biomechanical validity of each model was assessed by quantifying its ability to track experimental joint moments and muscle excitations. FINDINGS All developed models accurately tracked external joint moments; however EMG-informed models better tracked muscle excitations compared to neural solutions generated by static optimisation. Calibrating muscle-tendon unit parameters with EMG data allowed for more physiologically plausible joint contact forces estimates. Further scaling the maximal isometric force of muscles with MR-derived muscle volumes did not affect model predictions. INTERPRETATION Given their ability to identify atypical joint contact forces profiles and accurately reproduce experimental data, calibrated EMG-informed models should be preferred over generic models using optimisation methods in informing the management of cerebral palsy.
Collapse
|
40
|
Zhang C, Colquitt G, Miller F, Shen Y, Modlesky CM. Preferential deficit of fat-free soft tissue in the appendicular region of children with cerebral palsy and proposed statistical models to capture the deficit. Clin Nutr 2020; 39:1541-1550. [PMID: 31924383 DOI: 10.1016/j.clnu.2019.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cerebral palsy (CP) is a neurological disorder characterized by a profound skeletal muscle deficit. However, whether there is a regional-specific skeletal muscle deficit in children with CP is unknown. The purpose of this study was to determine whether fat-free soft tissue mass (FFST), a commonly used surrogate for skeletal muscle mass, is more compromised in the limbs than in the trunk in children with CP. A second purpose was to determine whether physical characteristics can be used to accurately estimate appendicular FFST (AFFST) in children with CP. METHODS Forty-two children with CP (4-13 y) and 42 typically developing children matched to children with CP for sex, age and race were studied. Whole body FFST (FFSTwhole), FFST in the upper limbs (FFSTupper), FFST in the lower limbs (FFSTlower), the ratio of AFFST to height (AFFST/ht), the ratio of AFFST to height2 (AFFST/ht2) and non-appendicular FFST were estimated from dual-energy X-ray absorptiometry. Statistical models were developed to estimate AFFST, AFFST/ht and AFFST/ht2 in both groups of children, and the leave-one-out method was used to validate the models. RESULTS Children with CP had 21% lower FFSTwhole, 30% lower AFFST, 34% lower FFSTlower, 14% lower non-appendicular FFST, 23% lower AFFST/ht, 19% lower AFFST/ht2 and 9% lower AFFST/FFSTwhole (all p < 0.05). Statistical models developed using data from typically developing children overestimated AFFST, AFFST/ht and AFFST/ht2 by 35%, 30% and 21% (all p < 0.05), respectively, in children with CP. Separate models developed using data from children with CP yielded better accuracy, with the estimated results highly correlated (r2 = 0.78, 0.66 and 0.50, respectively; all p < 0.001) and not different from calculated AFFST, AFFST/ht and AFFST/ht2 (all p > 0.99). However, when the difference in estimated values and measured values of AFFST, AFFST/ht and AFFST/ht2 were plotted against measured values, there was an inverse relationship (r = -0.38, -0.47 and -0.61, respectively, all p < 0.05). CONCLUSION Children with CP have a remarkable deficit in FFST that is more pronounced in the appendicular than in the non-appendicular region and more pronounced in the lower than in the upper limbs. Preliminary models developed using data from children with CP can provide reasonable estimates of AFFST and indexes of AFFST relative to height, but further development of the models may be needed.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Gavin Colquitt
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, USA
| | - Freeman Miller
- Department of Orthopedics, Nemours AI duPont Hospital for Children, Wilmington, DE, USA
| | - Ye Shen
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
41
|
Liu J, Wang K, Wu J, Miao H, Qian Z, Ren L, Ren L. In Vivo Assessment of Lower Limb Muscle Stress State Based on Shear Wave Elastography. IEEE ACCESS 2020; 8:122185-122196. [DOI: 10.1109/access.2020.3007145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Shuman BR, Goudriaan M, Desloovere K, Schwartz MH, Steele KM. Muscle Synergy Constraints Do Not Improve Estimates of Muscle Activity From Static Optimization During Gait for Unimpaired Children or Children With Cerebral Palsy. Front Neurorobot 2019; 13:102. [PMID: 31920612 PMCID: PMC6927914 DOI: 10.3389/fnbot.2019.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
Neuromusculoskeletal simulation provides a promising platform to inform the design of assistive devices or inform rehabilitation. For these applications, a simulation must be able to accurately represent the person of interest, such as an individual with a neurologic injury. If a simulation fails to predict how an individual recruits and coordinates their muscles during movement, it will have limited utility for informing design or rehabilitation. While inverse dynamic simulations have previously been used to evaluate anticipated responses from interventions, like orthopedic surgery or orthoses, they frequently struggle to accurately estimate muscle activations, even for tasks like walking. The simulated muscle activity often fails to represent experimentally measured muscle activity from electromyographic (EMG) recordings. Research has theorized that the nervous system may simplify the range of possible activations used during dynamic tasks, by constraining activations to weighted groups of muscles, referred to as muscle synergies. Synergies are altered after neurological injury, such as stroke or cerebral palsy (CP), and may provide a method for improving subject-specific models of neuromuscular control. The aim of this study was to test whether constraining simulation to synergies could improve estimated muscle activations compared to EMG data. We evaluated modeled muscle activations during gait for six typically developing (TD) children and six children with CP. Muscle activations were estimated with: (1) static optimization (SO), minimizing muscle activations squared, and (2) synergy SO (SynSO), minimizing synergy activations squared using the weights identified from EMG data for two to five synergies. While SynSO caused changes in estimated activations compared to SO, the correlation to EMG data was not higher in SynSO than SO for either TD or CP groups. The correlations to EMG were higher in CP than TD for both SO (CP: 0.48, TD: 0.36) and SynSO (CP: 0.46, TD: 0.26 for five synergies). Constraining activations to SynSO caused the simulated muscle stress to increase compared to SO for all individuals, causing a 157% increase with two synergies. These results suggest that constraining simulated activations in inverse dynamic simulations to subject-specific synergies alone may not improve estimation of muscle activations during gait for generic musculoskeletal models.
Collapse
Affiliation(s)
- Benjamin R. Shuman
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Marije Goudriaan
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven (Pellenberg), Lubbeek, Belgium
| | - Michael H. Schwartz
- James R. Gage Center for Gait and Motion Analysis, Gillette Children’s Specialty Healthcare, Saint Paul, MN, United States
- Orthopaedic Surgery, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Botulinum Toxin Injection in Children with Hemiplegic Cerebral Palsy: Correction of Growth through Comparison of Treated and Unaffected Limbs. Toxins (Basel) 2019; 11:toxins11120688. [PMID: 31771177 PMCID: PMC6950586 DOI: 10.3390/toxins11120688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022] Open
Abstract
Botulinum toxin type A (BoNT-A) injections in children with cerebral palsy (CP) may negatively affect muscle growth and strength. We injected BoNT-A into the affected limbs of 14 children (4.57 ± 2.28 years) with hemiplegic CP and exhibiting tip-toeing gait on the affected side and investigated the morphological alterations in the medial head of the gastrocnemius muscle (GCM). We assessed thickness of the GCM, fascicle length, and fascicle angle on the affected and unaffected sides at baseline at 4 and 12 weeks after BoNT-A injections. The primary outcome measure was the change (percentage) in GCM thickness in the affected side treated with BoNT-A in comparison with the unaffected side. The percentage of treated GCM thickness became significantly thinner at 4 and 12 weeks after BoNT-A injection than baseline. However, the percentage of fascicle length and angle in treated limbs showed no significant change from baseline 4 and 12 weeks after the injection. BoNT-A injections might reduce muscle thickness in children with spastic hemiplegic CP. Fascicle length and angle might not be affected by BoNT-A injections after correction of normal growth of the children.
Collapse
|
44
|
Cenni F, Bar-On L, Monari D, Schless SH, Kalkman BM, Aertbeliën E, Desloovere K, Bruyninckx H. Semi-automatic methods for tracking the medial gastrocnemius muscle-tendon junction using ultrasound: a validation study. Exp Physiol 2019; 105:120-131. [PMID: 31677311 DOI: 10.1113/ep088133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the proposed semi-automatic algorithm suitable for tracking the medial gastrocnemius muscle-tendon junction in ultrasound images collected during passive and active conditions? What is the main finding and its importance? The validation of a method allowing efficient tracking of the muscle-tendon junction in both passive and active conditions, in healthy as well as in pathological conditions. This method was tested in common acquisition conditions and the developed software made freely available. ABSTRACT Clinically relevant information can be extracted from ultrasound (US) images by tracking the displacement of the junction between muscle and tendon. This paper validated automatic methods for tracking the location of muscle-tendon junction (MTJ) between the medial gastrocnemius and the Achilles tendon during passive slow and fast stretches, and active ankle rotations while walking on a treadmill. First, an automatic algorithm based on an optical flow approach was applied on collected US images. Second, results of the automatic algorithm were evaluated and corrected using a quality measure that indicated which critical images need to be manually corrected. US images from 12 typically developed (TD) children, 12 children with spastic cerebral palsy (SCP) and eight healthy adults were analysed. Automatic and semi-automatic tracking methods were compared to manual tracking using root mean square errors (RMSE). For the automatic tracking, RMSE was less than 3.1 mm for the slow stretch and 5.2 mm for the fast stretch, the worst case being for SCP. The tracking results in the fast stretch condition were improved (especially in SCP) by using the semi-automatic approach, with an RMSE reduction of about 30%. During walking, the semi-automatic method also reduced errors, with a final RMSE of 3.6 mm. In all cases, data processing was considerably shorter using the semi-automatic method (2 min) compared to manual tracking (20 min). A quick manual correction considerably improves tracking of the MTJ during gait and allows to achieve results suitable for further analyses. The proposed algorithm is freely available.
Collapse
Affiliation(s)
- Francesco Cenni
- KU Leuven, Department of Movement Sciences, Tervuursevest 101, 3001, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212, Pellenberg, Belgium
| | - Lynn Bar-On
- KU Leuven, Department of Rehabilitation Sciences, Tervuursevest 101, 3001, Leuven, Belgium.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Davide Monari
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212, Pellenberg, Belgium.,KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300b, 3001, Leuven, Belgium
| | - Simon-Henri Schless
- Alyn Hospital, Pediatric and Adolescent Rehabilitation Center, Jerusalem, Israel
| | - Barbara M Kalkman
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Erwin Aertbeliën
- KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300b, 3001, Leuven, Belgium
| | - Kaat Desloovere
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212, Pellenberg, Belgium.,KU Leuven, Department of Rehabilitation Sciences, Tervuursevest 101, 3001, Leuven, Belgium
| | - Herman Bruyninckx
- KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300b, 3001, Leuven, Belgium
| |
Collapse
|
45
|
Noorkoiv M, Lavelle G, Theis N, Korff T, Kilbride C, Baltzopoulos V, Shortland A, Levin W, Ryan JM. Predictors of Walking Efficiency in Children With Cerebral Palsy: Lower-Body Joint Angles, Moments, and Power. Phys Ther 2019; 99:711-720. [PMID: 31155663 PMCID: PMC10468027 DOI: 10.1093/ptj/pzz041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/01/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND People with cerebral palsy (CP) experience increased muscle stiffness, muscle weakness, and reduced joint range of motion. This can lead to an abnormal pattern of gait, which can increase the energy cost of walking and contribute to reduced participation in physical activity. OBJECTIVE The aim of the study was to examine associations between lower-body joint angles, moments, power, and walking efficiency in adolescents with CP. DESIGN This was a cross-sectional study. METHODS Sixty-four adolescents aged 10 to 19 years with CP were recruited. Walking efficiency was measured as the net nondimensional oxygen cost (NNcost) during 6 minutes of overground walking at self-selected speed. Lower-body kinematics and kinetics during walking were collected with 3-dimensional motion analysis, synchronized with a treadmill with integrated force plates. The associations between the kinematics, kinetics, and NNcost were examined with multivariable linear regression. RESULTS After adjusting for age, sex, and Gross Motor Function Classification System level, maximum knee extension angle (β = -0.006), hip angle at midstance (β = -0.007), and maximum hip extension (β = -0.008) were associated with NNcost. Age was a significant modifier of the association between the NNcost and a number of kinematic variables. LIMITATIONS This study examined kinetic and kinematic variables in the sagittal plane only. A high interindividual variation in gait pattern could have influenced the results. CONCLUSIONS Reduced knee and hip joint extension are associated with gait inefficiency in adolescents with CP. Age is a significant factor influencing associations between ankle, knee, and hip joint kinematics and gait efficiency. Therapeutic interventions should investigate ways to increase knee and hip joint extension in adolescents with CP.
Collapse
Affiliation(s)
- Marika Noorkoiv
- College of Health and Life Sciences, Brunel University London, London, Uxbridge UB8 3PH, United Kingdom
| | - Grace Lavelle
- College of Health and Life Sciences, Brunel University London
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, Gloucestershire, United Kingdom
| | | | - Cherry Kilbride
- College of Health and Life Sciences, Brunel University London
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam Shortland
- One Small Step Gait Laboratory, Guy's Hospital, London, United Kingdom
| | - Wendy Levin
- Department of Physiotherapy, Swiss Cottage School and Development and Research Centre, London, United Kingdom
| | - Jennifer M Ryan
- College of Health and Life Sciences, Brunel University London; and Department of Public Health and Epidemiology, RCSI, Dublin, Ireland
| |
Collapse
|
46
|
Pingel J, Andersen IT, Broholm R, Harder A, Bartels EM, Bülow J, Harrison A. An acoustic myography functional assessment of cerebral palsy subjects compared to healthy controls during physical exercise. J Muscle Res Cell Motil 2019; 40:53-58. [PMID: 31123956 DOI: 10.1007/s10974-019-09516-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/06/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience, Copenhagen University, Copenhagen, Denmark.
| | - Ida Torp Andersen
- Department of Neuroscience, Copenhagen University, Copenhagen, Denmark
| | - Rikke Broholm
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Anja Harder
- Section for Pathobiological Sciences, Faculty of Health & Medical Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Else Marie Bartels
- Department of Neurology and the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Adrian Harrison
- Section for Pathobiological Sciences, Faculty of Health & Medical Sciences, Copenhagen University, Frederiksberg, Denmark
| |
Collapse
|
47
|
Liu J, Sheng Y, Liu H. Corticomuscular Coherence and Its Applications: A Review. Front Hum Neurosci 2019; 13:100. [PMID: 30949041 PMCID: PMC6435838 DOI: 10.3389/fnhum.2019.00100] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Corticomuscular coherence (CMC) is an index utilized to indicate coherence between brain motor cortex and associated body muscles, conventionally. As an index of functional connections between the cortex and muscles, CMC research is the focus of neurophysiology in recent years. Although CMC has been extensively studied in healthy subjects and sports disorders, the purpose of its applications is still ambiguous, and the magnitude of CMC varies among individuals. Here, we aim to investigate factors that modulate the variation of CMC amplitude and compare significant CMC between these factors to find a well-developed research prospect. In the present review, we discuss the mechanism of CMC and propose a general definition of CMC. Factors affecting CMC are also summarized as follows: experimental design, band frequencies and force levels, age correlation, and difference between healthy controls and patients. In addition, we provide a detailed overview of the current CMC applications for various motor disorders. Further recognition of the factors affecting CMC amplitude can clarify the physiological mechanism and is beneficial to the implementation of CMC clinical methods.
Collapse
Affiliation(s)
- Jinbiao Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Honghai Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Frisk RF, Lorentzen J, Barber L, Nielsen JB. Characterization of torque generating properties of ankle plantar flexor muscles in ambulant adults with cerebral palsy. Eur J Appl Physiol 2019; 119:1127-1136. [PMID: 30778762 DOI: 10.1007/s00421-019-04102-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/12/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Weakness of plantar flexor muscles is related to reduced push-off and forward propulsion during gait in persons with cerebral palsy (CP). It has not been clarified to what an extent altered muscle contractile properties contribute to this muscle weakness. Here, we investigated the torque generating capacity and muscle fascicle length in the triceps surae muscle throughout ankle range of motion (ROM) in adults with CP using maximal single muscle twitches elicited by electrical nerve stimulation and ultrasonography. METHODS Fourteen adults with CP (age 36, SD 10.6, GMFCS I-III) and 17 neurological intact (NI) adults (age 36, SD 4.5) participated. Plantar flexor torque during supramaximal stimulation of the tibial nerve was recorded in a dynamometer at 8 ankle angles throughout ROM. Medial gastrocnemius (MG) fascicle length was tracked using ultrasonography. RESULTS Adults with CP showed reduced plantar flexor torque and fascicle shortening during supramaximal stimulation throughout ROM. The largest torque generation was observed at the ankle joint position where the largest shortening of MG fascicles was observed in both groups. This was at a more plantarflexed position in the CP group. CONCLUSION Reduced torque and fascicle shortening during supramaximal stimulation of the tibial nerve indicate impaired contractile properties of plantar flexor muscles in adults with CP. Maximal torque was observed at a more plantarflexed position in adults with CP indicating an altered torque-fascicle length/ankle angle relation. The findings suggest that gait rehabilitation in adults with CP may require special focus on improvement of muscle contractility.
Collapse
Affiliation(s)
- Rasmus Feld Frisk
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark. .,Professionshøjskolen Absalon, Roskilde, Denmark. .,Elsass Institute, Charlottenlund, Denmark.
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Lee Barber
- School of Health, Medical and Allied Sciences, Central Queensland University, Bundaberg, Australia.,Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
49
|
Muscle fibre morphology and microarchitecture in cerebral palsy patients obtained by 3D synchrotron X-ray computed tomography. Comput Biol Med 2019; 107:265-269. [PMID: 30878888 DOI: 10.1016/j.compbiomed.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Synchrotron X-ray computed tomography (SXCT) allows for three-dimensional imaging of objects at a very high resolution and in large field-of-view. PURPOSE The aim of this study was to use SXCT imaging for morphological analysis of muscle tissue, in order to investigate whether the analysis reveals complementary information to two-dimensional microscopy. METHODS Three-dimensional SXCT images of muscle biopsies were taken from participants with cerebral palsy and from healthy controls. We designed morphological measures from the two-dimensional slices and three-dimensional volumes of the images and measured the muscle fibre organization, which we term orientation consistency. RESULTS The muscle fibre cross-sectional areas were significantly larger in healthy participants than in participants with cerebral palsy when carrying out the analysis in three dimensions. However, a similar analysis carried out in two dimensions revealed no patient group difference. The present study also showed that three-dimensional orientation consistency was significantly larger for healthy participants than for participants with cerebral palsy. CONCLUSION Individuals with CP have smaller muscle fibres than healthy control individuals. We argue that morphometric measures of muscle fibres in two dimensions are generally trustworthy only if the fibres extend perpendicularly to the slice plane, and otherwise three-dimensional aspects should be considered. In addition, the muscle tissue of individuals with CP showed a decreased level of orientation consistency when compared to healthy control tissue. We suggest that the observed disorganization of the tissue may be induced by atrophy caused by physical inactivity and insufficient neural activation.
Collapse
|
50
|
The Effect of Functional Home-Based Strength Training Programs on the Mechano-Morphological Properties of the Plantar Flexor Muscle-Tendon Unit in Children With Spastic Cerebral Palsy. Pediatr Exerc Sci 2019; 31:67-76. [PMID: 30424684 DOI: 10.1123/pes.2018-0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of functional progressive resistance training (PRT) and high-intensity circuit training (HICT) on the mechano-morphological properties of the plantar flexor muscle-tendon unit in children with spastic cerebral palsy. METHODS Twenty-two children (12.8 [2.6] y old, Gross Motor Function Classification System levels I/II = 19/3) were randomly assigned to either a PRT group or an HICT group. The interventions consisted of functional lower limb exercises, which were performed at home 3 times per week for 8 weeks. Measurements at baseline, preintervention, postintervention, and follow-up were taken to assess ankle joint range of motion and the properties of the gastrocnemius medialis, vastus lateralis, rectus femoris, and Achilles tendon (eg, thickness, strength, stiffness). RESULTS Despite a nonsignificant increase in active torque in the HICT group, neither gastrocnemius medialis morphology nor Achilles tendon properties were significantly altered after the interventions. Vastus lateralis thickness increased following PRT only. CONCLUSIONS Functional home-based strength training did not lead to significant changes at the muscular level in children with cerebral palsy. We therefore assume that a more specific stimulus of higher intensity combined with a longer training duration might be necessary to evoke changes in muscles and tendons in individuals with cerebral palsy.
Collapse
|