1
|
Koo YJ, Ogihara N, Koo S. Active Arm Swing During Running Improves Rotational Stability of the Upper Body and Metabolic Energy Efficiency. Ann Biomed Eng 2025:10.1007/s10439-025-03688-0. [PMID: 39900823 DOI: 10.1007/s10439-025-03688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
PURPOSE The kinematic benefits of arm swing during running for upper body stability have been previously investigated, while its role in metabolic energy efficiency remains controversial. To address this, this study aimed to test the hypothesis that active arm swing during running reduces both torso angular motion around the longitudinal axis and metabolic energy consumption. METHODS We employed forward dynamics musculoskeletal running simulations with different arm conditions to investigate the hypothesis. Full-body musculoskeletal running models, incorporating 150 muscles, were developed using artificial neural network-based running controllers. Three arm conditions were simulated using the running models and controllers: active arm swing, passive arm swing, and fixed arms. RESULTS Our results revealed that the active arm swing model demonstrated the lowest total metabolic energy consumption per traveling distance. The costs of transport were 5.52, 5.73, and 5.82 J/kg-m for active, passive, and fixed arm models, respectively. Interestingly, while metabolic energy consumption in the upper limb muscles was higher during active arm swing, the total energy consumption was lower. Additionally, the longitudinal rotation of the torso was minimal in the active arm swing condition. CONCLUSION These findings support our hypothesis, demonstrating that active arm swing during running reduces the angular motion of the torso and the metabolic energy consumption. This study provides evidence that arm swing during running is performed actively as an energy-saving mechanism. These results contribute to understanding of running biomechanics and may have implications for performance optimization in sports and rehabilitation settings.
Collapse
Affiliation(s)
- Young-Jun Koo
- Artificial Intelligence Computing Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | | | - Seungbum Koo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Han Y, Tao Q, Zhang X. Multijoint Continuous Motion Estimation for Human Lower Limb Based on Surface Electromyography. SENSORS (BASEL, SWITZERLAND) 2025; 25:719. [PMID: 39943357 PMCID: PMC11820049 DOI: 10.3390/s25030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
The estimation of multijoint angles is of great significance in the fields of lower limb rehabilitation, motion control, and exoskeleton robotics. Accurate joint angle estimation helps assess joint function, assist in rehabilitation training, and optimize robotic control strategies. However, estimating multijoint angles in different movement patterns, such as walking, obstacle crossing, squatting, and knee flexion-extension, using surface electromyography (sEMG) signals remains a challenge. In this study, a model is proposed for the continuous motion estimation of multijoint angles in the lower limb (CB-TCN: temporal convolutional network + convolutional block attention module + temporal convolutional network). The model integrates temporal convolutional networks (TCNs) with convolutional block attention modules (CBAMs) to enhance feature extraction and improve prediction accuracy. The model effectively captures temporal features in lower limb movements, while enhancing attention to key features through the attention mechanism of CBAM. To enhance the model's generalization ability, this study adopts a sliding window data augmentation method to expand the training samples and improve the model's adaptability to different movement patterns. Through experimental validation on 8 subjects across four typical lower limb movements, walking, obstacle crossing, squatting, and knee flexion-extension, the results show that the CB-TCN model outperforms traditional models in terms of accuracy and robustness. Specifically, the model achieved R2 values of up to 0.9718, RMSE as low as 1.2648°, and NRMSE values as low as 0.05234 for knee angle prediction during walking. These findings indicate that the model combining TCN and CBAM has significant advantages in predicting lower limb joint angles. The proposed approach shows great promise for enhancing lower limb rehabilitation and motion analysis.
Collapse
Affiliation(s)
- Yonglin Han
- School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
| | - Qing Tao
- School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
| | - Xiaodong Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Caldeira PF, Resende RA, Murta BJ, Schleip R, Procópio PRS, Araújo PA, Fonseca ST, Ocarino JM. Myofascial force transmission between latissimus dorsi and contralateral gluteus maximus in runners: a cross-sectional study. J Biomech 2024; 177:112431. [PMID: 39556920 DOI: 10.1016/j.jbiomech.2024.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The anatomical connection between latissimus dorsi (LD), thoracolumbar fascia, and contralateral gluteus maximus (GM) enables myofascial force transmission (MFT) between the shoulder, trunk, and hip. This study investigates whether regular sports practice, specifically running, influences this MFT pathway. Given the potential changes in tissue stiffness from sports practice and the importance of this property for MFT, we hypothesize that runners may exhibit greater MFT between the LD and GM, resulting in altered passive properties of the lumbar and hip regions during LD contraction. This study aimed to investigate whether runners present a higher modification in lumbar stiffness and passive properties of the contralateral hip due to LD contraction than sedentary individuals. The lumbar stiffness, hip resting position, passive hip torque, and stiffness of fifty-four individuals were assessed using an indentometer and an isokinetic dynamometer, respectively, in two conditions: LD relaxed, and LD contracted. The main and interaction effects were assessed using a two-way ANOVA. The LD contraction increased lumbar stiffness (p < 0.001; ηp2 = 0.50), externally rotated the hip resting position and increased the passive hip torque and stiffness (p < 0.05; ηp2 > 0.1) in both groups. In addition, runners presented higher lumbar stiffness compared to sedentary in the LD contracted condition (p = 0.017, ESd = 0.54). Although runners exhibited increased lumbar stiffness during LD contraction, the MFT from the shoulder to the hip joint occurred similarly in both groups.
Collapse
Affiliation(s)
- Paola Figueiredo Caldeira
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Renan Alves Resende
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Bárbara Junqueira Murta
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Robert Schleip
- Conservative and Rehabilitative Orthopedics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany; Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany.
| | - Paula Renata Soares Procópio
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Priscila Albuquerque Araújo
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Sérgio Teixeira Fonseca
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Juliana Melo Ocarino
- School of Physical Education, Physical Therapy and Occupational Therapy, Department of Physical Therapy, Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Verheul J, Harper D, Robinson MA. Forces experienced at different levels of the musculoskeletal system during horizontal decelerations. J Sports Sci 2024; 42:2242-2253. [PMID: 39545586 DOI: 10.1080/02640414.2024.2428086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Horizontal decelerations are frequently performed during team sports and are closely linked to sports performance and injury. This study aims to provide a comprehensive description of the kinetic demands of decelerations at the whole-body, structural, and tissue-specific levels of the musculoskeletal system. Team-sports athletes performed maximal-effort horizontal decelerations whilst full-body kinematics and ground reaction forces (GRFs) were recorded. A musculoskeletal model was used to determine whole-body (GRFs), structural (ankle, knee, and hip joint moments and contact forces), and tissue (twelve lower-limb muscle forces) loads. External GRFs in this study, especially in the horizontal direction, were up to six times those experienced during accelerated or constant-speed running reported in the literature. To cope with these high external forces, large joint moments (hip immediately after touchdown; ankle and knee during mid and late stance) and contact forces (ankle, knee, hip immediately after touchdown) were observed. Furthermore, eccentric force requirements of the tibialis anterior, soleus, quadriceps, and gluteal muscles were particularly high. The presented loading patterns provide the first empirical explanations for why decelerating movements are amongst the most challenging in team sports and can help inform deceleration-specific training prescription to target horizontal deceleration performance, or fatigue and injury resistance in team-sports athletes.
Collapse
Affiliation(s)
- Jasper Verheul
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Damian Harper
- School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| | - Mark A Robinson
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
5
|
Nguyen AP, Bosquet L, Cugnet-Evans L, Detrembleur C, Mahaudens P. Observation of the Achilles Tendon and Gastrocnemius Muscle's Passive Stiffness During an Incremental Running Protocol. Int J Sports Physiol Perform 2024; 19:1321-1327. [PMID: 39271110 DOI: 10.1123/ijspp.2024-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE Passive stiffness, a biomechanical parameter, has a potential influence on running economy, thus playing a pivotal role in performance. This study aimed to quantify passive stiffness of the Achilles tendon and gastrocnemius muscle using myotonometry throughout an incremental running protocol. METHODS Twenty-one male participants underwent a multistage incremental test (Bordeaux test) on a treadmill until exhaustion. Passive stiffness of the gastrocnemius muscle and Achilles tendon was measured using a MyotonPRO device. Measurements were taken before, during, and after the incremental test. RESULTS Our findings indicated that passive stiffness of the medial gastrocnemius decreased at rest between prerun and postrun assessments (-20.12 N·m-1, P = .012). Furthermore, during the test, stiffness increased at low intensity (at 50% of maximal aerobic speed: +104.8 N·m-1, P = .042), returning to baseline values as intensity increased. CONCLUSIONS Throughout an incremental running protocol, both Achilles tendon and gastrocnemius muscle stiffness initially increased and then decreased with escalating percentages of maximal aerobic speed. A deeper understanding of stiffness in running can inform more effective recommendations for runners' strengthening and training.
Collapse
Affiliation(s)
- Anh Phong Nguyen
- Institut de Recherche Expérimentale et Clinique, Neuromusculoskeletal Lab, Université Catholique de Louvain, Brussels, Belgium
- The Running Clinic, Lac Beauport, QC, Canada
| | - Laurent Bosquet
- Laboratoire Move, Université de Poitiers, UFR-STAPS, Poitiers, France
| | - Laureen Cugnet-Evans
- Institut de Recherche Expérimentale et Clinique, Neuromusculoskeletal Lab, Université Catholique de Louvain, Brussels, Belgium
| | - Christine Detrembleur
- Institut de Recherche Expérimentale et Clinique, Neuromusculoskeletal Lab, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe Mahaudens
- Institut de Recherche Expérimentale et Clinique, Neuromusculoskeletal Lab, Université Catholique de Louvain, Brussels, Belgium
- Service d'Orthopédie et Traumatologie, Clinique Universitaire Saint Luc, Brussels, Belgium
- Service de Médecine Physique, Clinique Universitaire Saint Luc, Brussels, Belgium
| |
Collapse
|
6
|
Abdullah M, Hulleck AA, Katmah R, Khalaf K, El-Rich M. Multibody dynamics-based musculoskeletal modeling for gait analysis: a systematic review. J Neuroeng Rehabil 2024; 21:178. [PMID: 39369227 PMCID: PMC11452939 DOI: 10.1186/s12984-024-01458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024] Open
Abstract
Beyond qualitative assessment, gait analysis involves the quantitative evaluation of various parameters such as joint kinematics, spatiotemporal metrics, external forces, and muscle activation patterns and forces. Utilizing multibody dynamics-based musculoskeletal (MSK) modeling provides a time and cost-effective non-invasive tool for the prediction of internal joint and muscle forces. Recent advancements in the development of biofidelic MSK models have facilitated their integration into clinical decision-making processes, including quantitative diagnostics, functional assessment of prosthesis and implants, and devising data-driven gait rehabilitation protocols. Through an extensive search and meta-analysis of over 116 studies, this PRISMA-based systematic review provides a comprehensive overview of different existing multibody MSK modeling platforms, including generic templates, methods for personalization to individual subjects, and the solutions used to address statically indeterminate problems. Additionally, it summarizes post-processing techniques and the practical applications of MSK modeling tools. In the field of biomechanics, MSK modeling provides an indispensable tool for simulating and understanding human movement dynamics. However, limitations which remain elusive include the absence of MSK modeling templates based on female anatomy underscores the need for further advancements in this area.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE
| | - Abdul Aziz Hulleck
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE
| | - Rateb Katmah
- Department of Biomedical and Biotechnology Engineering, Khalifa University, Abu Dhabi, UAE
| | - Kinda Khalaf
- Department of Biomedical and Biotechnology Engineering, Khalifa University, Abu Dhabi, UAE
| | - Marwan El-Rich
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Khan AI, Ansari S, Khan Z, Raza S. The Association Between Isometric Shoulder Strength and Sports Performances in University Soccer Players: A Cross-Sectional Study. Cureus 2024; 16:e72041. [PMID: 39569293 PMCID: PMC11578390 DOI: 10.7759/cureus.72041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
Background Soccer, a globally popular sport, demands a complex interplay between physical attributes, including speed, agility, power, and endurance. Although lower-body strength and power are often emphasized, the role of upper-body strength, particularly shoulder strength, remains less explored. Given the importance of upper-body movements in activities such as heading, shooting, and defending, understanding the relationship between shoulder strength and soccer performance is crucial. Aims This study aimed to explore any possible correlation between isometric shoulder muscle strength (flexors and extensors) and sports performance (sprint and agility) and to evaluate whether isometric shoulder strength is associated with sports performance in university-level soccer players. Methods A total of 35 male amateur soccer players were recruited, who underwent demographic measurements such as age, height, weight, and body mass index (BMI), and were then subjected to isometric strength assessment of the shoulder flexors and extensors using a handheld dynamometer (HHD). Subsequently, the players' sprint and agility performances were recorded. Appropriate statistical tests were performed on the obtained data. Results The findings revealed a significant negative correlation between shoulder flexor strength and sprinting (r=-0.707, p<0.01) and between shoulder extensor strength and sprinting (r=-0.611, p<0.01). There was no significant correlation between shoulder flexor strength and agility (r=-0.121, p=0.48) or between shoulder extensor strength and agility (r=-0.212, p=0.22). Multiple linear regression analysis revealed that only shoulder flexor strength (β=-0.688, t=-2.651, p=0.01) was found to have statistically significant relationships with sprint performance, explaining 50% of the variance in sprint performance. Conclusions The present study found a negative bidirectional relationship between shoulder muscle strength and sprint performance. Shoulder flexor strength explained 50% of the variance in sprinting performance. This information is useful for physiotherapists, coaches, and trainers to focus on strengthening the shoulder musculature to improve performance.
Collapse
Affiliation(s)
- Ali I Khan
- Center for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, IND
| | - Sumbul Ansari
- Department of Physiotherapy, School of Medical and Allied Health Sciences, Galgotias University, Greater Noida, IND
| | - Zahid Khan
- Department of Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, GBR
- Department of Cardiology, Barts Heart Centre, London, GBR
- Department of Cardiology and General Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
- Department of Cardiology, Royal Free Hospital, London, GBR
| | - Shahid Raza
- Center for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, IND
| |
Collapse
|
8
|
Nguyen AP, Broy C, Cardon L, Jet G, Detrembleur C, Mahaudens P. Runners have more latent myofascial trigger point than non-runners in medialis gastrocnemii. J Bodyw Mov Ther 2024; 40:1582-1587. [PMID: 39593494 DOI: 10.1016/j.jbmt.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/02/2024] [Accepted: 08/17/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES The goals of this study were to i. describe the prevalence of latent myofascial trigger points (MTrPs) in the medialis gastrocnemius in runners versus non-runners, and ii. examine their level of pain and stiffness. METHODS Healthy runners and non-runners were recruited. Each participant's medialis gastrocnemius MTrPs count was recorded in both legs. The mean pain and the most painful MTrPs pain levels were recorded using an algometer, and the stiffness was evaluated using myotonometry (MyotonPro device) on the most painful MTrP. RESULTS With a medium effect size (p = 0.001), runners (n = 20) showed significantly more latent MTrPs than non-runners (n = 26). Runners also reported higher overall pain on the latent MTrPs site than non-runners (p = 0.003) and a significant difference (p = 0.001) for the most painful latent MTrP. Runners were substantially stiffer than non-runners in the most painful latent MTrP, with a mean stiffness difference of +9.98 N/m (p = 0.018, medium effect size). CONCLUSIONS Runners have a higher number of latent MTrPs than non-runners. The MTrPs found in runners' legs were more painful and stiff than those found in non-runners' legs.
Collapse
Affiliation(s)
- Anh Phong Nguyen
- Université Catholique de Louvain (UCLouvain), Faculté des Sciences de la Motricité, Place Pierre de Coubertin 1, 1348, Louvain La Neuve, Belgium; Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Neuromuscoloskeletal lab, Avenue Mounier 52, 1200, Woluwe-saint-lambert, Brussels, Belgium; The Running Clinic, lac Beauport, Quebec, Canada.
| | - Christophe Broy
- Kine & Co Formations, 3 rue de Lorraine, 57580, Rémilly, France
| | - Louise Cardon
- Université Catholique de Louvain (UCLouvain), Faculté des Sciences de la Motricité, Place Pierre de Coubertin 1, 1348, Louvain La Neuve, Belgium
| | - Gregoire Jet
- Université Catholique de Louvain (UCLouvain), Faculté des Sciences de la Motricité, Place Pierre de Coubertin 1, 1348, Louvain La Neuve, Belgium
| | - Christine Detrembleur
- Université Catholique de Louvain (UCLouvain), Faculté des Sciences de la Motricité, Place Pierre de Coubertin 1, 1348, Louvain La Neuve, Belgium; Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Neuromuscoloskeletal lab, Avenue Mounier 52, 1200, Woluwe-saint-lambert, Brussels, Belgium
| | - Philippe Mahaudens
- Université Catholique de Louvain (UCLouvain), Faculté des Sciences de la Motricité, Place Pierre de Coubertin 1, 1348, Louvain La Neuve, Belgium; Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Neuromuscoloskeletal lab, Avenue Mounier 52, 1200, Woluwe-saint-lambert, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Service d'orthopédie et de Traumatologie de l'appareil Locomoteur, Avenue Hippocrate 10, B-1200, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Service de Médecine Physique et Réadaptation, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| |
Collapse
|
9
|
Paiva R, Guadagnin EC, Emilio de Carvalho J, Metsavaht L, Leporace G. Test-retest reliability and minimal detectable change in pelvis and lower limb coordination during running assessed with modified vector coding. J Biomech 2024; 174:112259. [PMID: 39126784 DOI: 10.1016/j.jbiomech.2024.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The objective of this study was to evaluate the reliability of Modified Vector Coding in assessing the coordination and coordination variability of the lower limbs and pelvis during running and to determine the Minimal Detectable Change (MDC). Twenty-five healthy runners participated in a biomechanical analysis of treadmill running using a motion capture system. Modified vector coding was applied to assess the three-dimensional coordination among various pelvis and lower limb segmental couplings. Reliability was assessed using the Intraclass Correlation Coefficient (ICC), Standard Error of Measurement (SEM), MDC, and Bland-Altman analysis to ascertain measurement consistency, agreement, and the smallest clinically meaningful change that exceeds measurement error. The test-retest reliability for 33 of 42 segmental couplings analyzed was good to excellent, with ICC values ranging from 0.613 to 0.928 (p <0.05), which substantiates the robustness of modified vector coding in running biomechanics. However, nine couplings, particularly femur-tibia in the sagittal plane during midstance and foot in the frontal plane-tibia in the transverse plane during late stance, exhibited poor to moderate reliability. These findings underscore the need for cautious interpretation due to significant proportional bias (p <0.05). SEM and MDC provided insights into the precision and minimal clinically significant changes for each coupling. The findings confirm the reliability of modified vector coding for biomechanical analysis in running, with most couplings demonstrating consistent high reliability. Nevertheless, specific couplings should be interpreted with caution due to potential measurement errors. The application of MDC highlights the precision of modified vector coding in biomechanical analyses and emphasizes the importance of careful interpretation to improve clinical and research outcomes in running-related injuries.
Collapse
Affiliation(s)
- Rodrigo Paiva
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Diagnóstico por Imagem, São Paulo, Brazil; Instituto Brasil de Tecnologias da Saúde (IBTS), Rio de Janeiro, Brazil
| | | | | | - Leonardo Metsavaht
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Diagnóstico por Imagem, São Paulo, Brazil; Instituto Brasil de Tecnologias da Saúde (IBTS), Rio de Janeiro, Brazil
| | - Gustavo Leporace
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Diagnóstico por Imagem, São Paulo, Brazil; Instituto Brasil de Tecnologias da Saúde (IBTS), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Jiang X, Bíró I, Sárosi J, Fang Y, Gu Y. Comparison of ground reaction forces as running speed increases between male and female runners. Front Bioeng Biotechnol 2024; 12:1378284. [PMID: 39135948 PMCID: PMC11317262 DOI: 10.3389/fbioe.2024.1378284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: The biomechanics associated with human running are affected by gender and speed. Knowledge regarding ground reaction force (GRF) at various running speeds is pivotal for the prevention of injuries related to running. This study aimed to investigate the gait pattern differences between males and females while running at different speeds, and to verify the relationship between GRFs and running speed among both males and females. Methods: GRF data were collected from forty-eight participants (thirty male runners and eighteen female runners) while running on an overground runway at seven discrete speeds: 10, 11, 12, 13, 14, 15 and 16 km/h. Results: The ANOVA results showed that running speed had a significant effect (p < 0.05) on GRFs, propulsive and vertical forces increased with increasing speed. An independent t-test also showed significant differences (p < 0.05) in vertical and anterior-posterior GRFs at all running speeds, specifically, female runners demonstrated higher propulsive and vertical forces than males during the late stance phase of running. Pearson correlation and stepwise multiple linear regression showed significant correlations between running speed and the GRF variables. Discussion: These findings suggest that female runners require more effort to keep the same speed as male runners. This study may provide valuable insights into the underlying biomechanical factors of the movement patterns at GRFs during running.
Collapse
Affiliation(s)
- Xinyan Jiang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - István Bíró
- Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - József Sárosi
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yufei Fang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yaodong Gu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Miyazaki T, Aimi T, Yamada Y, Nakamura Y. Curved carbon plates inside running shoes modified foot and shank angular velocity improving mechanical efficiency at the ankle joint. J Biomech 2024; 172:112224. [PMID: 38971114 DOI: 10.1016/j.jbiomech.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Recent technologically advanced running shoes have been designed with higher stack height and curved carbon plate-reinforced toe springs to enhance running performance. The purpose of this study was to examine how curved carbon-plate reinforcement modulated mechanical efficiency at the ankle joint during the running stance phase. We prepared two footwear conditions: Non and Carbon, both had a 3D-printed midsole (40-mm heel thickness). A full-length curved carbon plate was inserted along the toe spring in Carbon. The participants included 14 non-rearfoot long-distance athletes. They were required to run at a speed of 12 km/h on a 20-m runway with both shoes. Mechanical-energy expenditure (MEE, indicating mechanical work) and compensation (MEC, indicating mechanical efficiency) were calculated in the following mechanical-energy transfer phases: concentric, eccentric, and no-transfer. Running with Carbon exhibited improved MEC and reduced MEE at the ankle joint during the concentric transfer phase than with Non. The improvement in the concentric MEC at the ankle joint indicates that a larger amount of mechanical energy is transferred from the shank into the foot segment that compensates for the force exerted by the plantar flexor muscles, which implies more mechanically efficient plantarflexion movement. As the ankle joint is the largest energetic contributor in the running stance phase, greater MEC and lower MEE and torque at the ankle joint could improve running performance. Hence, the curved carbon plate may be a key feature of advanced footwear technology.
Collapse
Affiliation(s)
- Tomohiro Miyazaki
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan.
| | - Takayuki Aimi
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yugo Yamada
- School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan.
| |
Collapse
|
12
|
Fox AS. The quest for dynamic consistency: a comparison of OpenSim tools for residual reduction in simulations of human running. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231909. [PMID: 38699555 PMCID: PMC11061640 DOI: 10.1098/rsos.231909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024]
Abstract
Using synchronous kinematic and kinetic data in simulations of human running typically leads to dynamic inconsistencies. Minimizing residual forces and moments is subsequently important to ensure plausible model outputs. A variety of approaches suitable for residual reduction are available in OpenSim; however, a detailed comparison is yet to be conducted. This study compared OpenSim tools applicable for residual reduction in simulations of human running. Multiple approaches (i.e. Residual Reduction Algorithm, MocoTrack, AddBiomechanics) designed to reduce residual forces and moments were examined using an existing dataset of treadmill running at 5.0 ms-1. The computational time, residual forces and moments, and joint kinematics and kinetics from each approach were compared. A computational cost to residual reduction trade-off was identified, where lower residuals were achieved using approaches with longer computational times. The AddBiomechanics and MocoTrack approaches produced variable lower and upper body kinematics, respectively, versus the remaining approaches. Joint kinetics were similar between approaches; however, MocoTrack generated noisier upper limb joint torque signals. MocoTrack was the best-performing approach for reducing residuals to near-zero levels, at the cost of longer computational times. This study provides OpenSim users with evidence to inform decision-making at the residual reduction step of their workflow.
Collapse
Affiliation(s)
- Aaron S. Fox
- School of Exercise and Nutrition Sciences, Deakin University, Victoria3216, Australia
| |
Collapse
|
13
|
van Oeveren BT, de Ruiter CJ, Beek PJ, van Dieën JH. The biomechanics of running and running styles: a synthesis. Sports Biomech 2024; 23:516-554. [PMID: 33663325 DOI: 10.1080/14763141.2021.1873411] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Running movements are parametrised using a wide variety of devices. Misleading interpretations can be avoided if the interdependencies and redundancies between biomechanical parameters are taken into account. In this synthetic review, commonly measured running parameters are discussed in relation to each other, culminating in a concise, yet comprehensive description of the full spectrum of running styles. Since the goal of running movements is to transport the body centre of mass (BCoM), and the BCoM trajectory can be derived from spatiotemporal parameters, we anticipate that different running styles are reflected in those spatiotemporal parameters. To this end, this review focuses on spatiotemporal parameters and their relationships with speed, ground reaction force and whole-body kinematics. Based on this evaluation, we submit that the full spectrum of running styles can be described by only two parameters, namely the step frequency and the duty factor (the ratio of stance time and stride time) as assessed at a given speed. These key parameters led to the conceptualisation of a so-called Dual-axis framework. This framework allows categorisation of distinctive running styles (coined 'Stick', 'Bounce', 'Push', 'Hop', and 'Sit') and provides a practical overview to guide future measurement and interpretation of running biomechanics.
Collapse
Affiliation(s)
- Ben T van Oeveren
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Cornelis J de Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter J Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Bohm S, Schroll A, Mersmann F, Arampatzis A. Assessment and modelling of the activation-dependent shift in optimal length of the human soleus muscle in vivo. J Physiol 2024; 602:1371-1384. [PMID: 38482557 DOI: 10.1113/jp285986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Previous in vitro and in situ studies have reported a shift in optimal muscle fibre length for force generation (L0) towards longer length at decreasing activation levels (also referred to as length-dependent activation), yet the relevance for in vivo human muscle contractions with a variable activation pattern remains largely unclear. By a combination of dynamometry, ultrasound and electromyography (EMG), we experimentally obtained muscle force-fascicle length curves of the human soleus at 100%, 60% and 30% EMGmax levels from 15 participants aiming to investigate activation-dependent shifts in L0 in vivo. The results showed a significant increase in L0 of 6.5 ± 6.0% from 100% to 60% EMGmax and of 9.1 ± 7.2% from 100% to 30% EMGmax (both P < 0.001), respectively, providing evidence of a moderate in vivo activation dependence of the soleus force-length relationship. Based on the experimental results, an approximation model of an activation-dependent force-length relationship was defined for each individual separately and for the collective data of all participants, both with sufficiently high accuracy (R2 of 0.899 ± 0.056 and R2 = 0.858). This individual approximation approach and the general approximation model outcome are freely accessible and may be used to integrate activation-dependent shifts in L0 in experimental and musculoskeletal modelling studies to improve muscle force predictions. KEY POINTS: The phenomenon of the activation-dependent shift in optimal muscle fibre length for force generation (length-dependent activation) is poorly understood for human muscle in vivo dynamic contractions. We experimentally observed a moderate shift in optimal fascicle length towards longer length at decreasing electromyographic activity levels for the human soleus muscle in vivo. Based on the experimental results, we developed a freely accessible approximation model that allows the consideration of activation-dependent shifts in optimal length in future experimental and musculoskeletal modelling studies to improve muscle force predictions.
Collapse
Affiliation(s)
- Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Li J, Wang Y, Zhang X, Wu M, Wang M, Zhang R, Wu T, Zhang P, Zhao J. Diffusion tensor imaging combined with chemical shift-encoded sequence to quantify the adaptive changes of calf muscles in amateur marathoners. Eur J Radiol 2024; 175:111449. [PMID: 38604093 DOI: 10.1016/j.ejrad.2024.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Calf muscles play an important role in marathon race, and the incidence of injury is high in this process. This study prospectively quantified diffusion tensor metrics, muscle fat fraction (MFF) and cross-sectional area (CSA) of calf muscles induced by endurance exercise in amateur marathoners, and the potential mechanisms underlying the changes in these parameters were analyzed. METHOD In this prospective study, 35 marathoners (27 males, 8 females; mean age (standard deviation, SD), 38.92 (4.83) years) and 26 controls (18 males, 8 females; mean age (SD), 38.35 (6.75) years) underwent magnetic resonance imaging (MRI) from September 2022 to March 2023. The diffusion tensor eigenvalues (λ1, λ2, λ3), radial diffusivity (RD), fractional anisotropy (FA), MFF and CSA of calf muscles were compared between marathoners and controls. A binary logistic regression model with gender correction was performed analyze the relationship between marathon exercise and DTI parameters, CSA and MFF of calf muscles. RESULTS Interobserver agreement was good (κ = 0.71). The results of binary logistic regression model with gender correction showed that the regression coefficients of FA values in anterior group of calf (AC), soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) were negative, and the odds ratios (OR) were 0.33, 0.45, 0.35, 0.05, respectively (P < 0.05). The OR of RD in SOL and λ2 in external group of calf (EC) were relatively higher, 3.74 and 3.26, respectively (P < 0.05). CSA was greater in SOL of marathoners, with an OR value of 1.00(P < 0.05). The MFF in AC and LG was lower in marathoners and OR of two indexes were -0.69 and -0.59, respectively (P < 0.05). CONCLUSIONS Diffusion tensor imaging (DTI) combined with chemical shift-encoded sequence can noninvasively detect and quantify the adaptive changes of calf muscle morphology, microstructure and tissue composition induced by long-term running training in amateur marathoners.
Collapse
Affiliation(s)
- Junfei Li
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Yijing Wang
- Department of Radiology, Hebei General Hospital, No. 348, Heping Street, Xinhua District, Shijiazhuang 050051, China.
| | - Xuesong Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Mengfei Wu
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Ming Wang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Ranxu Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Tao Wu
- GE Healthcare, Beijing, China.
| | - Ping Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Jian Zhao
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| |
Collapse
|
16
|
Lichtwark GA, Schuster RW, Kelly LA, Trost SG, Bialkowski A. Markerless motion capture provides accurate predictions of ground reaction forces across a range of movement tasks. J Biomech 2024; 166:112051. [PMID: 38503062 DOI: 10.1016/j.jbiomech.2024.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Measuring or estimating the forces acting on the human body during movement is critical for determining the biomechanical aspects relating to injury, disease and healthy ageing. In this study we examined whether quantifying whole-body motion (segmental accelerations) using a commercial markerless motion capture system could accurately predict three-dimensional ground reaction force during a diverse range of human movements: walking, running, jumping and cutting. We synchronously recorded 3D ground reaction forces (force instrumented treadmill or in-ground plates) with high-resolution video from eight cameras that were spatially calibrated relative to a common coordinate system. We used a commercially available software to reconstruct whole body motion, along with a geometric skeletal model to calculate the acceleration of each segment and hence the whole-body centre of mass and ground reaction force across each movement task. The average root mean square difference (RMSD) across all three dimensions and all tasks was 0.75 N/kg, with the maximum average RMSD being 1.85 N/kg for running vertical force (7.89 % of maximum). There was very strong agreement between peak forces across tasks, with R2 values indicating that the markerless prediction algorithm was able to predict approximately 95-99 % of the variance in peak force across all axes and movements. The results were comparable to previous reports using whole-body marker-based approaches and hence this provides strong proof-of-principle evidence that markerless motion capture can be used to predict ground reaction forces and therefore potentially assess movement kinetics with limited requirements for participant preparation.
Collapse
Affiliation(s)
- Glen A Lichtwark
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Robert W Schuster
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Luke A Kelly
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Health Sciences and Social Work, Griffith University, Gold Coast 4111, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast 4111, Australia
| | - Stewart G Trost
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Children's Health Queensland Health and Hospital Service, South Brisbane, QLD 4101, Australia
| | - Alina Bialkowski
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Cowburn J, Serrancolí G, Pavei G, Minetti A, Salo A, Colyer S, Cazzola D. A novel computational framework for the estimation of internal musculoskeletal loading and muscle adaptation in hypogravity. Front Physiol 2024; 15:1329765. [PMID: 38384800 PMCID: PMC10880100 DOI: 10.3389/fphys.2024.1329765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction: Spaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading. Methods: A single male participant performed single-leg vertical hopping whilst attached to a body weight support system to replicate five gravity conditions (0.17, 0.25, 0.37, 0.50, 1 g). Experimental joint kinematics, joint kinetics and ground reaction forces were tracked in a data-tracking direct collocation simulation framework. Ground reaction forces, sagittal plane hip, knee and ankle net joint moments, quadriceps muscle forces (Rectus Femoris and three Vasti muscles), and hip, knee and ankle joint reaction forces were extracted for analysis. Estimated quadriceps muscle forces were input into a muscle adaptation model to predict a meaningful increase in muscle cross-sectional area, defined in (DeFreitas et al., 2011). Results: Two distinct strategies were observed to cope with the increase in ground reaction forces as gravity increased. Hypogravity was associated with an ankle dominant strategy with increased range of motion and net plantarflexor moment that was not seen at the hip or knee, and the Rectus Femoris being the primary contributor to quadriceps muscle force. At 1 g, all three joints had increased range of motion and net extensor moments relative to 0.50 g, with the Vasti muscles becoming the main muscles contributing to quadriceps muscle force. Additionally, hip joint reaction force did not increase substantially as gravity increased, whereas the other two joints increased monotonically with gravity. The predicted volume of exercise needed to counteract muscle adaptations decreased substantially with gravity. Despite the ankle dominant strategy in hypogravity, the loading on the knee muscles and joint also increased, demonstrating this provided more information about MSK loading. Discussion: This approach, supplemented with muscle-adaptation models, can be used to compare MSK loading between exercises to enhance astronaut exercise prescription.
Collapse
Affiliation(s)
- James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Minetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Aki Salo
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| |
Collapse
|
18
|
Ravera EP, Rozumalski A. Selective dorsal rhizotomy and its effect on muscle force during walking: A comprehensive study. J Biomech 2024; 164:111968. [PMID: 38325195 DOI: 10.1016/j.jbiomech.2024.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/03/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Selective dorsal rhizotomy (SDR) is commonly used to permanently reduce spasticity in children with cerebral palsy (CP). However, studies have yielded varying results regarding muscle strength and activity after SDR. Some studies indicate weakness or no changes, while a recent study using NMSK simulations demonstrates improvements in muscle forces during walking. These findings suggest that SDR may alleviate spasticity, reducing dynamic muscle constraints and enhancing muscle force without altering muscle activity during walking in children with CP. In this study, we combined NMSK simulations with physical examinations to assess children with CP who underwent SDR, comparing them to well-matched peers who did not undergo the procedure. Each group (SDR and No-SDR) included 81 children, with pre- and post-SDR assessments. Both groups were well-matched in terms of demographics, clinical characteristics, and gait parameters. The results of the physical examination indicate that SDR significantly reduces spasticity without impacting muscle strength. Furthermore, our findings show no significant differences in gait deviation index improvements and walking speed between the two groups. Additionally, there were no statistically significant changes in muscle activity during walking before and after SDR for both groups. NMSK results demonstrate a significant increase in muscle force in the semimembranosus and calf muscles during walking, compared to children with CP who received other clinical treatments. Our findings confirm that although SDR does not significantly impact muscle strength compared to other treatments, it creates a more favorable dynamic environment for suboptimal muscle force production, which is essential for walking.
Collapse
Affiliation(s)
- Emiliano Pablo Ravera
- Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina; Human Movement Research Laboratory, School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina.
| | - Adam Rozumalski
- The James R. Gage Center for Gait & Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN, United States of America.
| |
Collapse
|
19
|
Werling K, Bianco NA, Raitor M, Stingel J, Hicks JL, Collins SH, Delp SL, Liu CK. AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization. PLoS One 2023; 18:e0295152. [PMID: 38033114 PMCID: PMC10688959 DOI: 10.1371/journal.pone.0295152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subject's skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2 cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.
Collapse
Affiliation(s)
- Keenon Werling
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Nicholas A. Bianco
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Michael Raitor
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Jon Stingel
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Jennifer L. Hicks
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Steven H. Collins
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Scott L. Delp
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - C. Karen Liu
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| |
Collapse
|
20
|
Crotty ED, Furlong LAM, Harrison AJ. Ankle and Plantar Flexor Muscle-Tendon Unit Function in Sprinters: A Narrative Review. Sports Med 2023:10.1007/s40279-023-01967-1. [PMID: 37989833 DOI: 10.1007/s40279-023-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Maximal sprinting in humans requires the contribution of various muscle-tendon units (MTUs) and joints to maximize performance. The plantar flexor MTU and ankle joint are of particular importance due to their role in applying force to the ground. This narrative review examines the contribution of the ankle joint and plantar flexor MTUs across the phases of sprinting (start, acceleration, and maximum velocity), alongside the musculotendinous properties that contribute to improved plantar flexor MTU performance. For the sprint start, the rear leg ankle joint appears to be a particularly important contributor to sprint start performance, alongside the stretch-shortening cycle (SSC) action of the plantar flexor MTU. Comparing elite and sub-elite sprinters revealed that elite sprinters had a higher rate of force development (RFD) and normalized average horizontal block power, which was transferred via the ankle joint to the block. For the acceleration phase, the ankle joint and plantar flexor MTU appear to be the most critical of the major lower limb joints/MTUs. The contribution of the ankle joint to power generation and positive work is minimal during the first stance, but an increased contribution is observed during the second stance, mid-acceleration, and late-acceleration. In terms of muscular contributions, the gastrocnemius and soleus have distinct roles. The soleus acts mainly as a supporter, generating large portions of the upward impulse, whereas the gastrocnemius acts as both an accelerator and a supporter, contributing significantly to propulsive and upward impulses. During maximum velocity sprinting the ankle joint is a net dissipater of energy, potentially due to the greater vertical loading placed on the plantar flexors. However, the ankle joint is critical for energy transfer from proximal joints to ground force application to maintain velocity. In terms of the contribution of musculoskeletal factors to ankle joint and plantar flexor performance, an optimal plantar flexor MTU profile potentially exists, which is possibly a combination of several musculoskeletal factors, alongside factors such as footwear and technique.
Collapse
Affiliation(s)
- Evan D Crotty
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.
| | - Laura-Anne M Furlong
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - Andrew J Harrison
- Sport and Human Performance Research Centre, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
21
|
DeJong Lempke AF, Jackson S, Stracciolini A, D'Hemecourt PA, Meehan WP, Whitney KE. Adolescent exercise-related lower leg pain musculotendinous characteristics. PM R 2023; 15:1392-1402. [PMID: 36749145 DOI: 10.1002/pmrj.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Exercise-related lower leg pain (ERLLP) is one of the most common injuries among adolescent runners; however, there is limited information available on lower extremity musculotendinous characteristics in relationship to injury. Ultrasound imaging has previously been used to evaluate musculotendinous structures among adults with chronic lower limb injuries. Similar measurement approaches may be adopted to assess young runners with ERLLP. OBJECTIVE To compare ultrasound-derived lower extremity musculotendinous thickness, echogenicity, and muscle fiber pennation angles between adolescent runners with and without ERLLP. DESIGN Cross-sectional design. SETTING Hospital-affiliated sports injury prevention center. PARTICIPANTS Twenty-eight adolescent runners with (N = 14) and without ERLLP (N = 14). INTERVENTIONS Runners' patellar and Achilles tendons, and tibialis anterior, medial gastrocnemius, abductor hallicus, and flexor digitorum brevis muscles were assessed with ultrasound imaging using standardized procedures. MAIN OUTCOME MEASURES Separate repeated measures multivariate analyses of covariance (covariate: gender) were used to compare groups and limbs for mass-normalized musculotendinous thickness, musculotendinous echogenicity, and extrinsic ankle muscle fiber pennation angles. RESULTS The adolescent ERLLP group had reduced average muscle size for all structures except the tibialis anterior compared to the uninjured group (mean difference [MD] range: -0.12-0.49 mm/kg; p range: .002-.05), and reduced average medial gastrocnemius pennation angles on their case limb compared to their contralateral limb and the uninjured group (MD range: -3.7-6.4°; p < .001). The ERLLP group additionally had reduced average patellar and Achilles tendon size (MD range: -0.14--0.15 mm/kg; p range: .02-.03), and lower Achilles tendon echogenicity compared to uninjured counterparts (MD: -18; p = .02). CONCLUSIONS Adolescent runners with ERLLP exhibited morphological musculotendinous changes that may occur either as a result of or as a contributing factor to pain and persistent dysfunction. The findings highlight key targets for rehabilitation for young, injured runners, particularly intrinsic foot muscle strengthening.
Collapse
Affiliation(s)
- Alexandra F DeJong Lempke
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah Jackson
- Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Stracciolini
- Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Pierre A D'Hemecourt
- Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin E Whitney
- Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Goodman WW, Helms E, Graham DF. Individual Muscle Contributions to the Acceleration of the Center of Mass During the Barbell Back Squat in Trained Female Subjects. J Strength Cond Res 2023; 37:1947-1954. [PMID: 37556813 DOI: 10.1519/jsc.0000000000004506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
ABSTRACT Goodman, WW, Helms, E, and Graham, DF. Individual muscle contributions to the acceleration of the center of mass during the barbell back squat in trained female subjects. J Strength Cond Res 37(10): 1947-1954, 2023-The squat is used to enhance performance and rehabilitate the lower body. However, muscle forces and how muscles accelerate the center of mass (CoM) are not well understood. The purpose was to determine how lower extremity muscles contribute to the vertical acceleration of the CoM when squatting to parallel using 85% one-repetition maximum. Thirteen female subjects performed squats in a randomized fashion. Musculoskeletal modeling was used to obtain muscle forces and muscle-induced accelerations. The vasti, soleus, and gluteus maximus generated the largest upward accelerations of the CoM, whereas the muscles that produced the largest downward acceleration about the CoM were the hamstrings, iliopsoas, adductors, and tibialis anterior. Our findings indicate that a muscle's function is task and posture specific. That is, muscle function depends on both joint position and how an individual is interacting with the environment.
Collapse
Affiliation(s)
- William W Goodman
- Montana State University, College of Education, Health and Human Development, Bozeman, Montana; and
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - David F Graham
- Montana State University, College of Education, Health and Human Development, Bozeman, Montana; and
| |
Collapse
|
23
|
Stingel JP, Hicks JL, Uhlrich SD, Delp SL. Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device. IEEE Robot Autom Lett 2023; 8:6267-6274. [PMID: 37745177 PMCID: PMC10512759 DOI: 10.1109/lra.2023.3303094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Connecting the legs with a spring attached to the shoelaces, called an exotendon, can reduce the energetic cost of running, but how the exotendon reduces the energetic burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the exotendon to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the exotendon. The seven of nine participants who reduced energy cost when running with the exotendon reduced their measured energy expenditure rate by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the exotendon reduced rates of energy expenditure for all seven individuals. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. By modeling muscle-level energetics, this simulation framework accurately captured measured changes in whole-body energetics when using an assistive device. This is a useful first step towards using simulation to accelerate device design by predicting how humans will interact with assistive devices that have yet to be built.
Collapse
Affiliation(s)
- Jon P Stingel
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| | - Jennifer L Hicks
- Bioengineering Department, Stanford University, Stanford, CA 94305 USA
| | - Scott D Uhlrich
- Bioengineering Department, Stanford University, Stanford, CA 94305 USA
| | - Scott L Delp
- Departments of Mechanical Engineering, Bioengineering, and Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
24
|
Genitrini M, Fritz J, Stöggl T, Schwameder H. Performance Level Affects Full Body Kinematics and Spatiotemporal Parameters in Trail Running-A Field Study. Sports (Basel) 2023; 11:188. [PMID: 37888515 PMCID: PMC10611210 DOI: 10.3390/sports11100188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Trail running is an emerging discipline with few studies performed in ecological conditions. The aim of this work was to investigate if and how biomechanics differ between more proficient (MP) and less proficient (LP) trail runners. Twenty participants (10 F) were recruited for a 9.1 km trail running time trial wearing inertial sensors. The MP athletes group was composed of the fastest five men and the fastest five women. Group differences in spatiotemporal parameters and leg stiffness were tested with the Mann-Whitney U-test. Group differences in joint angles were tested with statistic parametric mapping. The finish time was 51.1 ± 6.3 min for the MP athletes and 60.0 ± 5.5 min for the LP athletes (p < 0.05). Uphill sections: The MP athletes expressed a tendency to higher speed that was not significant (p > 0.05), achieved by combining higher step frequency and higher step length. They showed a tendency to shorter contact time, lower duty factor and longer flight time that was not significant (p > 0.05) as well as significantly lower knee flexion during the stance phase (p < 0.05). Downhill sections: The MP athletes achieved significantly higher speed (p < 0.05) through higher step length only. They showed significantly higher knee and hip flexion during the swing phase as well as higher trunk rotation and shoulder flexion during the stance phase (p < 0.05). No differences were found with respect to leg stiffness in the uphill or downhill sections (p > 0.05). In the uphill sections, the results suggest lower energy absorption and more favorable net mechanical work at the knee joint for the MP athletes. In the downhill sections, the results suggest that the more efficient motion of the swing leg in the MP athletes could increase momentum in the forward direction and full body center of mass' velocity at toe off, thus optimizing the propulsion phase.
Collapse
Affiliation(s)
- Matteo Genitrini
- Department of Sport and Exercise Science, University of Salzburg, 5400 Hallein-Rif, Austria
| | | | - Thomas Stöggl
- Red Bull Athlete Performance Center, 5303 Thalgau, Austria
| | - Hermann Schwameder
- Department of Sport and Exercise Science, University of Salzburg, 5400 Hallein-Rif, Austria
| |
Collapse
|
25
|
Werling K, Bianco NA, Raitor M, Stingel J, Hicks JL, Collins SH, Delp SL, Liu CK. AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545116. [PMID: 37398034 PMCID: PMC10312696 DOI: 10.1101/2023.06.15.545116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subjecťs skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2 c m , and residual force magnitudes smaller than 2 % of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.
Collapse
Affiliation(s)
- Keenon Werling
- Department of Computer Science, Stanford University, Stanford, California
| | - Nicholas A. Bianco
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Michael Raitor
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Jon Stingel
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Jennifer L. Hicks
- Department of Bioengineering, Stanford University, Stanford, California
| | - Steven H. Collins
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Scott L. Delp
- Department of Mechanical Engineering, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| | - C. Karen Liu
- Department of Computer Science, Stanford University, Stanford, California
| |
Collapse
|
26
|
Keast M, Bonacci J, Fox A. Variability in tibia-fibular geometry is associated with increased tibial strain from running loads. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230262. [PMID: 37771963 PMCID: PMC10523080 DOI: 10.1098/rsos.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Variation in tibial geometry may alter strain magnitude and distribution during locomotion. We investigated the effect of tibia-fibula geometric variations on tibial strain with running loads applied at various speeds. Participant-specific three-dimensional models of the tibia-fibula were created using lower limb computed tomography scans from 30 cadavers. Finite-element models were developed in FEBio, and running loads from 3, 4 and 5 m s-1 were applied to extract effective strain from the tibial shaft. Linear regression models evaluated the relationship between geometric characteristics and effective strain along the tibial shaft. We found a statistically significant positive relationship between: (i) increased thickness of the midshaft to upper tibia with increased condyle prominence and effective strain at points along the distal anterolateral and proximal posterior regions of the tibial shaft; and (ii) increased midshaft cortical thickness and effective strain at points along the medial aspect of the distal tibial shaft. It is possible that increased thickness in the more proximal region of the tibia causes strain to redistribute to areas that are more susceptible to the applied loads. A thickness imbalance between the upper and distal portions of the tibial shaft could have a negative impact on tibial stress injury risk.
Collapse
Affiliation(s)
- Meghan Keast
- School of Exercise and Nutrition Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Victoria, Australia
| | - Jason Bonacci
- School of Exercise and Nutrition Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Victoria, Australia
| | - Aaron Fox
- School of Exercise and Nutrition Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Victoria, Australia
| |
Collapse
|
27
|
Gao L, Ye J, Bálint K, Radak Z, Mao Z, Gu Y. Biomechanical effects of exercise fatigue on the lower limbs of men during the forward lunge. Front Physiol 2023; 14:1182833. [PMID: 37664426 PMCID: PMC10470642 DOI: 10.3389/fphys.2023.1182833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background: During competition and training, exercises involving the lungs may occur throughout the sport, and fatigue is a major injury risk factor in sport, before and after fatigue studies of changes in the lungs are relatively sparse. This study is to investigate into how fatigue affects the lower limb's biomechanics during a forward lunge. Methods: 15 healthy young men participate in this study before and after to exposed to a fatigue protocol then we tested the forward lunge to obtain kinematic, kinetic changing during the task, and to estimate the corresponding muscles' strength changes in the hip, knee, and ankle joints. The measurement data before and after the fatigue protocol were compared with paired samples t-test. Results: In the sagittal and horizontal planes of the hip and knee joints, in both, the peak angles and joint range of motion (ROM) increased, whereas the moments in the sagittal plane of the knee joint smaller. The ankle joint's maximum angle smaller after fatigue. Peak vertical ground reaction force (vGRF) and peak contact both significantly smaller after completing the fatigue protocol and the quadriceps mean and maximum muscular strength significantly increased. Conclusion: After completing a fatigue protocol during lunge the hip, knee, and ankle joints become less stable in both sagittal and horizontal planes, hip and knee range of motion becomes greater. The quadriceps muscles are more susceptible to fatigue and reduced muscle force. Trainers should focus more on the thigh muscle groups.
Collapse
Affiliation(s)
- Lidong Gao
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Jingyi Ye
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kovács Bálint
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zhuqing Mao
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
| |
Collapse
|
28
|
Fox KT, Pearson LT, Hicks KM. The effect of lower inter-limb asymmetries on athletic performance: A systematic review and meta-analysis. PLoS One 2023; 18:e0286942. [PMID: 37289826 PMCID: PMC10249853 DOI: 10.1371/journal.pone.0286942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Inter-limb asymmetry refers to an imbalance in performance between the left and right limbs. Discrepancies throughout asymmetry research does not allow practitioners to confidently understand the effect of inter-limb asymmetries on athletic performance. Therefore, this review summarized the current literature using a meta-analytic approach, conforming to the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify the association between inter-limb asymmetry and athletic performance. A literature search using PubMed, Web of Science and SPORTDiscus databases yielded 11-studies assessing the effect of inter-limb asymmetries, measured via unilateral jump performance, on bilateral jump, change of direction (COD) and sprint performance in adult sports players. The quality of evidence was assessed via a modified Downs and Black checklist and in compliance with the Grading of Recommendations Assessment Development and Evaluation. Correlation coefficients were transformed via Fishers z (Zr), meta-analysed and then re-converted to correlation coefficients. Egger's regression presented no significant risk of bias. Vertical jump performance was not significantly affected by asymmetry (Zr = 0.053, r = 0.05; P = 0.874), whereas COD and sprint both presented significant weak associations (COD, Zr = 0.243, r = 0.24; Sprint, Zr = 0.203, r = 0.2; P < 0.01). The results demonstrate that inter-limb asymmetries seem to present a negative impact to COD and sprint performance but not vertical jump performance. Practitioners should consider implementing monitoring strategies to identify, monitor and possibly address inter-limb asymmetries, specifically for performance tests underpinned by unilateral movements such as COD and sprint performance.
Collapse
Affiliation(s)
- Kai T. Fox
- affiliations>Department of Sport, Exercise and Rehabilitation; Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Liam T. Pearson
- affiliations>Department of Sport, Exercise and Rehabilitation; Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Kirsty M. Hicks
- affiliations>Department of Sport, Exercise and Rehabilitation; Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
29
|
Li X, Lu Z, Cen X, Zhou Y, Xuan R, Sun D, Gu Y. Effect of pregnancy on female gait characteristics: a pilot study based on portable gait analyzer and induced acceleration analysis. Front Physiol 2023; 14:1034132. [PMID: 37260595 PMCID: PMC10227621 DOI: 10.3389/fphys.2023.1034132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: The changes in physical shape and center of mass during pregnancy may increase the risk of falls. However, there were few studies on the effects of maternal muscles on gait characteristics and no studies have attempted to investigate changes in induced acceleration during pregnancy. Further research in this area may help to reveal the causes of gait changes in women during pregnancy and provide ideas for the design of footwear and clothing for pregnant women. The purpose of this study is to compare gait characteristics and induced accelerations between non-pregnant and pregnant women using OpenSim musculoskeletal modeling techniques, and to analyze their impact on pregnancy gait. Methods: Forty healthy participants participated in this study, including 20 healthy non-pregnant and 20 pregnant women (32.25 ± 5.36 weeks). The portable gait analyzer was used to collect participants' conventional gait parameters. The adjusted OpenSim personalized musculoskeletal model analyzed the participants' kinematics, kinetics, and induced acceleration. Independent sample T-test and one-dimensional parameter statistical mapping analysis were used to compare the differences in gait characteristics between pregnant and non-pregnant women. Results: Compared to the control group, pregnancy had a 0.34 m reduction in mean walking speed (p < 0.01), a decrease in mean stride length of 0.19 m (p < 0.01), a decrease in mean stride frequency of 19.06 step/min (p < 0.01), a decrease in mean thigh acceleration of 0.14 m/s2 (p < 0.01), a decrease in mean swing work of 0.23 g (p < 0.01), and a decrease in mean leg falling strength of 0.84 g (p < 0.01). Induced acceleration analysis showed that pregnancy muscle-induced acceleration decreased in late pregnancy (p < 0.01), and the contribution of the gastrocnemius muscle to the hip and joint increased (p < 0.01). Discussion: Compared with non-pregnant women, the gait characteristics, movement amplitude, and joint moment of pregnant women changed significantly. This study observed for the first time that the pregnant women relied more on gluteus than quadriceps to extend their knee joints during walking compared with the control group. This change may be due to an adaptive change in body shape and mass during pregnancy.
Collapse
Affiliation(s)
- Xin Li
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Zhenghui Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuanzhen Cen
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yizheng Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Dong Sun
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
| |
Collapse
|
30
|
Ewertowska P, Świtała K, Grzyb W, Urbański R, Aschenbrenner P, Krzysztofik M. Effects of whole-body vibration warm-up on subsequent jumping and running performance. Sci Rep 2023; 13:7411. [PMID: 37150765 PMCID: PMC10164738 DOI: 10.1038/s41598-023-34707-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023] Open
Abstract
The aim of this study was to examine whether acute whole-body vibration, a single bout of drop jumps, or a combination of both may enhance countermovement jump (CMJ) and would affect volitional pace 3 km running performance. Twelve healthy and recreationally active males completed 4 conditions in randomized order: (i) 5 sets of 30 s calf raises on the platform but without vibration; (ii) 5 sets of 30 s calf raises on the vibration platform with 30 s rest intervals between sets; (iii) 5 sets of 6 drop jump with a 30 s rest interval between sets; (iv) 5 sets of 30 s calf raises on the vibration platform followed by 6 drop jumps with a 30 s rest interval between sets. Before, 3-min after, and immediately after a 3 km run each participant performed CMJ. No significant difference between conditions (p = 0.327) for the 3 km time trial was found. Whereas CMJ height and relative peak power were significantly improved in post-3 km run than at baseline (p < 0.001 and p = 0.025) and post-warm-up (p = 0.001 and p = 0.002) in all conditions. The present study indicates that warm-up consisting of either whole-body vibration, drop jumps, or a combination of both failed to acutely improve CMJ and 3 km volitional pace running performance in physically active males. However, the increase in the CMJ performance was noted after the end of the 3 km run, which may indicate that the warm-up protocols used were insufficient to enhance subsequent performance.
Collapse
Affiliation(s)
- Paulina Ewertowska
- Chair of Health and Biological Sciences, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Katarzyna Świtała
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Wojciech Grzyb
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Robert Urbański
- Department of Biomechanics and Sports Engineering, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Piotr Aschenbrenner
- Department of Biomechanics and Sports Engineering, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Michał Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72A Str., 40-065, Katowice, Poland.
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
31
|
Moustridi E, Risvas K, Moustakas K. Predictive simulation of single-leg landing scenarios for ACL injury risk factors evaluation. PLoS One 2023; 18:e0282186. [PMID: 36893124 PMCID: PMC9997920 DOI: 10.1371/journal.pone.0282186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023] Open
Abstract
The Anterior Cruciate Ligament (ACL) rupture is a very common knee injury during sport activities. Landing after jump is one of the most prominent human body movements that can lead to such an injury. The landing-related ACL injury risk factors have been in the spotlight of research interest. Over the years, researchers and clinicians acquire knowledge about human movement during daily-life activities by organizing complex in vivo studies that feature high complexity, costs and technical and most importantly physical challenges. In an attempt to overcome these limitations, this paper introduces a computational modeling and simulation pipeline that aims to predict and identify key parameters of interest that are related to ACL injury during single-leg landings. We examined the following conditions: a) landing height, b) hip internal and external rotation, c) lumbar forward and backward leaning, d) lumbar medial and lateral bending, e) muscle forces permutations and f) effort goal weight. Identified on related research studies, we evaluated the following risk factors: vertical Ground Reaction Force (vGRF), knee joint Anterior force (AF), Medial force (MF), Compressive force (CF), Abduction moment (AbdM), Internal rotation moment (IRM), quadricep and hamstring muscle forces and Quadriceps/Hamstrings force ratio (Q/H force ratio). Our study clearly demonstrated that ACL injury is a rather complicated mechanism with many associated risk factors which are evidently correlated. Nevertheless, the results were mostly in agreement with other research studies regarding the ACL risk factors. The presented pipeline showcased promising potential of predictive simulations to evaluate different aspects of complicated phenomena, such as the ACL injury.
Collapse
Affiliation(s)
- Evgenia Moustridi
- Department of Electrical and Computer Engineering, University of Patras, Patras, Achaia, Greece
| | - Konstantinos Risvas
- Department of Electrical and Computer Engineering, University of Patras, Patras, Achaia, Greece
| | - Konstantinos Moustakas
- Department of Electrical and Computer Engineering, University of Patras, Patras, Achaia, Greece
| |
Collapse
|
32
|
Lee M, Lancaster M, Tulloch L, O'Leary B, Power E, Howes D, Sourbuts B, Berry A, Maher F, O'Neill S. Normative isometric plantarflexion strength values for professional level, male rugby union athletes. Phys Ther Sport 2023; 61:114-121. [PMID: 37003219 DOI: 10.1016/j.ptsp.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVES The primary aim was to establish normative values of isometric plantarflexor muscle strength in professional male rugby union players and compare forwards with backs. The secondary aims were to examine how individual playing position or age influences isometric plantarflexor strength. DESIGN Cross-sectional. SETTING Testing at professional rugby clubs. PARTICIPANTS 355 players (201 forwards and 154 backs) from 9 clubs in the English Premiership club competition. MAIN OUTCOME MEASURES Maximal unilateral isometric plantarflexion strength was measured, using a Fysiometer C-Station, in a seated position with a flexed knee and in maximal available dorsiflexion. Values are reported normalised to body mass and specific to playing position. RESULTS Mean combined limb isometric plantarflexion strength for the group was 193.1 kg (SD 32) or 1.86 xBW. (SD 0.31). Forwards were significantly weaker than backs (forwards = 1.75xBW (SD 0.26), backs = 2.00xBW (SD 0.28) (p=<0.0001)). Age category revealed no influence on plantarflexor strength. CONCLUSION This study presents normative isometric plantarflexion strength values for professional male rugby union players. Forwards are typically relatively weaker than backs.
Collapse
Affiliation(s)
- Matt Lee
- Northampton Saints RFC, Northampton, UK; University of Leicester, Leicester, UK.
| | | | | | | | | | | | | | - Amber Berry
- University Hospitals of Leicestershire NHS Trust, Leicester, UK
| | | | | |
Collapse
|
33
|
Willson AM, Anderson AJ, Richburg CA, Muir BC, Czerniecki J, Steele KM, Aubin PM. Full body musculoskeletal model for simulations of gait in persons with transtibial amputation. Comput Methods Biomech Biomed Engin 2023; 26:412-423. [PMID: 35499924 PMCID: PMC9626388 DOI: 10.1080/10255842.2022.2065630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper describes the development, properties, and evaluation of a musculoskeletal model that reflects the anatomical and prosthetic properties of a transtibial amputee using OpenSim. Average passive prosthesis properties were used to develop CAD models of a socket, pylon, and foot to replace the lower leg. Additional degrees of freedom (DOF) were included in each joint of the prosthesis for potential use in a range of research areas, such as socket torque and socket pistoning. The ankle has three DOFs to provide further generality to the model. Seven transtibial amputee subjects were recruited for this study. 3 D motion capture, ground reaction force, and electromyographic (EMG) data were collected while participants wore their prescribed prosthesis, and then a passive prototype prosthesis instrumented with a 6-DOF load cell in series with the pylon. The model's estimates of the ankle, knee, and hip kinematics comparable to previous studies. The load cell provided an independent experimental measure of ankle joint torque, which was compared to inverse dynamics results from the model and showed a 7.7% mean absolute error. EMG data and muscle outputs from OpenSim's Static Optimization tool were qualitatively compared and showed reasonable agreement. Further improvements to the muscle characteristics or prosthesis-specific foot models may be necessary to better characterize individual amputee gait. The model is open-source and available at (https://simtk.org/projects/biartprosthesis) for other researchers to use to advance our understanding and amputee gait and assist with the development of new lower limb prostheses.
Collapse
Affiliation(s)
- Andrea M. Willson
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| | - Anthony J. Anderson
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| | | | - Brittney C. Muir
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| | - Joseph Czerniecki
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA,Department of Rehabilitation Medicine, University of Washington, Seattle WA, USA
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA
| | - Patrick M. Aubin
- Department of Mechanical Engineering, University of Washington, Seattle WA, USA,VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle WA, USA
| |
Collapse
|
34
|
Marconi G, Gopalai AA, Chauhan S. Effects of powered ankle-foot orthoses mass distribution on lower limb muscle forces-a simulation study. Med Biol Eng Comput 2023; 61:1167-1182. [PMID: 36689083 PMCID: PMC10083162 DOI: 10.1007/s11517-023-02778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
Collapse
Affiliation(s)
- Grace Marconi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| | | | - Sunita Chauhan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| |
Collapse
|
35
|
Kim HK, Lu SH, Lu TW, Chou LS. Contribution of lower extremity muscles to center of mass acceleration during walking: Effect of body weight. J Biomech 2023; 146:111398. [PMID: 36459848 DOI: 10.1016/j.jbiomech.2022.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Overweight or obesity is known to be associated with altered activations of lower extremity muscles. Such changes in muscular function may lead to the development of mobility impairments or joint diseases. However, little is known about how individual lower extremity muscles contribute to the whole-body center of mass (COM) control during walking and the effect of body weight. This study examined the contribution of individual lower extremity muscle force to the COM accelerations during walking in overweight and non-overweight individuals. Musculoskeletal simulations were performed for the stance phase of walking with data collected from 11 overweight and 13 non-overweight adults to estimate lower extremity muscle forces and their contributions to the COM acceleration. Mean time-series data from each parameter were compared between body size groups using Statistical Parametric Mapping. Compared to the non-overweight group, the overweight group revealed a greater gastrocnemius contribution to the mediolateral (p = 0.006) and vertical (p < 0.001) COM accelerations during mid-stance, and had a lower vastus contribution to the anteroposterior COM acceleration (p < 0.001) during pre-swing. Increased contributions from the large posterior calf muscles to the mediolateral COM acceleration may be related to efforts to alleviate COM sway in overweight individuals.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Kinesiology, Iowa State University, Ames, IA, USA; School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Shiuan-Huei Lu
- Department of Biomedical Engineering, National Taiwan University, Taiwan
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taiwan
| | - Li-Shan Chou
- Department of Kinesiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
36
|
Wu CX, Liu HB, Zhao ZN, Wang YB, Luan ZL. Effects of movement direction and limb dominance on ankle muscular force in sidestep cutting. Med Eng Phys 2022; 110:103914. [PMID: 36564139 DOI: 10.1016/j.medengphy.2022.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Sidestep cutting is a critical movement in sports. However, biomechanical research on sidestep cutting has not hitherto reached a consensus. In order to investigate the effects of limb dominance and movement direction on ankle and subtalar joints during sidestep cutting, twelve physically active male participants were recruited in the present study. Trajectory and ground reaction force data were collected by the motion capture system and force platform. Kinematics, kinetics, and muscle forces information were obtained by running OpenSim. Two-way repeated measures ANOVA was performed with movement direction and limb dominance as independent variables. We found that movement direction had a significant effect on ankle dorsiflexion angle. In contrast, the factor of limb dominance had no effect on ankle and subtalar joints angles. For ankle joint moment, the plantarflexion moment was greater by performing a 45° sidestep cutting or using the dominant limb, while the subtalar joint moment was not affected by these two variables. In terms of muscle forces, the soleus of the dominant limb generated greater plantarflexion muscle force on the sagittal plane, while the non-dominant limb tended to contract more strongly (peroneus longus and peroneus brevis) on the frontal plane to stabilize the subtalar joint. Meanwhile, a smaller sidestep cutting angle made participants generate greater plantarflexion muscle forces (soleus and gastrocnemius). In conclusion, our findings indicated that participants should take limb dominance and movement direction into consideration for enhancing athletic performance and reducing the risk of injury during sidestep cutting.
Collapse
Affiliation(s)
- Chen-Xiao Wu
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian 116024, China
| | - Hai-Bin Liu
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian 116024, China
| | - Zhi-Nan Zhao
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian 116024, China
| | - Yu-Bin Wang
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian 116024, China
| | - Zhi-Lin Luan
- Advance Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
37
|
Zhao K, Shan C, Luximon Y. Contributions of individual muscle forces to hip, knee, and ankle contact forces during the stance phase of running: a model-based study. Health Inf Sci Syst 2022; 10:11. [PMID: 35719242 PMCID: PMC9203628 DOI: 10.1007/s13755-022-00177-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022] Open
Abstract
Knowledge of muscle forces' contributions to the joint contact forces can assist in the evaluation of muscle function, joint injury prevention, treatment of gait disorders, and arthroplasty planning. This study's objective was to evaluate the contributions of human lower limb muscles to the hip, knee, and ankle joint contact forces during the stance phase of running. A total of 25 muscles (or groups) were investigated based on the OpenSim framework along the anterior-posterior, superoinferior, and mediolateral components of each joint coordinate system. It was revealed that, during the running stance phase, the gluteus medius, gluteus maximus, and iliopsoas mainly contributed to the hip contact force. The soleus, vastus group, and rectus femoris primarily contributed to the knee contact force, while the peroneus, soleus, gluteus medius, and gastrocnemius mainly contributed to the ankle joint force; some muscles simultaneously offloaded the joints during the stance phase. The distributive pattern of the individual muscle functions contributing to the joint load may substantially differ during the running and walking stance phases. This study's findings may further provide suggestive information for the design of lower limb joint prosthesis, the study of the biomechanics of pathologic walking and running, and the progression of joint osteoarthritis.
Collapse
Affiliation(s)
- Kaiwei Zhao
- Guangdong Polytechnic Normal University, Guangzhou, Guangdong China
| | - Chun Shan
- Guangdong Polytechnic Normal University, Guangzhou, Guangdong China
| | - Yan Luximon
- The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
38
|
Vincent HK, Vincent KR. Healthy Running Habits for the Distance Runner: Clinical Utility of the American College of Sports Medicine Infographic. Curr Sports Med Rep 2022; 21:463-469. [PMID: 36508604 DOI: 10.1249/jsr.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Healthy running form is characterized by motion that minimizes mechanical musculoskeletal injury risks and improves coactivation of muscles that can buffer impact loading and reduce stresses related to chronic musculoskeletal pain. The American College of Sports Medicine Consumer Outreach Committee recently launched an infographic that describes several healthy habits for the general distance runner. This review provides the supporting evidence, expected acute motion changes with use, and practical considerations for clinical use in patient cases. Healthy habits include: taking short, quick, and soft steps; abdominal bracing; elevating cadence; linearizing arm swing; controlling forward trunk lean, and; avoiding running through fatigue. Introduction of these habits can be done sequentially one at a time to build on form, or more than one over time. Adoption can be supported by various feedback forms and cueing. These habits are most successful against injury when coupled with regular dynamic strengthening of the kinetic chain, adequate recovery with training, and appropriate shoe wear.
Collapse
Affiliation(s)
- Heather K Vincent
- Department of Physical Medicine and Rehabilitation, UF Health Running Medicine and Sports Performance Center, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
39
|
Eihara Y, Takao K, Sugiyama T, Maeo S, Terada M, Kanehisa H, Isaka T. Heavy Resistance Training Versus Plyometric Training for Improving Running Economy and Running Time Trial Performance: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:138. [PMID: 36370207 PMCID: PMC9653533 DOI: 10.1186/s40798-022-00511-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/21/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND As an adjunct to running training, heavy resistance and plyometric training have recently drawn attention as potential training modalities that improve running economy and running time trial performance. However, the comparative effectiveness is unknown. The present systematic review and meta-analysis aimed to determine if there are different effects of heavy resistance training versus plyometric training as an adjunct to running training on running economy and running time trial performance in long-distance runners. METHODS Electronic databases of PubMed, Web of Science, and SPORTDiscus were searched. Twenty-two studies completely satisfied the selection criteria. Data on running economy and running time trial performance were extracted for the meta-analysis. Subgroup analyses were performed with selected potential moderators. RESULTS The pooled effect size for running economy in heavy resistance training was greater (g = - 0.32 [95% confidence intervals [CIs] - 0.55 to - 0.10]: effect size = small) than that in plyometric training (g = -0.13 [95% CIs - 0.47 to 0.21]: trivial). The effect on running time trial performance was also larger in heavy resistance training (g = - 0.24 [95% CIs - 1.04 to - 0.55]: small) than that in plyometric training (g = - 0.17 [95% CIs - 0.27 to - 0.06]: trivial). Heavy resistance training with nearly maximal loads (≥ 90% of 1 repetition maximum [1RM], g = - 0.31 [95% CIs - 0.61 to - 0.02]: small) provided greater effects than those with lower loads (< 90% 1RM, g = - 0.17 [95% CIs - 1.05 to 0.70]: trivial). Greater effects were evident when training was performed for a longer period in both heavy resistance (10-14 weeks, g = - 0.45 [95% CIs - 0.83 to - 0.08]: small vs. 6-8 weeks, g = - 0.21 [95% CIs - 0.56 to 0.15]: small) and plyometric training (8-10 weeks, g = 0.26 [95% CIs - 0.67 to 0.15]: small vs. 4-6 weeks, g = - 0.06 [95% CIs 0.67 to 0.55]: trivial). CONCLUSIONS Heavy resistance training, especially with nearly maximal loads, may be superior to plyometric training in improving running economy and running time trial performance. In addition, running economy appears to be improved better when training is performed for a longer period in both heavy resistance and plyometric training.
Collapse
Affiliation(s)
- Yuuri Eihara
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan.
| | - Kenji Takao
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Takashi Sugiyama
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Sumiaki Maeo
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Masafumi Terada
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Hiroaki Kanehisa
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
40
|
Dataset of lower extremity joint angles, moments and forces in distance running. Heliyon 2022; 8:e11517. [DOI: 10.1016/j.heliyon.2022.e11517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
|
41
|
Bonacci J, Spratford W, Kenneally-Dabrowski C, Trowell D, Lai A. The effect of footwear on mechanical behaviour of the human ankle plantar-flexors in forefoot runners. PLoS One 2022; 17:e0274806. [PMID: 36121825 PMCID: PMC9484631 DOI: 10.1371/journal.pone.0274806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose To compare the ankle plantar-flexor muscle-tendon mechanical behaviour during barefoot and shod forefoot running. Methods Thirteen highly trained forefoot runners performed five overground steady-state running trials (4.5 ± 0.5 m.s-1) while barefoot and shod. Three-dimensional kinematic and ground reaction force data were collected and used as inputs for musculoskeletal modelling. Muscle-tendon behaviour of the ankle plantar-flexors (soleus; medial gastrocnemius; and lateral gastrocnemius) were estimated across the stance phase and compared between barefoot and shod running using a two-way multivariate analysis of variance. Results During barefoot running peak muscle-tendon unit (MTU) power generation was 16.5% (p = 0.01) higher compared to shod running. Total positive MTU work was 18.5% (p = 0.002) higher during barefoot running compared to shod running. The total sum of tendon elastic strain energy was 8% (p = 0.036) greater during barefoot compared to shod running, however the relative contribution of tendon and muscle fibres to muscle-tendon unit positive work was not different between conditions. Conclusion Barefoot forefoot running demands greater muscle and tendon work than shod forefoot running, but the relative contribution of tendon strain energy to overall muscle-tendon unit work was not greater.
Collapse
Affiliation(s)
- Jason Bonacci
- Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- * E-mail:
| | - Wayne Spratford
- Movement Science, Australian Institute of Sport, Canberra, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia
| | - Claire Kenneally-Dabrowski
- Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Danielle Trowell
- Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | |
Collapse
|
42
|
Zhang T, Ning C, Li Y, Wang M. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2456-2466. [PMID: 36001514 DOI: 10.1109/tnsre.2022.3201383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To overcome the different requirements of torque-velocity characteristics for walking, running, stand-to-sit, sit-to-stand, and climbing stairs, we propose a novel concept for actuator design, namely, a series elastic actuator with two-motor variable speed transmission. The two-motor variable speed transmission can be adjusted in real-time to realize variable torque-velocity characteristics. A novel lightweight wearable hip exoskeleton driven by a series elastic actuator with two-motor variable speed transmission, named SoochowExo, has been developed in this paper for use in the elderly population. The weight of the whole hip exoskeleton is 2.85 kg (excluding batteries), including two actuators and the frame. The proposed hip exoskeleton can match the weight of the state-of-the-art hip exoskeleton while offering suitable torque and velocity for sitting-to-standing, walking, running on level ground, and climbing stairs. The benchtop tests and the preliminary human subject tests further confirm the design.
Collapse
|
43
|
Merry K, Napier C, Waugh CM, Scott A. Foundational Principles and Adaptation of the Healthy and Pathological Achilles Tendon in Response to Resistance Exercise: A Narrative Review and Clinical Implications. J Clin Med 2022; 11:4722. [PMID: 36012960 PMCID: PMC9410084 DOI: 10.3390/jcm11164722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic exercise is widely considered a first line fundamental treatment option for managing tendinopathies. As the Achilles tendon is critical for locomotion, chronic Achilles tendinopathy can have a substantial impact on an individual's ability to work and on their participation in physical activity or sport and overall quality of life. The recalcitrant nature of Achilles tendinopathy coupled with substantial variation in clinician-prescribed therapeutic exercises may contribute to suboptimal outcomes. Further, loading the Achilles tendon with sufficiently high loads to elicit positive tendon adaptation (and therefore promote symptom alleviation) is challenging, and few works have explored tissue loading optimization for individuals with tendinopathy. The mechanism of therapeutic benefit that exercise therapy exerts on Achilles tendinopathy is also a subject of ongoing debate. Resultingly, many factors that may contribute to an optimal therapeutic exercise protocol for Achilles tendinopathy are not well described. The aim of this narrative review is to explore the principles of tendon remodeling under resistance-based exercise in both healthy and pathologic tissues, and to review the biomechanical principles of Achilles tendon loading mechanics which may impact an optimized therapeutic exercise prescription for Achilles tendinopathy.
Collapse
Affiliation(s)
- Kohle Merry
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, Vancouver, BC V5Z 1M9, Canada
| | - Christopher Napier
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, Vancouver, BC V5Z 1M9, Canada
| | - Charlie M. Waugh
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, Vancouver, BC V5Z 1M9, Canada
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
44
|
Lu Z, Li X, Rong M, Baker JS, Gu Y. Effect of rearfoot valgus on biomechanics during barbell squatting: A study based on OpenSim musculoskeletal modeling. Front Neurorobot 2022; 16:832005. [PMID: 36017416 PMCID: PMC9396136 DOI: 10.3389/fnbot.2022.832005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Barbell squats are commonly used in daily training and rehabilitation. Injuries are not common when the posture is standard, but the wrong posture can lead to injuries. Rearfoot valgus is a common foot abnormality that may increase the risk of injury during sports. The purpose of this study was to compare the biomechanics of lower limbs in normal foot and valgus patients during barbell squat. Methods In this study, 10 participants with normal foot shape and 10 participants with rearfoot valgus were enrolled. The joint angle, joint moment, and range of motion of hip, knee, and ankle joints were collected under 0, 30, and 70% one-repetition maximum (RM) load, where discrete data are statistically analyzed using the independent sample t-test, and continuous data are statistically analyzed using one-dimensional parameter statistical mapping. Results In barbell squats, the range of motion and the joint moment of the hip, knee, and ankle in the rearfoot valgus participants were significantly larger than those in normal foot participants (p < 0.05). The participants with rearfoot valgus had a more significant knee valgus angle when squatting to the deepest (p < 0.05). In addition, with the increase in load, the participants with rearfoot valgus showed greater standardized medial knee contact force (p < 0.05). In the process of barbell squats, the participants with rearfoot valgus showed no significant difference in the foot valgus angle when compared with the normal foot shape (p > 0.05). Conclusions The valgus population showed a greater range of joint motion when performing barbell squats and showed genu valgus and greater medial knee contact force, which may increase the risk of musculoskeletal and soft tissue damage such as meniscus wear. In addition, there was no significant difference in the rearfoot valgus angle between people with rearfoot valgus and people with normal foot shape during squatting, so barbell squatting may correct valgus to a certain extent.
Collapse
Affiliation(s)
- Zhenghui Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xin Li
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ming Rong
- Faculty of Sports Science, Ningbo University, Ningbo, China
- *Correspondence: Ming Rong
| | - Julien S. Baker
- Department of Sport and Physical Education, Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Yaodong Gu
| |
Collapse
|
45
|
Effect of Heel Lift Insoles on Lower Extremity Muscle Activation and Joint Work during Barbell Squats. Bioengineering (Basel) 2022; 9:bioengineering9070301. [PMID: 35877352 PMCID: PMC9312299 DOI: 10.3390/bioengineering9070301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of heel elevation on the barbell squat remains controversial, and further exploration of muscle activity might help find additional evidence. Therefore, 20 healthy adult participants (10 males and 10 females) were recruited for this study to analyze the effects of heel height on lower extremity kinematics, kinetics, and muscle activity using the OpenSim individualized musculoskeletal model. One-way repeated measures ANOVA was used for statistical analysis. The results showed that when the heel was raised, the participant’s ankle dorsiflexion angle significantly decreased, and the percentage of ankle work was increased (p < 0.05). In addition, there was a significant increase in activation of the vastus lateralis, biceps femoris, and gastrocnemius muscles and a decrease in muscle activation of the anterior tibialis muscle (p < 0.05). An increase in knee moments and work done and a reduction in hip work were observed in male subjects (p < 0.05). In conclusion, heel raises affect lower extremity kinematics and kinetics during the barbell squat and alter the distribution of muscle activation and biomechanical loading of the joints in the lower extremity of participants to some extent, and there were gender differences in the results.
Collapse
|
46
|
Maniar N, Schache AG, Pizzolato C, Opar DA. Muscle function during single leg landing. Sci Rep 2022; 12:11486. [PMID: 35798797 PMCID: PMC9262956 DOI: 10.1038/s41598-022-15024-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Landing manoeuvres are an integral task for humans, especially in the context of sporting activities. Such tasks often involve landing on one leg which requires the coordination of multiple muscles in order to effectively dissipate kinetic energy. However, no prior studies have provided a detailed description of the strategy used by the major lower limb muscles to perform single-leg landing. The purpose of the present study was to understand how humans coordinate their lower limb muscles during a single-leg landing task. Marker trajectories, ground reaction forces (GRFs), and surface electromyography (EMG) data were collected from healthy male participants performing a single-leg landing from a height of 0.31 m. An EMG-informed neuromusculoskeletal modelling approach was used to generate neuromechanical simulations of the single-leg landing task. The muscular strategy was determined by computing the magnitude and temporal characteristics of musculotendon forces and energetics. Muscle function was determined by computing muscle contributions to lower limb net joint moments, GRFs and lower limb joint contact forces. It was found that the vasti, soleus, gluteus maximus and gluteus medius produced the greatest muscle forces and negative (eccentric) mechanical work. Downward momentum of the centre-of-mass was resisted primarily by the soleus, vasti, gastrocnemius, rectus femoris, and gluteus maximus, whilst forward momentum was primarily resisted by the quadriceps (vasti and rectus femoris). Flexion of the lower limb joints was primarily resisted by the uni-articular gluteus maximus (hip), vasti (knee) and soleus (ankle). Overall, our findings provide a unique insight into the muscular strategy used by humans during a landing manoeuvre and have implications for the design of athletic training programs.
Collapse
Affiliation(s)
- Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia. .,Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia.
| | - Anthony G Schache
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, VIC, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.,Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
47
|
Shen K, Chemori A, Hayashibe M. Classification of Human Balance Recovery Strategies Through Kinematic Motor Synergy Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1792-1796. [PMID: 36086275 DOI: 10.1109/embc48229.2022.9870922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A key problem in human balance recovery lies in understanding the mechanism of balance behavior with redundant bio-mechanical motors. Motor synergy has been known as an efficient tool to analyze characteristics of motion behavior and reconstruct control command. In this paper, motor synergy analysis for different control strategies is proposed to analyze different balance motion coordination for various levels of pushing force, and understand the coordination of human multiple joints regarding balance recovery. The spatial synergy of specific joint angles for different pushing force levels exerted on the subject's back is computed with the principal component analysis (PCA) to evaluate the adaptive balance motion response patterns and illustrate the improvement of balance robustness through the switch of joint coordination. Therefore, the switch of postural coordination over multiple joints in balance recovery movements was analyzed to better understand the mechanism of balance strategy generation in this study.
Collapse
|
48
|
Zhang Q, Nassis GP, Chen S, Shi Y, Li F. Not Lower-Limb Joint Strength and Stiffness but Vertical Stiffness and Isometric Force-Time Characteristics Correlate With Running Economy in Recreational Male Runners. Front Physiol 2022; 13:940761. [PMID: 35837015 PMCID: PMC9273997 DOI: 10.3389/fphys.2022.940761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular characteristics, such as lower-limb joint strength, the ability to reuse elastic energy, and to generate force are essential factors influencing running performance. However, their relationship with running economy (RE) remains unclear. The aim of this study was to evaluate the correlations between isokinetic lower-limb joint peak torque (PT), lower-limb stiffness, isometric force-time characteristics and RE among recreational-trained male runners. Thirty male collegiate runners (aged 20–22 years, VO2max: 54.02 ± 4.67 ml·kg−1·min−1) participated in test sessions on four separate days. In the first session, the body composition and RE at 10 km·h−1 were determined. In the second session, leg and vertical stiffness (Kleg and Kvert), knee and ankle stiffness (Kknee and Kankle) were evaluated. In the third session, isokinetic knee and ankle joint PT at velocity of 60°s−1 were tested. The force-time characteristics of isometric mid-thigh pull (IMTP) were evaluated in the final session. The Pearson’s product-moment correlations analysis shows that there were no significant relationships between knee and ankle joint concentric and eccentric PT, Kknee and Kankle, Kleg, and RE at 10 km·h−1. However, Kvert (r = −0.449, p < 0.05) and time-specific rate of force development (RFD) for IMTP from 0 to 50 to 0–300 ms (r = −0.434 to −0.534, p < 0.05) were significantly associated with RE. Therefore, superior RE in recreational runners may not be related to knee and ankle joint strength and stiffness. It seems to be associated with vertical stiffness and the capacity to rapidly produce force within 50–300 ms throughout the lower limb.
Collapse
Affiliation(s)
- Qin Zhang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - George P. Nassis
- Physical Education Department, College of Education, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Shiqin Chen
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Yue Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fei Li
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Fei Li,
| |
Collapse
|
49
|
Jacques T, Bini R, Arndt A. Inter-limb differences in in-vivo tendon behavior, kinematics, kinetics and muscle activation during running. J Biomech 2022; 141:111209. [DOI: 10.1016/j.jbiomech.2022.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/28/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
|
50
|
Individual muscle force–energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation. J Biomech 2022; 139:111141. [DOI: 10.1016/j.jbiomech.2022.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|