1
|
Rimkunas A, Gudas R, Mickevicius T, Maciulaitis J, Malinauskas M, Smailys A, Staskunas M, Usas A. Arthroscopic Electromechanical Assessment of Human Articular Cartilage Injury Correlates with ICRS Scores. Cartilage 2024; 15:250-258. [PMID: 38054444 PMCID: PMC11418488 DOI: 10.1177/19476035231216439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE This study aimed to conduct arthroscopic evaluation of cartilage electromechanical properties and establish their correlation with International Cartilage Repair Society (ICRS) grading scores. METHODS In 18 patients, quantitative parameter (QP) measurements were taken on the weight-bearing surface of the medial femoral condyle. Adjacently, the same site was graded using ICRS scores (0-4). Electromechanical QPs for ICRS grades 0 to 3 were obtained during arthroscopy, while complete grade 4 injuries were assessed using femur cartilage-bone blocks from knee arthroplasty. The QP values for ICRS grades 0 to 2 were compared with grades 3 and 4 using Welch t test. The corresponding QP values were assigned to ICRS grades 0 to 4 and compared using Welch ANOVA (analysis of variance). Pearson's coefficient evaluated QP-ICRS grade relationship. RESULTS Healthy grade 0 cartilage displayed a mean QP value of 10.5 (±2.8 SD, n = 4). The ICRS grade 1 and grade 2 injuries were associated with QP values of 12 (±0.7, n = 2) and 13.25 (±1.77, n = 2), respectively. The grade 3 defects had QP values of 20.43 (±4.84, n = 4), whereas complete grade 4 defects showed electromechanical values of 30.17 (±2.19, n = 6). Significant differences in QP values were observed between ICRS grades 0 to 2 (mean QP 11.56 ± 2.3, n = 8) and grades 3 and 4 (26.27 ± 6, n = 10; P < 0.0001). Pearson's correlation coefficient of 0.9 indicated a strong association between higher ICRS cartilage injury grades and elevated QP values (P < 0.0001). CONCLUSION Arthroscopic electromechanical QP assessment robustly correlates with ICRS scores. The QP values for ICRS grades 0 to 2 are significantly lower, compared with grades 3 and 4.
Collapse
Affiliation(s)
- Augustinas Rimkunas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Rimtautas Gudas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Tomas Mickevicius
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Justinas Maciulaitis
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Mantas Malinauskas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Alfredas Smailys
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Mantas Staskunas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Arvydas Usas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| |
Collapse
|
2
|
Hamsayeh Abbasi Niasar E, Brenneman Wilson EC, Quenneville CE, Maly MR, Li LP. Region partitioning of articular cartilage with streaming-potential-based parameters and indentation maps. J Mech Behav Biomed Mater 2024; 154:106534. [PMID: 38581961 DOI: 10.1016/j.jmbbm.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Articular cartilage exhibits site-specific tissue inhomogeneity, for which the tissue properties may continuously vary across the articular surface. To facilitate practical applications such as studying site-specific cartilage degeneration, the inhomogeneity may be approximated with several distinct region-wise variations, with one set of tissue properties for one region. A clustering method was previously developed to partition such regions using cartilage indentation-relaxation and thickness mapping instead of simply using surface geometry. In the present study, a quantitative parameter based on streaming potential measurement was introduced as an additional feature to assess the applicability of the methodology with independent datasets. Experimental data were collected from 24 sets of femoral condyles, extracted from fresh porcine stifle joints, through streaming potential mapping, automated indentation, and needle penetration tests. K-means clustering and Elbow method were used to find optimal region partitions. Consistent with previous findings, three regions were suggested for either lateral or medial condyle regardless of left or right joint. The region shapes were approximately triangular or trapezoidal, which was similar to what was found previously. Streaming potentials were confirmed to be region-dependent, but not significantly different among joints. The cartilage was significantly thicker in the medial than lateral condyles. The region areas were consistent among joints, and comparable to that found in a previous study. The present study demonstrated the capability of region partitioning methods with different variables, which may facilitate new applications whenever site-specific tissue properties must be considered.
Collapse
Affiliation(s)
| | | | - C E Quenneville
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - M R Maly
- Department of Kinesiology and Health Sciences, University of Waterloo, ON, Canada
| | - L P Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, AB, Canada.
| |
Collapse
|
3
|
Men Y, Ren Y, Zhao Z, Wang X, Liu L. Numerical analysis of streaming potential induced by loads in micro-pores of articular cartilage. Comput Methods Biomech Biomed Engin 2023; 26:1761-1771. [PMID: 37902439 DOI: 10.1080/10255842.2022.2141570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
In order to understand the distribution of streaming potentials in cartilage pores, this paper established finite element model to analyze. The results showed that the streaming potential in cartilage micro-pores increased along the axis. The electric potential in 5 μm straight micro-pore was about 50 μV, and the electric potential of curved bifurcation model was about 30 μV. The pressure and Zeta potential had a linear growth relationship with the streaming potential. The streaming potential decreased with the increase of ion concentration until ion concentration was saturated. These results could provide a theoretical basis for cartilage research.
Collapse
Affiliation(s)
- Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yucheng Ren
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Zhonghai Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Lu Liu
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research Enterprises, Just Huajian Medical Devices (Tianjin) Co., Ltd, Tianjin, China
| |
Collapse
|
4
|
Kutaish H, Tscholl PM, Cosset E, Bengtsson L, Braunersreuther V, Mor FM, Laedermann J, Furfaro I, Stafylakis D, Hannouche D, Gerstel E, Krause KH, Assal M, Menetrey J, Tieng V. Articular Cartilage Repair After Implantation of Hyaline Cartilage Beads Engineered From Adult Dedifferentiated Chondrocytes: Cartibeads Preclinical Efficacy Study in a Large Animal Model. Am J Sports Med 2023; 51:237-249. [PMID: 36592016 DOI: 10.1177/03635465221138099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chondrocyte-based cell therapy to repair cartilage has been used for >25 years despite current limitations. This work presents a new treatment option for cartilage lesions. HYPOTHESIS High-quality hyaline cartilage microtissues called Cartibeads are capable of treating focal chondral lesions once implanted in the defect, by complete fusion of Cartibeads among themselves and their integration with the surrounding native cartilage and subchondral bone. STUDY DESIGN Controlled laboratory study. METHODS Cartibeads were first produced from human donors and characterized using histology (safranin O staining of glycosaminoglycan [GAG] and immunohistochemistry of collagen I and II) and GAG dosage. Cartibeads from 6 Göttingen minipigs were engineered and implanted in an autologous condition in the knee (4 or 5 lesions per knee). One group was followed up for 3 months and the other for 6 months. Feasibility and efficacy were measured using histological analysis and macroscopic and microscopic scores. RESULTS Cartibeads revealed hyaline features with strong staining of GAG and collagen II. High GAG content was obtained: 24.6-µg/mg tissue (wet weight), 15.52-µg/mg tissue (dry weight), and 35 ± 3-µg GAG/bead (mean ± SD). Histological analysis of Göttingen minipigs showed good integration of Cartibeads grafts at 3 and 6 months after implantation. The Bern Score of the histological assay comparing grafted versus empty lesions was significant at 3 months (grafted, n = 10; nongrafted, n = 4; score, 3.3 and 5.3, respectively) and 6 months (grafted, n = 11; nongrafted, n = 3; score, 1.6 and 5.1). CONCLUSION We developed an innovative 3-step method allowing, for the first time, the use of fully dedifferentiated adult chondrocytes with a high number of cell passage (owing to the extensive amplification in culture). Cartibeads engineered from chondrocytes hold potential as an advanced therapy medicinal product for treating cartilage lesions with established efficacy. CLINICAL RELEVANCE This successful preclinical study, combined with standardized manufacturing of Cartibeads according to good manufacturing practice guidelines, led to the approval of first-in-human clinical trial by the ethics committee and local medical authority. The generated data highlighted a promising therapy to treat cartilage lesions from a small amount of starting biopsy specimen. With our innovative cell amplification technology, very large lesions can be treated, and older active patients can benefit from it.
Collapse
Affiliation(s)
- Halah Kutaish
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. University Medical Center, University of Geneva, Geneva, Switzerland. Foot and Ankle Surgery Centre, Centre Assal, Clinique La Colline, Hirslanden Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Matthias Tscholl
- Department of Orthopaedics Surgery, Geneva University Hospitals, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Erika Cosset
- University Medical Center, University of Geneva, Geneva, Switzerland. Laboratory of Tumor Immunology, Oncology Department, Center for Translational Research in Onco- Hematology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Laura Bengtsson
- University Medical Center, University of Geneva, Geneva, Switzerland. Vanarix SA, Lausanne, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Braunersreuther
- Service of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Flavio Maurizio Mor
- Tissue Engineering Laboratory, HEPIA/HES-SO, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Jeremy Laedermann
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Ivan Furfaro
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédeérale de Lausanne (EPFL), Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Dimitrios Stafylakis
- Department of Orthopaedics Surgery, Geneva University Hospitals, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Didier Hannouche
- University Medical Center, University of Geneva, Geneva, Switzerland. Department of Orthopaedics Surgery, Geneva University Hospitals, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Eric Gerstel
- University Medical Center, University of Geneva, Geneva, Switzerland. Clinique la Colline, Hirslanden, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. University Medical Center, University of Geneva, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Mathieu Assal
- University Medical Center, University of Geneva, Geneva, Switzerland. Foot and Ankle Surgery Centre, Centre Assal, Clinique La Colline, Hirslanden Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Menetrey
- University Medical Center, University of Geneva, Geneva, Switzerland. Centre for Sports Medicine and Exercise, Clinique la Colline, Hirslanden, Geneva, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| | - Vannary Tieng
- University Medical Center, University of Geneva, Geneva, Switzerland. Vanarix SA, Lausanne, Switzerland.,Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
5
|
Cykowska A, Danalache M, Bonnaire FC, Feierabend M, Hofmann UK. Detecting early osteoarthritis through changes in biomechanical properties - A review of recent advances in indentation technologies in a clinical arthroscopic setup. J Biomech 2022; 132:110955. [PMID: 35042088 DOI: 10.1016/j.jbiomech.2022.110955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease currently affecting half of all women and one-third of all men aged over 65 and it is predicted to even increase in the next decades. In the variety of causes leading to OA, the first common denominator are changes in the extracellular matrix of the cartilage. In later stages, OA affects the whole joint spreading to higher levels of tissue architecture causing irreversible functional and structural damage. To date, the diagnosis of OA is only formulated in the late stages of the disease. This is also, where most present therapies apply. Since a precise diagnosis is a prerequisite for targeted therapy, tools to diagnose early OA, monitor its progression, and accurately stage the disease are wanted. This review article focuses on recent advances in indentation technologies to diagnose early OA through describing biomechanical cartilage characteristics. We provide an overview of microindentation instruments, indentation-type Atomic Force Microscopy, ultrasound, and water-jet ultrasound indentation, Optical Coherence Tomography-based air-jet indentation, as well as fiber Bragg grating.
Collapse
Affiliation(s)
- Anna Cykowska
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72076 Tübingen, Germany.
| | - Martina Feierabend
- Department of Computational Systems Biology, Faculty of Science of the University of Tübingen, D-72076 Tübingen, Germany.
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Changoor A, Garon M, Quenneville E, Bull SB, Gordon K, Savard P, Buschmann MD, Hurtig MB. Non-invasive Electroarthrography Measures Load-Induced Cartilage Streaming Potentials via Electrodes Placed on Skin Surrounding an Articular Joint. Cartilage 2021; 13:375S-385S. [PMID: 32500724 PMCID: PMC8804767 DOI: 10.1177/1947603520928583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We aimed to demonstrate that electroarthrography (EAG) measures streaming potentials originating in the cartilage extracellular matrix during load bearing through electrodes adhered to skin surrounding an articular joint. DESIGN Equine metacarpophalangeal joints were subjected to simulated physiological loads while (1) replacing synovial fluid with immersion buffers of different electrolyte concentrations and (2) directly degrading cartilage with trypsin. RESULTS An inverse relationship between ionic strength and EAG coefficient was detected. Compared to native synovial fluid, EAG coefficients increased (P < 0.05) for 5 of 6 electrodes immersed in 0.1X phosphate-buffered saline (PBS) (0.014 M NaCl), decreased (P < 0.05) for 4 of 6 electrodes in 1X PBS (0.14 M NaCl), and decreased (P < 0.05) for all 6 electrodes in 10X PBS (1.4 M NaCl). This relationship corresponds to similar studies where streaming potentials were directly measured on cartilage. EAG coefficients, obtained after trypsin degradation, were reduced (P < 0.05) in 6 of 8, and 7 of 8 electrodes, during simulated standing and walking, respectively. Trypsin degradation was confirmed by direct cartilage assessments. Streaming potentials, measured by directly contacting cartilage, indicated lower cartilage stiffness (P < 10-5). Unconfined compression data revealed reduced Em, representing proteoglycan matrix stiffness (P = 0.005), no change in Ef, representing collagen network stiffness (P = 0.15), and no change in permeability (P = 0.24). Trypsin depleted proteoglycan as observed by both dimethylmethylene blue assay (P = 0.0005) and safranin-O stained histological sections. CONCLUSION These data show that non-invasive EAG detects streaming potentials produced by cartilage during joint compression and has potential to become a diagnostic tool capable of detecting early cartilage degeneration.
Collapse
Affiliation(s)
- Adele Changoor
- Lunenfeld-Tanenbaum Research Institute,
Sinai Health System, Toronto, Ontario, Canada
- Department of Surgery and Department of
Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario,
Canada
| | | | | | - Shelley B. Bull
- Lunenfeld-Tanenbaum Research Institute,
Sinai Health System, Toronto, Ontario, Canada
| | - Karen Gordon
- College of Engineering and Physical
Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pierre Savard
- Biomedical and Electrical Engineering,
École Polytechnique, Montréal, Quebec, Canada
| | | | - Mark B. Hurtig
- Comparative Orthopaedic Research
Laboratory, Department of Clinical Studies, University of Guelph, Guelph, Ontario,
Canada
| |
Collapse
|
7
|
Ukai T, Sato M, Wasai S, Takahashi T, Omura H, Watanabe M. Comparison of properties determined using electromechanical assessment (Arthro-BST™) with macroscopic and histological properties in symptomatic human articular cartilage of the hip. Arthritis Res Ther 2021; 23:227. [PMID: 34465392 PMCID: PMC8406846 DOI: 10.1186/s13075-021-02611-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage degeneration is assessed using various methods. Although macroscopic evaluation can directly measure cartilage degeneration, it cannot accurately assess cartilage properties. Histological examination is one of the most accurate methods for evaluating cartilage degeneration. However, it is invasive and requires collection of cartilage tissue. In contrast, the Arthro-BST™ probe can assess cartilage properties noninvasively. This study aimed to evaluate the effectiveness of the Arthro-BST in assessing cartilage degeneration by comparing macroscopic (International Cartilage Repair Society [ICRS] classification) and histological evaluations (modified Mankin score and Osteoarthritis Research Society International [OARSI] histological grade). METHODS Fourteen femoral heads were excised from 13 patients during surgery to treat hip osteoarthritis or femoral fracture. The ICRS score was used for macroscopic evaluation of cartilage degeneration. The Arthro-BST was applied at sites matching the areas of cartilage damage. The sites assessed using the ICRS classification and Arthro-BST were evaluated histologically (modified Mankin score and OARSI histological grade), and these were compared with the Arthro-BST results. RESULTS The ICRS classification identified significant differences between grades 1 and 3 (p < 0.01), between grades 1 and 4 (p < 0.01), between grades 2 and 3 (p < 0.01), and between grades 2 and 4 (p < 0.01). Significant correlations were observed between the Arthro-BST results and the ICRS score, modified Mankin score (structure, cellularity, matrix staining, total score), and OARSI histological grade. CONCLUSIONS In the assessment of hip osteoarthritis, the Arthro-BST results correlated with those of macroscopic and histological evaluations. The Arthro-BST is useful for assessing hip osteoarthritis and may be helpful for noninvasive assessment of cartilage degeneration.
Collapse
Affiliation(s)
- Taku Ukai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masato Sato
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan. .,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Shiho Wasai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takumi Takahashi
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Haruka Omura
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
8
|
Poillot P, Le Maitre CL, Huyghe JM. The strain-generated electrical potential in cartilaginous tissues: a role for piezoelectricity. Biophys Rev 2021; 13:91-100. [PMID: 33747246 PMCID: PMC7930161 DOI: 10.1007/s12551-021-00779-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/01/2021] [Indexed: 12/26/2022] Open
Abstract
The strain-generated potential (SGP) is a well-established mechanism in cartilaginous tissues whereby mechanical forces generate electrical potentials. In articular cartilage (AC) and the intervertebral disc (IVD), studies on the SGP have focused on fluid- and ionic-driven effects, namely Donnan, diffusion and streaming potentials. However, recent evidence has indicated a direct coupling between strain and electrical potential. Piezoelectricity is one such mechanism whereby deformation of most biological structures, like collagen, can directly generate an electrical potential. In this review, the SGP in AC and the IVD will be revisited in light of piezoelectricity and mechanotransduction. While the evidence base for physiologically significant piezoelectric responses in tissue is lacking, difficulties in quantifying the physiological response and imperfect measurement techniques may have underestimated the property. Hindering our understanding of the SGP further, numerical models to-date have negated ferroelectric effects in the SGP and have utilised classic Donnan theory that, as evidence argues, may be oversimplified. Moreover, changes in the SGP with degeneration due to an altered extracellular matrix (ECM) indicate that the significance of ionic-driven mechanisms may diminish relative to the piezoelectric response. The SGP, and these mechanisms behind it, are finally discussed in relation to the cell response.
Collapse
Affiliation(s)
- Philip Poillot
- Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Jacques M. Huyghe
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Seidenstuecker M, Watrinet J, Bernstein A, Suedkamp NP, Latorre SH, Maks A, Mayr HO. Viscoelasticity and histology of the human cartilage in healthy and degenerated conditions of the knee. J Orthop Surg Res 2019; 14:256. [PMID: 31409382 PMCID: PMC6693159 DOI: 10.1186/s13018-019-1308-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are many studies on osteoarthritis, but only a few studies deal with human arthrosis, comparing the mechanical properties of healthy and diseased samples. In most of these studies, only isolated areas of the tibia are examined. There is currently only one study investigating the complete mapping of cartilage tissue but not the difference between instantaneous modulus (IM) in healthy and diseased samples. The aim of this study is to investigate the relationship between the biomechanical and histological changes of articular cartilage in the pathogenesis of osteoarthritis. METHODS The study compared 25 tibiae with medial gonarthrosis and 13 healthy controls. The IM was determined by automated indentation mapping using a Mach-1 V500css testing machine. A grid was projected over the sample and stored so that all measurements could be taken at the same positions (100 ± 29 positions across the tibiae). This grid was then used to perform the thickness measurement using the needle method. Samples were then taken for histological examinations using a hollow milling machine. Then Giemsa and Safranin O staining were performed. In order to determine the degree of arthrosis according to histological criteria, the assessment was made with regard to Osteoarthritis Research Society International (OARSI) and AHO scores. RESULTS A significant difference (p < 0.05) could be observed in the measured IM between the controls with 3.43 ± 0.36 MPa and the samples with 2.09 ± 0.18 MPa. In addition, there was a significant difference in IM in terms of meniscus-covered and meniscus-uncovered areas. The difference in cartilage thickness between 2.25 ± 0.11 mm controls and 2.0 ± 0.07 mm samples was highly significant with p < 0.001. With regard to the OARSI and AHO scores, the samples differed significantly from the controls. The OARSI and AHO scores showed a significant difference between meniscus-covered and meniscus-uncovered areas. CONCLUSIONS The controls showed significantly better viscoelastic behavior than the arthrotic samples in the measured IM. The measured biomechanical values showed a direct correlation between histological changes and altered biomechanics in gonarthrosis.
Collapse
Affiliation(s)
- Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.
| | - Julius Watrinet
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Norbert P Suedkamp
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Sergio H Latorre
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Anastasija Maks
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Hermann O Mayr
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Schoen Clinic Munich Harlaching, Teaching Hospital of Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Mickevicius T, Maciulaitis J, Usas A, Gudas R. Quantitative Arthroscopic Assessment of Articular Cartilage Quality by Means of Cartilage Electromechanical Properties. Arthrosc Tech 2018; 7:e763-e766. [PMID: 30094148 PMCID: PMC6073103 DOI: 10.1016/j.eats.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 02/03/2023] Open
Abstract
Arthroscopic surgery has grown rapidly in recent decades. Despite accurately diagnosed clinical cases, the previous pain is retained in some patients after the operation, even though no visible chondral lesions are found during the procedure. A minimally invasive arthroscopic method of measuring articular cartilage electromechanical properties enables rapid and reliable intraoperative articular cartilage quality evaluation.
Collapse
Affiliation(s)
- Tomas Mickevicius
- Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Justinas Maciulaitis
- Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
- Institute of Sports, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimtautas Gudas
- Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
- Institute of Sports, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Address correspondence to Rimtautas Gudas, Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Eiveniu Str 2, Kaunas, Lithuania.
| |
Collapse
|
11
|
Hadjab I, Sim S, Karhula SS, Kauppinen S, Garon M, Quenneville E, Lavigne P, Lehenkari PP, Saarakkala S, Buschmann MD. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration. Osteoarthritis Cartilage 2018; 26:405-413. [PMID: 29229562 DOI: 10.1016/j.joca.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate cross-correlations of ex vivo electromechanical properties with cartilage and subchondral bone plate thickness, as well as their sensitivity and specificity regarding early cartilage degeneration in human tibial plateau. METHOD Six pairs of tibial plateaus were assessed ex vivo using an electromechanical probe (Arthro-BST) which measures a quantitative parameter (QP) reflecting articular cartilage compression-induced streaming potentials. Cartilage thickness was then measured with an automated thickness mapping technique using Mach-1 multiaxial mechanical tester. Subsequently, a visual assessment was performed by an experienced orthopedic surgeon using the International Cartilage Repair Society (ICRS) grading system. Each tibial plateau was finally evaluated with μCT scanner to determine the subchondral-bone plate thickness over the entire surface. RESULTS Cross-correlations between assessments decreased with increasing degeneration level. Moreover, electromechanical QP and subchondral-bone plate thickness increased strongly with ICRS grade (ρ = 0.86 and ρ = 0.54 respectively), while cartilage thickness slightly increased (ρ = 0.27). Sensitivity and specificity analysis revealed that the electromechanical QP is the most performant to distinguish between different early degeneration stages, followed by subchondral-bone plate thickness and then cartilage thickness. Lastly, effect sizes of cartilage and subchondral-bone properties were established to evaluate whether cartilage or bone showed the most noticeable changes between normal (ICRS 0) and each early degenerative stage. Thus, the effect sizes of cartilage electromechanical QP were almost twice those of the subchondral-bone plate thickness, indicating greater sensitivity of electromechanical measurements to detect early osteoarthritis. CONCLUSION The potential of electromechanical properties for the diagnosis of early human cartilage degeneration was highlighted and supported by cartilage thickness and μCT assessments.
Collapse
Affiliation(s)
- I Hadjab
- Biomedical Engineering Institute, Polytechnique Montreal, Montreal, QC, Canada; Biomomentum Inc., 970 Michelin St., Suite 200, Laval, QC H7L 5C1, Canada.
| | - S Sim
- Biomedical Engineering Institute, Polytechnique Montreal, Montreal, QC, Canada; Biomomentum Inc., 970 Michelin St., Suite 200, Laval, QC H7L 5C1, Canada.
| | - S S Karhula
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland; Infotech Oulu, University of Oulu, Finland.
| | - S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.
| | - M Garon
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, QC H7L 5C1, Canada.
| | - E Quenneville
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, QC H7L 5C1, Canada.
| | - P Lavigne
- Department of Surgery, University of Montreal, Montreal, QC, Canada.
| | - P P Lehenkari
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland; Department of Surgery and Intensive Care, University of Oulu and Oulu University Hospital, Finland.
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland.
| | - M D Buschmann
- Biomedical Engineering Institute, Polytechnique Montreal, Montreal, QC, Canada.
| |
Collapse
|
12
|
PDK1 promotes apoptosis of chondrocytes via modulating MAPK pathway in osteoarthritis. Tissue Cell 2017; 49:719-725. [DOI: 10.1016/j.tice.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
|
13
|
Sim S, Hadjab I, Garon M, Quenneville E, Lavigne P, Buschmann MD. Development of an Electromechanical Grade to Assess Human Knee Articular Cartilage Quality. Ann Biomed Eng 2017; 45:2410-2421. [PMID: 28653292 DOI: 10.1007/s10439-017-1879-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Quantitative assessments of articular cartilage function are needed to aid clinical decision making. Our objectives were to develop a new electromechanical grade to assess quantitatively cartilage quality and test its reliability. Electromechanical properties were measured using a hand-held electromechanical probe on 200 human articular surfaces from cadaveric donors and osteoarthritic patients. These data were used to create a reference electromechanical property database and to compare with visual arthroscopic International Cartilage Repair Society (ICRS) grading of cartilage degradation. The effect of patient-specific and location-specific characteristics on electromechanical properties was investigated to construct a continuous and quantitative electromechanical grade analogous to ICRS grade. The reliability of this novel grade was assessed by comparing it with ICRS grades on 37 human articular surfaces. Electromechanical properties were not affected by patient-specific characteristics for each ICRS grade, but were significantly different across the articular surface. Electromechanical properties varied linearly with ICRS grade, leading to a simple linear transformation from one scale to the other. The electromechanical grade correlated strongly with ICRS grade (r = 0.92, p < 0.0001). Additionally, the electromechanical grade detected lesions that were not found visually. This novel grade can assist the surgeon in assessing human knee cartilage by providing a quantitative and reliable grading system.
Collapse
Affiliation(s)
- Sotcheadt Sim
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3C 3A7, Canada.,Biomomentum Inc., 970 Michelin St. Suite 200, Laval, QC, H7L 5C1, Canada
| | - Insaf Hadjab
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3C 3A7, Canada.,Biomomentum Inc., 970 Michelin St. Suite 200, Laval, QC, H7L 5C1, Canada
| | - Martin Garon
- Biomomentum Inc., 970 Michelin St. Suite 200, Laval, QC, H7L 5C1, Canada
| | - Eric Quenneville
- Biomomentum Inc., 970 Michelin St. Suite 200, Laval, QC, H7L 5C1, Canada
| | - Patrick Lavigne
- Department of Surgery, University of Montreal, P.O. Box 6128, Station Centre-Ville, Montreal, QC, H3C 3J7, Canada
| | - Michael D Buschmann
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3C 3A7, Canada. .,Groupe de Recherche en Sciences et Technologies Biomédicales, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
14
|
Lakin BA, Snyder BD, Grinstaff MW. Assessing Cartilage Biomechanical Properties: Techniques for Evaluating the Functional Performance of Cartilage in Health and Disease. Annu Rev Biomed Eng 2017; 19:27-55. [DOI: 10.1146/annurev-bioeng-071516-044525] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin A. Lakin
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Brian D. Snyder
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Orthopedic Center, Children's Hospital, Boston, Massachusetts 02115
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
15
|
Sim S, Chevrier A, Garon M, Quenneville E, Lavigne P, Yaroshinsky A, Hoemann CD, Buschmann MD. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage. J Orthop Res 2017; 35:858-867. [PMID: 27279435 DOI: 10.1002/jor.23330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
Recent advances in the development of new drugs to halt or even reverse the progression of Osteoarthritis at an early-stage requires new tools to detect early degeneration of articular cartilage. We investigated the ability of an electromechanical probe and an automated indentation technique to characterize entire human articular surfaces for rapid non-destructive discrimination between early degenerated and healthy articular cartilage. Human cadaveric asymptomatic articular surfaces (four pairs of distal femurs and four pairs of tibial plateaus) were used. They were assessed ex vivo: macroscopically, electromechanically, (maps of the electromechanical quantitative parameter, QP, reflecting streaming potentials), mechanically (maps of the instantaneous modulus, IM), and through cartilage thickness. Osteochondral cores were also harvested from healthy and degenerated regions for histological assessment, biochemical analyses, and unconfined compression tests. The macroscopic visual assessment delimited three distinct regions on each articular surface: Region I was macroscopically degenerated, region II was macroscopically normal but adjacent to regions I and III was the remaining normal articular surface. Thus, each extracted core was assigned to one of the three regions. A mixed effect model revealed that only the QP (p < 0.0001) and IM (p < 0.0001) were able to statistically discriminate the three regions. Effect size was higher for QP and IM than other assessments, indicating greater sensitivity to distinguish early degeneration of cartilage. When considering the mapping feature of the QP and IM techniques, it also revealed bilateral symmetry in a moderately similar distribution pattern between bilateral joints. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:858-867, 2017.
Collapse
Affiliation(s)
- Sotcheadt Sim
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.,Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada
| | - Anik Chevrier
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Martin Garon
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada
| | - Eric Quenneville
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada
| | - Patrick Lavigne
- Department of Surgery, University of Montreal, P.O. Box 6128, Station Centre-Ville, Quebec H3C 3J7, Canada
| | - Alex Yaroshinsky
- Vital Systems, Inc., 3701 Algonquin Rd, Suite 360 Rolling Meadows, Illinois, 60008
| | - Caroline D Hoemann
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.,Groupe de Recherche en Sciences et Technologies Biomédicales, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Michael D Buschmann
- Department of Chemical Engineering and Institute of Biomedical Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.,Groupe de Recherche en Sciences et Technologies Biomédicales, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| |
Collapse
|
16
|
Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity. Biomech Model Mechanobiol 2017; 16:1171-1185. [PMID: 28210824 DOI: 10.1007/s10237-017-0880-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms ([Formula: see text]) and good agreement on porcine cartilage samples ([Formula: see text]). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of [Formula: see text] and [Formula: see text] ([Formula: see text]), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.
Collapse
|
17
|
Mačiulaitis J, Rekštytė S, Ūsas A, Jankauskaitė V, Gudas R, Malinauskas M, Mačiulaitis R. Characterization of tissue engineered cartilage products: Recent developments in advanced therapy. Pharmacol Res 2016; 113:823-832. [DOI: 10.1016/j.phrs.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
|
18
|
Becher C, Ricklefs M, Willbold E, Hurschler C, Abedian R. Electromechanical Assessment of Human Knee Articular Cartilage with Compression-Induced Streaming Potentials. Cartilage 2016; 7:62-9. [PMID: 26958318 PMCID: PMC4749748 DOI: 10.1177/1947603515599191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To assess the electromechanical properties of human knee articular cartilage with compression-induced streaming potentials for reliability among users and correlation with macroscopic and histological evaluation tools and sulfated glycosaminoglycan (sGAG) content. METHODS Streaming potentials are induced in cartilage in response to loading when mobile positive ions in the interstitial fluid temporarily move away from negatively charged proteoglycans. Streaming potential integrals (SPIs) were measured with an indentation probe on femoral condyles of 10 human knee specimens according to a standardized location scheme. Interobserver reliability was measured using an interclass correlation coefficient (ICC). The learning curves of 3 observers were evaluated by regression analysis. At each SPI measurement location the degradation level of the tissue was determined by means of the International Cartilage Repair Society (ICRS) score, Mankin score, and sGAG content. RESULTS The computed ICC was 0.77 (0.70-0.83) indicating good to excellent linear agreement of SPI values among the 3 users. A significant positive linear correlation of the learning index values was observed for 2 of the 3 users. Statistically significant negative correlations between SPI and both ICRS and Mankin scores were observed (r = 0.502, P < 0.001, and r = 0.255, P = 0.02, respectively). No correlation was observed between SPI and sGAG content (r = 0.004, P = 0.973). CONCLUSIONS SPI values may be used as a quantitative means of cartilage evaluation with sufficient reliability among users. Due to the significant learning curve, adequate training should be absolved before routine use of the technique.
Collapse
Affiliation(s)
- Christoph Becher
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany,Christoph Becher, Department of Orthopedic Surgery, Hannover Medical School, 1-7 Anna-von-Borries-Straße, 30625 Hannover, Germany.
| | - Marcel Ricklefs
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Hannover, Germany
| | - Reza Abedian
- Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Novakofski KD, Pownder SL, Koff MF, Williams RM, Potter HG, Fortier LA. High-Resolution Methods for Diagnosing Cartilage Damage In Vivo. Cartilage 2016; 7:39-51. [PMID: 26958316 PMCID: PMC4749750 DOI: 10.1177/1947603515602307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics.
Collapse
Affiliation(s)
| | | | - Matthew F. Koff
- MRI Laboratory, Hospital for Special Surgery, New York, NY, USA
| | | | | | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA,Lisa A. Fortier, Department of Clinical Sciences, Cornell University, VMC C3-181, Ithaca, NY 14853, USA. Email
| |
Collapse
|
20
|
Lakin BA, Ellis DJ, Shelofsky JS, Freedman JD, Grinstaff MW, Snyder BD. Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthritis Cartilage 2015; 23:2158-2166. [PMID: 26067518 PMCID: PMC4841831 DOI: 10.1016/j.joca.2015.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this work is to establish the human metacarpal as a new whole joint surface early-stage osteoarthritis (OA) model that enables comparisons of articular cartilage and subchondral bone through high resolution contrast-enhanced CT (CECT) imaging, mechanical testing, and biochemical analysis. DESIGN The fourth metacarpal was obtained from 12 human cadaveric donors and baseline μCT imaging was followed by indentation testing. The samples were then immersed in anionic (Ioxaglate) and cationic (CA4+) iodinated contrast agent solutions followed by CECT. Cartilage GAG content and distribution was measured using the 1,9 dimethylmethylene blue (DMMB) assay and Safranin-O histology staining. Linear regression was performed to compare cartilage and subchondral bone properties. RESULTS Strong and significant positive correlations were observed between CA4+ CECT attenuation and both GAG content (R(2) = 0.86) and equilibrium modulus (R(2) = 0.84), while correlations using Ioxaglate were insignificant (R(2) ≤ 0.24, P > 0.05). Subchondral bone plate (SBP) thickness negatively and significantly correlated with SBP mineral density (R(2) = 0.49). Cartilage GAG content significantly correlated with several trabecular bone properties, including positive correlations with bone volume fraction (%BV/TV, R(2) = 0.67), trabecular number (Tb.N, R(2) = 0.60), and trabecular thickness (R(2) = 0.42), and negative relationships with structural model index (SMI, R(2) = 0.78) and trabecular spacing (Tb.Sp, R(2) = 0.56). Similarly, equilibrium modulus correlated positively with %BV/TV (R(2) = 0.50), Tb.N (R(2) = 0.59) and negatively with Tb.Sp (R(2) = 0.55) and SMI (R(2) = 0.60). CONCLUSION This study establishes the human metacarpal as a new early-stage OA model suitable for rapid, high resolution CECT imaging, mechanical testing, and biochemical analysis of the cartilage and subchondral bone, and for examining their inter-relationships.
Collapse
Affiliation(s)
- B A Lakin
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - D J Ellis
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J S Shelofsky
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - J D Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, USA
| | - M W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Chemistry, Boston University, Boston, MA, USA.
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Mickevicius T, Pockevicius A, Kucinskas A, Gudas R, Maciulaitis J, Noreikaite A, Usas A. Impact of storage conditions on electromechanical, histological and histochemical properties of osteochondral allografts. BMC Musculoskelet Disord 2015; 16:314. [PMID: 26497227 PMCID: PMC4619008 DOI: 10.1186/s12891-015-0776-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteochondral allograft transplantation has a good clinical outcome, however, there is still debate on optimization of allograft storage protocol. Storage temperature and nutrient medium composition are the most critical factors for sustained biological activity of grafts before implantation. In this study, we performed a time-dependent in vitro experiment to investigate the effect of various storage conditions on electromechanical, histological and histochemical properties of articular cartilage. METHODS Osteochondral grafts derived from goat femoral condyles were frozen at -70 °C or stored at 4 °C and 37 °C in the medium supplemented with or without insulin-like growth factor-1 (IGF-1). After 14 and 28 days the cartilage samples were quantitatively analysed for electromechanical properties, glycosaminoglycan distribution, histological structure, chondrocyte viability and apoptosis. The results were compared between the experimental groups and correlations among different evaluation methods were determined. RESULTS Storage at -70 °C and 37 °C significantly deteriorated cartilage electromechanical, histological and histochemical properties. Storage at 4 °C maintained the electromechanical quantitative parameter (QP) and glycosaminoglycan expression near the normal levels for 14 days. Although hypothermic storage revealed reduced chondrocyte viability and increased apoptosis, these parameters were superior compared with the storage at -70 °C and 37 °C. IGF-1 supplementation improved the electromechanical QP, chondrocyte viability and histological properties at 37 °C, but the effect lasted only 14 days. Electromechanical properties correlated with the histological grading score (r = 0.673, p < 0.001), chondrocyte viability (r = -0.654, p < 0.001) and apoptosis (r = 0.416, p < 0.02). In addition, apoptosis correlated with glycosaminoglycan distribution (r = -0.644, p < 0.001) and the histological grading score (r = 0.493, p = 0.006). CONCLUSIONS Our results indicate that quality of allografts is better preserved at currently established 4 °C storage temperature. Storage at -70 °C or at 37 °C is unable to maintain cartilage function and metabolic activity. IGF-1 supplementation at 37 °C can enhance chondrocyte viability and improve electromechanical and histological properties of the cartilage, but the impact persists only 14 days. The correlations between cartilage electromechanical quantitative parameter (QP) and metabolic activity were detected. Our findings indicate that non-destructive assessment of cartilage by Arthro-BST is a simple and reliable method to evaluate allograft quality, and could be routinely used before implantation.
Collapse
Affiliation(s)
- Tomas Mickevicius
- Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| | - Alius Pockevicius
- Pathology Center, Department of Infectious Diseases, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Audrius Kucinskas
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimtautas Gudas
- Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
- Institute of Sports, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Justinas Maciulaitis
- Department of Orthopaedics and Traumatology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
- Institute of Sports, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aurelija Noreikaite
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
22
|
Sam68 Promotes NF-κB Activation and Apoptosis Signaling in Articular Chondrocytes during Osteoarthritis. Inflamm Res 2015; 64:895-902. [PMID: 26350037 DOI: 10.1007/s00011-015-0872-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the expression of Sam68 in articular cartilage of knee osteoarthritis (OA) and the relationship between Sam68 and NF-κB activation and apoptosis signaling in OA articular chondrocytes. METHODS Sam68 expression in normal and osteoarthritic cartilage was assessed by immunohistochemistry and RT-PCR on both meniscal/ligamentous injury (MLI)-induced OA rat model and the clinical human OA cartilage tissues. Sam68 expression in chondrocytes under tumor necrosis factor-alpha (TNF-α) stimuli was also assessed by immunoblot. Inhibiting Sam68 in chondrocytes under TNF-α stimuli was conducted using small interfering RNA (siRNA) and its influence on the expression of apoptotic marker and catabolic genes was examined by immunoblot. The mechanism of how Sam68 stimulates NF-κB activity was determined by co-immunoprecipitation and immunoblot analysis of nuclear and cytoplasmic fractions of TNF-α-treated chondrocytes for p65 and Sam68. RESULTS Sam68 expression was increased in OA cartilage tissues and chondrocytes under TNF-α stimuli. Inhibition of Sam68 by siRNA significantly decreased the expression of apoptotic markers (cleaved caspase-3 and cleaved PARP) in chondrocytes following TNF-α-stimulation. Sam68 knockdown suppressed Iκ-B degradation and p65 nuclear transportation in TNF-α-treated chondrocytes, indicating a suppressed NF-κB activation. Upon TNF-α exposure, the nuclear transportation of Sam68 and its interaction with p65 was detected in chondrocytes. Furthermore, Sam68 knockdown also alleviated the TNF-α-induced catabolic marker (MMP13, ADAMTS5, iNOS and IL-6) expression. CONCLUSIONS The highly expressed Sam68 promotes NF-κB signaling activation, catabolic gene expression and cellular apoptosis in TNF-α-treated chondrocytes, which may provide better insights into the pathophysiology of OA and a potential target for its treatment.
Collapse
|
23
|
Schwarz ML, Schneider-Wald B, Brade J, Schleich D, Schütte A, Reisig G. Instruments for reproducible setting of defects in cartilage and harvesting of osteochondral plugs for standardisation of preclinical tests for articular cartilage regeneration. J Orthop Surg Res 2015. [PMID: 26215154 PMCID: PMC4517650 DOI: 10.1186/s13018-015-0257-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Standardisation is required in research, so are approval procedures for advanced therapy medical products and other procedures for articular cartilage therapies. The process of creating samples needs to be reproducible. The aim of this study was to design, create and validate instruments (1) to create reproducible and accurate defects and (2) to isolate samples in the shape of osteochondral cylinders in a quick, reliable and sterile manner. Methods Adjustable instruments were created: a crown mill with a resolution of 0.05 mm and a front mill to create defects in articular cartilage and subchondral bone. The instruments were tested on knee joints of pigs from the slaughterhouse; 48 defects were created and evaluated. A punching machine was designed to harvest osteochondral plugs. These were validated in an in vivo animal study. Results The instruments respect the desired depth of 0.5 and 1.5 mm when creating the defects, depending on whether the person using the instrument is highly experienced (0.451 mm; confidence interval (CI): 0.390 mm; 0.512 mm and 1.403 mm; CI: 1.305 mm; 1.502 mm) or less so (0.369 mm; CI: 0.297 mm; 0.440 mm and 1.241 mm; CI: 1.141 mm; 1.341 mm). Eighty samples were taken from knee joints of Göttingen Minipigs with this punching technique. The time needed for the harvesting of the samples was 7.52 min (±2.18 min), the parallelism of the sides of the cylinders deviated by −0.63° (CI: −1.33°; 0.08°) and the surface of the cartilage deviated from the perpendicularity by 4.86° (CI: 4.154°; 5.573°). In all assessed cases, a sterile procedure was observed. Conclusions Instruments and procedures for standardised creation and validation of defects in articular cartilage and subchondral bone were designed. Harvesting of samples in the shape of osteochondral cylinders can now be performed in a quick, reliable and sterile manner. The presented instruments and procedures can serve as helpful steps towards standardised operating procedures in the field of regenerative therapies of articular cartilage in research and for regulatory requirements.
Collapse
Affiliation(s)
- Markus L Schwarz
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Barbara Schneider-Wald
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Joachim Brade
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dieter Schleich
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Andy Schütte
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Gregor Reisig
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
24
|
Sim S, Chevrier A, Garon M, Quenneville E, Yaroshinsky A, Hoemann CD, Buschmann MD. Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties. Osteoarthritis Cartilage 2014; 22:1926-35. [PMID: 25168362 DOI: 10.1016/j.joca.2014.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The hand-held Arthro-BST™ device is used to map electromechanical properties of articular cartilage. The purpose of the study was to evaluate correlation of electromechanical properties with histological, biochemical and biomechanical properties of cartilage. METHOD Electromechanical properties (quantitative parameter (QP)) of eight human distal femurs were mapped manually ex vivo using the Arthro-BST (1 measure/site, 5 s/measure, 3209 sites). Osteochondral cores were then harvested from different areas on the femurs and assessed with the Mankin histological score. Prior to histoprocessing, cores were tested in unconfined compression. A subset of the cores was analyzed with polarized light microscopy (PLM) to assess collagen structure. Biochemical assays were done on additional cores to obtain water content and glycosaminoglycan (GAG) content. The QP corresponding to each core was calculated by averaging all QPs collected within 6 mm of the core center. RESULTS The electromechanical QP correlated strongly with both the Mankin score and the PLM score (r = 0.73, P < 0.0001 and r = -0.70, P < 0.0001 respectively) thus accurately reflecting tissue quality and collagen architecture. Electromechanical QP also correlated strongly with biomechanical properties including fibril modulus (r = -0.76, P < 0.0001), matrix modulus (r = -0.69, P < 0.0001), and log of permeability (r = 0.72, P < 0.0001). The QP correlated weakly with GAG per wet weight and with water content (r = -0.50, P < 0.0003 and r = 0.39, P < 0.006 respectively). CONCLUSION Non-destructive electromechanical QP measurements correlate strongly with histological scores and biomechanical parameters providing a rapid and reliable assessment of articular cartilage quality.
Collapse
Affiliation(s)
- S Sim
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada; Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada.
| | - A Chevrier
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.
| | - M Garon
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada.
| | - E Quenneville
- Biomomentum Inc., 970 Michelin St., Suite 200, Laval, Quebec H7L 5C1, Canada.
| | - A Yaroshinsky
- Vital Systems, Inc., 3701 Algonquin Rd, Suite 310 Rolling Meadows, IL 60008, USA.
| | - C D Hoemann
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada; Groupe de Recherche en Sciences et Technologies Biomédicales, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.
| | - M D Buschmann
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada; Groupe de Recherche en Sciences et Technologies Biomédicales, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.
| |
Collapse
|
25
|
Krase A, Abedian R, Steck E, Hurschler C, Richter W. BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs. Osteoarthritis Cartilage 2014; 22:284-92. [PMID: 24280245 DOI: 10.1016/j.joca.2013.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/26/2013] [Accepted: 11/15/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Bone morphogenetic protein (BMP-) and Wnt-signalling play crucial roles in cartilage homeostasis. Our objective was to investigate whether activation of the BMP-pathway or stimulation of Wnt-signalling cascades effectively enhances cartilage-specific extracellular matrix (ECM) accumulation and functional biomechanical parameters of chondrocyte-seeded tissue engineering (TE)-constructs. DESIGN Articular chondrocytes were cultured in collagen-type-I/III-matrices over 6 weeks to create a biomechanical standard curve. Effects of stimulation with 100 ng/mL BMP-4/-7 heterodimer or 10 mM lithium chloride (LiCl) on ECM-deposition was quantified and characterized histologically. Biomechanical parameters were determined by the Very Low Rubber Hardness (VLRH) method and under confined compression stress relaxation. RESULTS BMP-4/-7 treatment resulted in stronger collagen type-II staining and significantly enhanced glycosaminoglycan (GAG) deposition (3.2-fold; *P < 0.01) correlating with improved hardness (∼1.7-fold; *P = 0.001) reaching 83% of native cartilage values after 28 days, a value not reached before 9 weeks without stimulation. LiCl treatment enhanced VLRH slightly, but significantly (∼1.3-fold; *P = 0.016) with a trend to more ECM-deposition. BMP-4/-7 treatment significantly enhanced the E Modulus (105.7 ± 34.1 kPa; *P = 0.000001) compared to controls (8.0 ± 4.2 kPa). Poisson's ratio was significantly improved by BMP-4/-7 treatment (0.0703 ± 0.0409; *P = 0.013) vs controls (0.0432 ± 0.0284) and a significantly lower permeability (5.8 ± 2.1056 × 10(-14) m4/N.s; *P = 0.00001) was detected compared to untreated scaffolds (4.4 ± 3.1289 × 10(-13) m4/N.s). CONCLUSIONS While Wnt-activation is less effective, BMP-4/-7 heterodimer stimulation approximated native cartilage features in less than 50% of standard culture time representing a promising strategy for functional cartilage TE to improve biomechanical parameters of engineered cartilage.
Collapse
Affiliation(s)
- A Krase
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - R Abedian
- Laboratory for Biomechanics and Biomaterials, Orthopaedic Department, Hannover Medical School of Hannover, Hannover, Germany.
| | - E Steck
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - C Hurschler
- Laboratory for Biomechanics and Biomaterials, Orthopaedic Department, Hannover Medical School of Hannover, Hannover, Germany.
| | - W Richter
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|