1
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
2
|
Otoo BS, Kuan Moo E, Komeili A, Hart DA, Herzog W. Chondrocyte deformation during the unloading phase of cyclic compression loading. J Biomech 2024; 171:112179. [PMID: 38852482 DOI: 10.1016/j.jbiomech.2024.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Cell volume and shape changes play a pivotal role in cellular mechanotransduction, governing cellular responses to external loading. Understanding the dynamics of cell behavior under loading conditions is essential to elucidate cell adaptation mechanisms in physiological and pathological contexts. In this study, we investigated the effects of dynamic cyclic compression loading on cell volume and shape changes, comparing them with static conditions. Using a custom-designed platform which allowed for simultaneous loading and imaging of cartilage tissue, tissues were subjected to 100 cycles of mechanical loading while measuring cell volume and shape alterations during the unloading phase at specific time points. The findings revealed a transient decrease in cell volume (13%) during the early cycles, followed by a gradual recovery to baseline levels after approximately 20 cycles, despite the cartilage tissue not being fully recovered at the unloading phase. This observed pattern indicates a temporal cell volume response that may be associated with cellular adaptation to the mechanical stimulus through mechanisms related to active cell volume regulation. Additionally, this study demonstrated that cell volume and shape responses during dynamic loading were significantly distinct from those observed under static conditions. Such findings suggest that cells in their natural tissue environment perceive and respond differently to dynamic compared to static mechanical cues, highlighting the significance of considering dynamic loading environments in studies related to cellular mechanics. Overall, this research contributes to the broader understanding of cellular behavior under mechanical stimuli, providing valuable insights into their ability to adapt to dynamic mechanical loading.
Collapse
Affiliation(s)
- Baaba S Otoo
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Eng Kuan Moo
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada.
| | - Amin Komeili
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - David A Hart
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Abusara Z, Moo EK, Haider I, Timmermann C, Miller S, Timmermann S, Herzog W. Functional Assessment of Human Articular Cartilage Using Second Harmonic Generation (SHG) Imaging: A Feasibility Study. Ann Biomed Eng 2024; 52:1009-1020. [PMID: 38240956 DOI: 10.1007/s10439-023-03437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/26/2023] [Indexed: 03/16/2024]
Abstract
Many arthroscopic tools developed for knee joint assessment are contact-based, which is challenging for in vivo application in narrow joint spaces. Second harmonic generation (SHG) laser imaging is a non-invasive and non-contact method, thus presenting an attractive alternative. However, the association between SHG-based measures and cartilage quality has not been established systematically. Here, we investigated the feasibility of using image-based measures derived from SHG microscopy for objective evaluation of cartilage quality as assessed by mechanical testing. Human tibial plateaus harvested from nine patients were used. Cartilage mechanical properties were determined using indentation stiffness (Einst) and streaming potential-based quantitative parameters (QP). The correspondence of the cartilage electromechanical properties (Einst and QP) and the image-based measures derived from SHG imaging, tissue thickness and cell viability were evaluated using correlation and logistic regression analyses. The SHG-related parameters included the newly developed volumetric fraction of organised collagenous network (Φcol) and the coefficient of variation of the SHG intensity (CVSHG). We found that Φcol correlated strongly with Einst and QP (ρ = 0.97 and - 0.89, respectively). CVSHG also correlated, albeit weakly, with QP and Einst, (|ρ| = 0.52-0.58). Einst and Φcol were the most sensitive predictors of cartilage quality whereas CVSHG only showed moderate sensitivity. Cell viability and tissue thickness, often used as measures of cartilage health, predicted the cartilage quality poorly. We present a simple, objective, yet effective image-based approach for assessment of cartilage quality. Φcol correlated strongly with electromechanical properties of cartilage and could fuel the continuous development of SHG-based arthroscopy.
Collapse
Affiliation(s)
- Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Ifaz Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Claire Timmermann
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sue Miller
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Canada
- Taylor Institute for Teaching and Learning, University of Calgary, Calgary, Canada
| | - Scott Timmermann
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Kupratis ME, Rahman A, Burris DL, Corbin EA, Price C. Enzymatic digestion does not compromise sliding-mediated cartilage lubrication. Acta Biomater 2024; 178:196-207. [PMID: 38428511 DOI: 10.1016/j.actbio.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Articular cartilage's remarkable low-friction properties are essential to joint function. In osteoarthritis (OA), cartilage degeneration (e.g., proteoglycan loss and collagen damage) decreases tissue modulus and increases permeability. Although these changes impair lubrication in fully depressurized and slowly slid cartilage, new evidence suggests such relationships may not hold under biofidelic sliding conditions more representative of those encountered in vivo. Our recent studies using the convergent stationary contact area (cSCA) configuration demonstrate that articulation (i.e., sliding) generates interfacial hydrodynamic pressures capable of replenishing cartilage interstitial fluid/pressure lost to compressive loading through a mechanism termed tribological rehydration. This fluid recovery sustains in vivo-like kinetic friction coefficients (µk<0.02 in PBS and <0.005 in synovial fluid) with little sensitivity to mechanical properties in healthy tissue. However, the tribomechanical function of compromised cartilage under biofidelic sliding conditions remains unknown. Here, we investigated the effects of OA-like changes in cartilage mechanical properties, modeled via enzymatic digestion of mature bovine cartilage, on its tribomechanical function during cSCA sliding. We found no differences in sliding-driven tribological rehydration behaviors or µk between naïve and digested cSCA cartilage (in PBS or synovial fluid). This suggests that OA-like cartilage retains sufficient functional properties to support naïve-like fluid recovery and lubrication under biofidelic sliding conditions. However, OA-like cartilage accumulated greater total tissue strains due to elevated strain accrual during initial load application. Together, these results suggest that elevated total tissue strains-as opposed to activity-mediated strains or friction-driven wear-might be the key biomechanical mediator of OA pathology in cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) decreases cartilage's modulus and increases its permeability. While these changes compromise frictional performance in benchtop testing under low fluid load support (FLS) conditions, whether such observations hold under sliding conditions that better represent the joints' dynamic FLS conditions in vivo is unclear. Here, we leveraged biofidelic benchtop sliding experiments-that is, those mimicking joints' native sliding environment-to examine how OA-like changes in mechanical properties effect cartilage's natural lubrication. We found no differences in sliding-mediated fluid recovery or kinetic friction behaviors between naïve and OA-like cartilage. However, OA-like cartilage experienced greater strain accumulation during load application, suggesting that elevated tissue strains (not friction-driven wear) may be the primary biomechanical mediator of OA pathology.
Collapse
Affiliation(s)
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Elise A Corbin
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Materials Science & Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
6
|
Goel S, Deshpande S, Dhaniwala N, Singh R, Suneja A, Jadawala VH. A Comprehensive Review of Genetic Variations in Collagen-Encoding Genes and Their Implications in Intervertebral Disc Degeneration. Cureus 2024; 16:e52708. [PMID: 38384607 PMCID: PMC10880043 DOI: 10.7759/cureus.52708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
This comprehensive review examines the intricate relationship between genetic variations in collagen-encoding genes and their implications in intervertebral disc degeneration (IVDD). Intervertebral disc degeneration is a prevalent spinal condition characterized by structural and functional changes in intervertebral discs (IVDs), and understanding its genetic underpinnings is crucial for advancing diagnostic and therapeutic strategies. The review begins by exploring the background and importance of collagen in IVDs, emphasizing its role in providing structural integrity. It then delves into the significance of genetic variations within collagen-encoding genes, categorizing and discussing their potential impact on disc health. The methods employed in studying these variations, such as genome-wide association studies (GWASs) and next-generation sequencing (NGS), are also reviewed. The subsequent sections analyze existing literature to establish associations between genetic variations and IVDD, unraveling molecular mechanisms linking genetic factors to disc degeneration. The review concludes with a summary of key findings, implications for future research and clinical practice, and a reflection on the importance of understanding genetic variations in collagen-encoding genes to diagnose and treat IVDD. The insights gleaned from this review contribute to our understanding of IVDD and hold promise for the development of personalized interventions based on individual genetic profiles.
Collapse
Affiliation(s)
- Sachin Goel
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sanjay Deshpande
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nareshkumar Dhaniwala
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rahul Singh
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anmol Suneja
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vivek H Jadawala
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Moo EK, Sibole SC, Federico S, Korhonen RK, Herzog W. Microscale investigation of the anisotropic swelling of cartilage tissue and cells in response to hypo-osmotic challenges. J Orthop Res 2024; 42:54-65. [PMID: 37415557 DOI: 10.1002/jor.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/18/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Tissue swelling represents an early sign of osteoarthritis, reflecting osmolarity changes from iso- to hypo-osmotic in the diseased joints. Increased tissue hydration may drive cell swelling. The opposing cartilages in a joint may swell differently, thereby predisposing the more swollen cartilage and cells to mechanical injuries. However, our understanding of the tissue-cell interdependence in osmotically loaded joints is limited as tissue and cell swellings have been studied separately. Here, we measured tissue and cell responses of opposing patellar (PAT) and femoral groove (FG) cartilages in lapine knees exposed to an extreme hypo-osmotic challenge. We found that the tissue matrix and most cells swelled during the hypo-osmotic challenge, but to a different extent (tissue: <3%, cells: 11%-15%). Swelling-induced tissue strains were anisotropic, showing 2%-4% stretch and 1%-2% compression along the first and third principal directions, respectively. These strains were amplified by 5-8 times in the cells. Interestingly, the first principal strains of tissue and cells occurred in different directions (60-61° for tissue vs. 8-13° for cells), suggesting different mechanisms causing volume expansion in the tissue and the cells. Instead of the continuous swelling observed in the tissue matrix, >88% of cells underwent regulatory volume decrease to return to their pre-osmotic challenge volumes. Cell shapes changed in the early phase of swelling but stayed constant thereafter. Kinematic changes to tissue and cells were larger for PAT cartilage than for FG cartilage. We conclude that the swelling-induced deformation of tissue and cells is anisotropic. Cells actively restored volume independent of the surrounding tissues and seemed to prioritize volume restoration over shape restoration. Our findings shed light on tissue-cell interdependence in changing osmotic environments that is crucial for cell mechano-transduction in swollen/diseased tissues.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Scott C Sibole
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Salvatore Federico
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Kroupa KR, Gangi LR, Zimmerman BK, Hung CT, Ateshian GA. Superficial zone chondrocytes can get compacted under physiological loading: A multiscale finite element analysis. Acta Biomater 2023; 163:248-258. [PMID: 36243365 PMCID: PMC10324087 DOI: 10.1016/j.actbio.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
Abstract
Recent in vivo and in vitro studies have demonstrated that superficial zone (SZ) chondrocytes within articular layers of diarthrodial joints die under normal physiologic loading conditions. In order to further explore the implications of this observation in future investigations, we first needed to understand the mechanical environment of SZ chondrocytes that might cause them to die under physiological sliding contact conditions. In this study we performed a multiscale finite element analysis of articular contact to track the temporal evolution of a SZ chondrocyte's interstitial fluid pressure, hydraulic permeability, and volume under physiologic loading conditions. The effect of the pericellular matrix modulus and permeability was parametrically investigated. Results showed that SZ chondrocytes can lose ninety percent of their intracellular fluid after several hours of intermittent or continuous contact loading, resulting in a reduction of intracellular hydraulic permeability by more than three orders of magnitude. These findings are consistent with loss of cell viability due to the impediment of cellular metabolic pathways induced by the loss of fluid. They suggest that there is a simple mechanical explanation for the vulnerability of SZ chondrocytes to sustained physiological loading conditions. Future studies will focus on validating these specific findings experimentally. STATEMENT OF SIGNIFICANCE: As with any mechanical system, normal 'wear and tear' of cartilage tissue lining joints is expected. Yet incidences of osteoarthritis are uncommon in individuals younger than 45. This counter-intuitive observation suggests there must be an intrinsic repair mechanism compensating for this wear and tear over many decades of life. Recent experimental studies have shown superficial zone chondrocytes die under physiologic loading conditions, suggesting that this repair mechanism may involve cell replenishment. To better understand the mechanical environment of these cells, we performed a multiscale computational analysis of articular contact under loading. Results indicated that normal activities like walking or standing can induce significant loss of intracellular fluid volume, potentially hindering metabolic activity and fluid transport properties, and causing cell death.
Collapse
Affiliation(s)
- Kimberly R Kroupa
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 S.W. Mudd, New York, NY 10027, USA
| | - Lianna R Gangi
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 S.W. Mudd, New York, NY 10027, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA; Department of Orthopedic Surgery, Columbia University, 622 West 168th Street PH 11 - Center, New York, NY 10032, USA
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 S.W. Mudd, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
9
|
Al-Saffar Y, Moo EK, Pingguan-Murphy B, Matyas J, Korhonen RK, Herzog W. Dependence of crack shape in loaded articular cartilage on the collagenous structure. Connect Tissue Res 2023; 64:294-306. [PMID: 36853960 DOI: 10.1080/03008207.2023.2166500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cartilage cracks disrupt tissue mechanics, alter cell mechanobiology, and often trigger tissue degeneration. Yet, some tissue cracks heal spontaneously. A primary factor determining the fate of tissue cracks is the compression-induced mechanics, specifically whether a crack opens or closes when loaded. Crack deformation is thought to be affected by tissue structure, which can be probed by quantitative polarized light microscopy (PLM). It is unclear how the PLM measures are related to deformed crack morphology. Here, we investigated the relationship between PLM-derived cartilage structure and mechanical behavior of tissue cracks by testing if PLM-derived structural measures correlated with crack morphology in mechanically indented cartilages. METHODS Knee joint cartilages harvested from mature and immature animals were used for their distinct collagenous fibrous structure and composition. The cartilages were cut through thickness, indented over the cracked region, and processed histologically. Sample-specific birefringence was quantified as two-dimensional (2D) maps of azimuth and retardance, two measures related to local orientation and degree of alignment of the collagen fibers, respectively. The shape of mechanically indented tissue cracks, measured as depth-dependent crack opening, were compared with azimuth, retardance, or "PLM index," a new parameter derived by combining azimuth and retardance. RESULTS Of the three parameters, only the PLM index consistently correlated with the crack shape in immature and mature tissues. CONCLUSION In conclusion, we identified the relative roles of azimuth and retardance on the deformation of tissue cracks, with azimuth playing the dominant role. The applicability of the PLM index should be tested in future studies using naturally-occurring tissue cracks.
Collapse
Affiliation(s)
- Yasir Al-Saffar
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | | | - John Matyas
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Moo EK, Ebrahimi M, Sibole SC, Tanska P, Korhonen RK. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage. Acta Biomater 2022; 153:178-189. [PMID: 36113721 DOI: 10.1016/j.actbio.2022.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
The function of articular cartilage as a load-bearing connective tissue is derived primarily from a balanced interaction between the swelling proteoglycan (PG) matrix and tension-resistant collagen fibrous network. Such balance is compromised during joint disease such as osteoarthritis (OA) due to degradation to PGs and/or collagens. While the PG degradation is generally thought to be related to a loss of protein abundance, the collagenous degradation is more complex as it can be caused independently by a decrease of collagen content, disorganisation of fibrous structure and softening of individual collagen fibrils. A comprehensive understanding of the initial trajectories of degradation of PGs and collagen network can improve our chance of finding potential therapeutic solutions for OA. Here, we developed geometrically, structurally, and compositionally realistic and sample-specific Finite Element (FE) models under the framework of multiphasic mixture theory, from which the elastic moduli of collagen fibres and the PG load-bearing quality in healthy and diseased cartilages were estimated by numerical optimisation of the multi-step indentation stress relaxation force-time curves. We found the intrinsic quality of collagen fibres, measured by their elastic moduli, to stay constant for healthy and diseased cartilages. Combining with previous findings which show unaltered collagen content during early stages of OA, our results suggest the disorganisation of collagen fibrous network as the first form of collagenous degradation in osteoarthritic cartilage. We also found that PG degradation involves not only a loss of protein abundance, but also the quality of the remaining PGs in generating sufficient osmotic pressure for load bearing. This study sheds light on the mechanism of OA pathogenesis and highlights the restoration of collageneous organisation in cartilage as key medical intervention for OA. STATEMENT OF SIGNIFICANCE: Collagen network in articular cartilage consists of individual fibres that are organised into depth-dependent structure specialised for joint load-bearing and lubrication. During osteoarthritis, the collagen network undergoes mechanical degradation, but it is unclear if a loss of content, disorganisation of fibrous structure, or softening of individual fibres causes this degeneration. Using mechanical indentation, Finite Element modelling, and numerical optimisation methods, we determined that individual fibres did not soften in early disease stage. Together with previous findings showing unaltered collagen content, our results pinpoint the disorganisation of collagen structure as the main culprit for early collagenous degradation in osteoarthritic cartilage. Thus, early restoration in cartilage of collagen organisation, instead of individual fibre quality, may be key to slow osteoarthritis development.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio 70211, Finland; Human Performance Laboratory, University of Calgary, 2500, University Drive NW, Calgary, Alberta 2N1N4, Canada.
| | | | - Scott C Sibole
- Human Performance Laboratory, University of Calgary, 2500, University Drive NW, Calgary, Alberta 2N1N4, Canada
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio 70211, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio 70211, Finland.
| |
Collapse
|
11
|
Moo EK, Al-Saffar Y, Le T, A Seerattan R, Pingguan-Murphy B, K Korhonen R, Herzog W. Deformation behaviors and mechanical impairments of tissue cracks in immature and mature cartilages. J Orthop Res 2022; 40:2103-2112. [PMID: 34914129 DOI: 10.1002/jor.25243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/11/2021] [Indexed: 02/04/2023]
Abstract
Degeneration of articular cartilage is often triggered by a small tissue crack. As cartilage structure and composition change with age, the mechanics of cracked cartilage may depend on the tissue age, but this relationship is poorly understood. Here, we investigated cartilage mechanics and crack deformation in immature and mature cartilage exposed to a full-thickness tissue crack using indentation testing and histology, respectively. When a cut was introduced, tissue cracks opened wider in the mature cartilage compared to the immature cartilage. However, the opposite occurred upon mechanical indentation over the cracked region. Functionally, the immature-cracked cartilages stress-relaxed faster, experienced increased tissue strain, and had reduced instantaneous stiffness, compared to the mature-cracked cartilages. Taken together, mature cartilage appears to withstand surface cracks and maintains its mechanical properties better than immature cartilage and these superior properties can be explained by the structure of their collagen fibrous network.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Yasir Al-Saffar
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tina Le
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ruth A Seerattan
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Moo EK, Tanska P, Federico S, Al-Saffar Y, Herzog W, Korhonen RK. Collagen fibres determine the crack morphology in articular cartilage. Acta Biomater 2021; 126:301-314. [PMID: 33757903 DOI: 10.1016/j.actbio.2021.03.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022]
Abstract
Cracks in articular cartilage compromise tissue integrity and mechanical properties and lead to chondral lesions if untreated. An understanding of the mechanics of cracked cartilage may help in the prevention of cartilage deterioration and the development of tissue-engineered substitutes. The degeneration of cartilage in the presence of cracks may depend on the ultrastructure and composition of the tissue, which changes with aging, disease and habitual loading. It is unknown if the structural and compositional differences between immature and mature cartilage affect the mechanics of cartilage cracks, possibly predisposing one to a greater risk of degeneration than the other. We used a fibre-reinforced poro-viscoelastic swelling material model that accounts for large deformations and tension-compression non-linearity, and the finite element method to investigate the role of cartilage structure and composition on crack morphology and tissue mechanics. We demonstrate that the crack morphology predicted by our theoretical model agrees well with the histo-morphometric images of young and mature cracked cartilages under indentation loading. We also determined that the crack morphology was primarily dependent on collagen fibre orientation which differs as a function of cartilage depth and tissue maturity. The arcade-like collagen fibre orientation, first discussed by Benninghoff in his classical 1925 paper, appears to be beneficial for slowing the progression of tissue cracks by 'sealing' the crack and partially preserving fluid pressure during loading. Preservation of the natural load distribution between solid and fluid constituents of cartilage may be a key factor in slowing or preventing the propagation of tissue cracks and associated tissue matrix damage. STATEMENT OF SIGNIFICANCE: Cracks in articular cartilage can be detrimental to joint health if not treated, but it is not clear how they propagate and lead to tissue degradation. We used an advanced numerical model to determine the role of cartilage structure and composition on crack morphology under loading. Based on the structure and composition found in immature and mature cartilages, our model successfully predicts the crack morphology in these cartilages and determines that collagen fibre as the major determinant of crack morphology. The arcade-like Benninghoff collagen fibre orientation appears to be crucial in 'sealing' the tissue crack and preserves normal fluid-solid load distribution in cartilage. Inclusion of the arcade-like fibre orientation in tissue-engineered construct may help improve its integration within the host tissue.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio 70211, Finland; Human Performance Laboratory, University of Calgary, 2500, University Drive NW, Calgary, Alberta T2N1N4, Canada.
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio 70211, Finland.
| | - Salvatore Federico
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500, University Drive NW, Calgary, Alberta T2N1N4 Canada; Human Performance Laboratory, University of Calgary, 2500, University Drive NW, Calgary, Alberta T2N1N4, Canada.
| | - Yasir Al-Saffar
- Human Performance Laboratory, University of Calgary, 2500, University Drive NW, Calgary, Alberta T2N1N4, Canada
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, 2500, University Drive NW, Calgary, Alberta T2N1N4, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500, University Drive NW, Calgary, Alberta T2N1N4 Canada; Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio 70211, Finland.
| |
Collapse
|
13
|
Kazemi M, Williams JL. Depth and strain rate-dependent mechanical response of chondrocytes in reserve zone cartilage subjected to compressive loading. Biomech Model Mechanobiol 2021; 20:1477-1493. [PMID: 33844092 DOI: 10.1007/s10237-021-01457-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
The role of the growth plate reserve zone is not well understood. It has been proposed to serve as a source of stem cells and to produce morphogens that control the alignment of clones in preparation for the transition into the proliferative zone. We hypothesized that if such a role exists, there are likely to be mechanoregulatory stimuli in cellular response through the depth of the reserve zone. A poroelastic multiscale finite element model of bone/growth-plate/bone was developed for examining the reserve zone cell transient response when compressed to 5% of the cartilage thickness at strain rates of 0.18%/s, 5%/s, 50%/s, and 200%/s. Chondrocyte maximum principal strains, height-, width-, and membrane-strains were found to be highly dependent on reserve zone tissue depth and strain rate. Cell-level strains and fluid transmembrane outflow from the cell were influenced by the permeability of the calcified cartilage between subchondral bone plate and reserve zone and by the applied strain rate. Cell strain levels in the lower reserve zone were less sensitive to epiphyseal permeability than in the upper reserve zone. In contrast, the intracellular fluid pressures were relatively uniform with reserve zone tissue depth and less sensitive to epiphyseal permeability. Fluid shear stress, induced by fluid flow over the cell surface, provided mechanoregulatory signals potentially sufficient to stimulate reserve zone chondrocytes near the subchondral bone plate interface. These results suggest that the strain rate and tissue depth dependence of cell-level strains and cell surface fluid shear stress may provide mechanoregulatory cues in the reserve zone.
Collapse
Affiliation(s)
- Masumeh Kazemi
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN, 38152, USA.
| | - John L Williams
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN, 38152, USA
| |
Collapse
|
14
|
COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22052242. [PMID: 33668140 PMCID: PMC7956748 DOI: 10.3390/ijms22052242] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.
Collapse
|
15
|
A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution – Analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage. J Biomech 2020; 101:109648. [DOI: 10.1016/j.jbiomech.2020.109648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/03/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
|
16
|
Hernandez PA, Wells J, Usheva E, Nakonezny PA, Barati Z, Gonzalez R, Kassem L, Henson FMD. Early-Onset Osteoarthritis originates at the chondrocyte level in Hip Dysplasia. Sci Rep 2020; 10:627. [PMID: 31953438 PMCID: PMC6969105 DOI: 10.1038/s41598-020-57431-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023] Open
Abstract
Subjects with developmental dysplasia of the hip (DDH) often show early-onset osteoarthritis (OA); however, the molecular mechanisms underlying this pathology are not known. We investigated whether cellular changes in chondrocytes from OA cartilage can be detected in chondrocytes from DDH cartilage before histological manifestations of degeneration. We characterized undamaged and damaged articular cartilage from 22 participants having hip replacement surgery with and without DDH (9 DDH-OA, 12 OA-only, one femoral fracture). Tissue immunostaining revealed changes in damaged OA-only cartilage that was also found in undamaged DDH-OA cartilage. Chondrocytes in situ from both groups show: (i) thicker fibers of vimentin intermediate filaments, (ii) clusters of integrin α5β1, (iii) positive MMP13 staining and (iv) a higher percentage of cells expressing the serine protease HtrA1. Further characterization of the extracellular matrix showed strong aggrecan and collagen II immunostaining in undamaged DDH cartilage, with no evidence of augmented cell death by activation of caspase 3. These findings suggest that early events in DDH cartilage originate at the chondrocyte level and that DDH cartilage may provide a novel opportunity to study these early changes for the development of therapeutic targets for OA.
Collapse
Affiliation(s)
- Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel Wells
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emiliya Usheva
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Paul A Nakonezny
- Department of Population and Data Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zahra Barati
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Roberto Gonzalez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Layla Kassem
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Frances M D Henson
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, CB2 2QQ, UK
| |
Collapse
|
17
|
Maximum shear strain-based algorithm can predict proteoglycan loss in damaged articular cartilage. Biomech Model Mechanobiol 2019; 18:753-778. [PMID: 30631999 DOI: 10.1007/s10237-018-01113-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is a common disease, where the mechanical integrity of articular cartilage is compromised. PTOA can be a result of chondral defects formed due to injurious loading. One of the first changes around defects is proteoglycan depletion. Since there are no methods to restore injured cartilage fully back to its healthy state, preventing the onset and progression of the disease is advisable. However, this is problematic if the disease progression cannot be predicted. Thus, we developed an algorithm to predict proteoglycan loss of injured cartilage by decreasing the fixed charge density (FCD) concentration. We tested several mechanisms based on the local strains or stresses in the tissue for the FCD loss. By choosing the degeneration threshold suggested for inducing chondrocyte apoptosis and cartilage matrix damage, the algorithm driven by the maximum shear strain showed the most substantial FCD losses around the lesion. This is consistent with experimental findings in the literature. We also observed that by using coordinate system-independent strain measures and selecting the degeneration threshold in an ad hoc manner, all the resulting FCD distributions would appear qualitatively similar, i.e., the greatest FCD losses are found at the tissue adjacent to the lesion. The proposed strain-based FCD degeneration algorithm shows a great potential for predicting the progression of PTOA via biomechanical stimuli. This could allow identification of high-risk defects with an increased risk of PTOA progression.
Collapse
|
18
|
Rustenburg CM, Emanuel KS, Peeters M, Lems WF, Vergroesen PA, Smit TH. Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine 2018; 1:e1033. [PMID: 31463450 PMCID: PMC6686805 DOI: 10.1002/jsp2.1033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral discs and can eventually result in degenerative disc disease (DDD), which is accompanied by low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide. In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space, subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint. Inspired by this resemblance, we investigated the analogy between human intervertebral discs and articular joints. Although embryonic origin and anatomy suggest substantial differences between the two types of joint, some features of cell physiology and extracellular matrix in the nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great similarities in the response to mechanical loading and the matrix-degrading factors involved in the cascade of degeneration in both tissues. This suggests that the local environment of the cell is more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a true disease, while intervertebral disc degeneration is often regarded as a radiological finding and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society. Emphasizing the similarities rather than the differences between the two diseases may create more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of clinicians and scientists involved in both intervertebral disc degeneration and OA.
Collapse
Affiliation(s)
- Christine M.E. Rustenburg
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Kaj S. Emanuel
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Mirte Peeters
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Willem F. Lems
- Department of RheumatologyAmsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Theodoor H. Smit
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
19
|
Moo EK, Sibole SC, Han SK, Herzog W. Three-dimensional micro-scale strain mapping in living biological soft tissues. Acta Biomater 2018; 70:260-269. [PMID: 29425715 DOI: 10.1016/j.actbio.2018.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. STATEMENT OF SIGNIFICANCE We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues.
Collapse
|
20
|
Ma Y, Zheng W, Chen H, Shao X, Lin P, Liu X, Li X, Ye H. Glucosamine promotes chondrocyte proliferation via the Wnt/β‑catenin signaling pathway. Int J Mol Med 2018; 42:61-70. [PMID: 29568900 PMCID: PMC5979785 DOI: 10.3892/ijmm.2018.3587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the mechanism underlying the effects of glucosamine (GlcN) on the proliferation of chondrocytes isolated from the knee cartilage of Sprague-Dawley rats. Chondrocytes were treated with various concentrations of GlcN or without GlcN. The effects of GlcN on chondrocyte proliferation were determined using reverse transcription-polymerase chain reaction, western blot analysis and immunohistochemistry. The results indicated that GlcN significantly improved chondrocyte viability, accelerated G1/S transition during progression of the cell cycle and promoted the expression of cell cycle regulatory proteins, including cyclin D1, cyclin-dependent kinase (CDK)4 and CDK6, thus indicating that GlcN may promote chondrocyte proliferation. Furthermore, GlcN upregulated the expression levels of Wnt-4, Frizzled-2 and β-catenin, and downregulated the expression of glycogen synthase kinase-3. GlcN also promoted β-catenin translocation; β-catenin is able to activate numerous downstream target genes, including cyclin D1. To determine the role of the Wnt/β-catenin signaling pathway in chondrocyte proliferation, the Wnt/β-catenin signaling pathway was inhibited using Dickkopf-1 (DKK-1), after which chondrocytes were treated with GlcN. The results demonstrated that the expression levels of β-catenin and cyclin D1 were decreased in chondrocytes treated with DKK-1 and GlcN. These results suggested that GlcN may promote chondrocyte proliferation via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuhuan Ma
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenwei Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Houhuang Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Pingdong Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
21
|
Computational Investigation on the Biomechanical Responses of the Osteocytes to the Compressive Stimulus: A Poroelastic Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4071356. [PMID: 29581973 PMCID: PMC5822791 DOI: 10.1155/2018/4071356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/02/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
Osteocytes, the major type of bone cells embedded in the bone matrix and surrounded by the lacunar and canalicular system, can serve as biomechanosensors and biomechanotranducers of the bone. Theoretical analytical methods have been employed to investigate the biomechanical responses of osteocytes in vivo; the poroelastic properties have not been taken into consideration in the three-dimensional (3D) finite element model. In this study, a 3D poroelastic idealized finite element model was developed and was used to predict biomechanical behaviours (maximal principal strain, pore pressure, and fluid velocity) of the osteocyte-lacunar-canalicular system under 150-, 1000-, 3000-, and 5000-microstrain compressive loads, respectively, representing disuse, physiological, overuse, and pathological overload loading stimuli. The highest local strain, pore pressure, and fluid velocity were found to be highest at the proximal region of cell processes. These data suggest that the strain, pore pressure, and fluid velocity of the osteocyte-lacunar-canalicular system increase with the global loading and that the poroelastic material property affects the biomechanical responses to the compressive stimulus. This new model can be used to predict the mechanobiological behaviours of osteocytes under the four different compressive loadings and may provide an insight into the mechanisms of mechanosensation and mechanotransduction of the bone.
Collapse
|
22
|
Halloran JP, Sibole SC, Erdemir A. The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution. Biomech Model Mechanobiol 2017; 17:159-168. [PMID: 28836010 DOI: 10.1007/s10237-017-0951-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
Abstract
Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macroscale mechanics of cartilage when higher cell concentrations are considered, as may be the case in many instances. Hence, the goal of this study was to compare cell-level response of single and eleven cell biphasic finite element models, where the latter provided an anatomically based cellular distribution representative of the actual number of cells for a commonly used [Formula: see text] edge cubic representative volume in the middle zone of cartilage. Single cell representations incorporated a centered single cell model and eleven location-corrected single cell models, the latter to delineate the role of cell placement in the representative volume element. A stress relaxation test at 10% compressive strain was adopted for all simulations. During transient response, volume- averaged chondrocyte mechanics demonstrated marked differences (up to 60% and typically greater than 10%) for the centered single versus the eleven cell models, yet steady-state loading was similar. Cell location played a marked role, due to inhomogeneity of the displacement and fluid pressure fields at the macroscopic scale. When the single cell representation was corrected for cell location, the transient response was consistent, while steady-state differences on the order of 1-4% were realized, which may be attributed to intercellular mechanical interactions. Anatomical representations of the superficial and deep zones, where cells reside in close proximity, may exhibit greater intercellular interactions, but these have yet to be explored.
Collapse
Affiliation(s)
- Jason P Halloran
- Department of Mechanical Engineering and the Mechanics and Control of Living Systems Lab, Cleveland State University, Cleveland, OH, USA.
| | - Scott C Sibole
- Human Performance Lab, Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Ahmet Erdemir
- Computational Biomodeling (CoBi) Core and the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
23
|
Moo EK, Herzog W. Unfolding of membrane ruffles of in situ chondrocytes under compressive loads. J Orthop Res 2017; 35:304-310. [PMID: 27064602 DOI: 10.1002/jor.23260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/31/2016] [Indexed: 02/04/2023]
Abstract
Impact loading results in chondrocyte death. Previous studies implicated high tensile strain rates in chondrocyte membranes as the cause of impact-induced cell deaths. However, this hypothesis relies on the untested assumption that chondrocyte membranes unfold in vivo during physiological tissue compression, but do not unfold during impact loading. Although membrane unfolding has been observed in isolated chondrocytes during osmotically induced swelling and mechanical compression, it is not known if membrane unfolding also occurs in chondrocytes embedded in their natural extracellular matrix. This study was aimed at quantifying changes in membrane morphology of in situ superficial zone chondrocytes during slow physiological cartilage compression. Bovine cartilage-bone explants were loaded at 5 μm/s to nominal compressive strains ranging from 0% to 50%. After holding the final strains for 45 min, the loaded cartilage was chemically pre-fixed for 12 h. The cartilage layer was post-processed for visualization of cell ultrastructure using electron microscopy. The changes in membrane morphology in superficial zone cells were quantified from planar electron micrographs by measuring the roughness and the complexity of the cell surfaces. Qualitatively, the cell surface ruffles that existed before loading disappeared when cartilage was loaded. Quantitatively, the roughness and complexity of cell surfaces decreased with increasing load magnitudes, suggesting a load-dependent use of membrane reservoirs. Chondrocyte membranes unfold in a load-dependent manner when cartilage is compressed. Under physiologically meaningful loading conditions, the cells likely expand their surface through unfolding of the membrane ruffles, and therefore avoid direct stretch of the cell membrane. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:304-310, 2017.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
24
|
Early in situ changes in chondrocyte biomechanical responses due to a partial meniscectomy in the lateral compartment of the mature rabbit knee joint. J Biomech 2016; 49:4057-4064. [PMID: 27825604 DOI: 10.1016/j.jbiomech.2016.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022]
Abstract
We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology.
Collapse
|
25
|
Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA. Injurious Loading of Articular Cartilage Compromises Chondrocyte Respiratory Function. Arthritis Rheumatol 2016; 68:662-71. [PMID: 26473613 DOI: 10.1002/art.39460] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine whether repeatedly overloading healthy cartilage disrupts mitochondrial function in a manner similar to that associated with osteoarthritis (OA) pathogenesis. METHODS We exposed normal articular cartilage on bovine osteochondral explants to 1 day or 7 consecutive days of cyclic axial compression (0.25 MPa or 1.0 MPa at 0.5 Hz for 3 hours) and evaluated the effects on chondrocyte viability, ATP concentration, reactive oxygen species (ROS) production, indicators of oxidative stress, respiration, and mitochondrial membrane potential. RESULTS Neither 0.25 MPa nor 1.0 MPa of cyclic compression caused extensive chondrocyte death, macroscopic tissue damage, or overt changes in stress-strain behavior. After 1 day of loading, differences in respiratory activities between the 0.25 MPa and 1.0 MPa groups were minimal; however, after 7 days of loading, respiratory activity and ATP levels were suppressed in the 1.0 MPa group relative to the 0.25 MPa group, an effect prevented by pretreatment with 10 mM N-acetylcysteine. These changes were accompanied by increased proton leakage and decreased mitochondrial membrane potential, as well as by increased ROS formation, as indicated by dihydroethidium staining and glutathione oxidation. CONCLUSION Repeated overloading leads to chondrocyte oxidant-dependent mitochondrial dysfunction. This mitochondrial dysfunction may contribute to destabilization of cartilage during various stages of OA in distinct ways by disrupting chondrocyte anabolic responses to mechanical stimuli.
Collapse
|
26
|
Klika V, Gaffney EA, Chen YC, Brown CP. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology. J Mech Behav Biomed Mater 2016; 62:139-157. [PMID: 27195911 DOI: 10.1016/j.jmbbm.2016.04.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023]
Abstract
There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention.
Collapse
Affiliation(s)
- Václav Klika
- Department of Mathematics, FNSPE, Czech Technical University in Prague, Prague, Czech Republic.
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.
| | - Ying-Chun Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Cameron P Brown
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage 2016; 24:27-35. [PMID: 26707990 PMCID: PMC4693146 DOI: 10.1016/j.joca.2015.08.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 02/02/2023]
Abstract
Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.
Collapse
|
28
|
Fick JM, Ronkainen A, Herzog W, Korhonen RK. Site-dependent biomechanical responses of chondrocytes in the rabbit knee joint. J Biomech 2015; 48:4010-4019. [PMID: 26601568 DOI: 10.1016/j.jbiomech.2015.09.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/09/2015] [Accepted: 09/26/2015] [Indexed: 11/15/2022]
Abstract
Biomechanical responses of chondrocytes were determined in specific locations within the superficial zone of patellar, femoral groove, femoral condyle and tibial plateau cartilages obtained from female New Zealand White rabbits. A confocal laser scanning microscope combined with a custom indentation system was utilized for experimentation. Changes in cell volumes and dimensions (i.e. cell height, width and depth) due to loading, global, local axial and transverse strains were determined for each site. Tissue composition and structure was analysed at each indentation site with digital densitometry, polarized light microscopy and Fourier transform infrared imaging spectroscopy. Patellar cells underwent greater volume decreases (compared to femoral groove cells; p<0.05) primarily due to greater decreases in cell height (p<0.05), consistent with greater levels of both global and local axial strains (p<0.05). Lateral condyle cells underwent greater volume decreases (compared to lateral plateau cells; p<0.05) primarily due to greater decreases in cell height, consistent with greater levels of tissue strains (p<0.05). Medial condyle cells underwent smaller volume decreases (compared to medial plateau cells; p<0.05) primarily due to elevated cell expansions in the depth direction, which was consistent with greater levels of minor transverse strains (p<0.05). Site-dependent differences in collagen orientation angles agreed conceptually with the observed cell dimensional changes. Chondrocyte biomechanical responses were highly site-dependent and corresponded primarily with the orientation of the collagen fibrils. The observed differences were thought to be due to the different biomechanical loading conditions at each site.
Collapse
Affiliation(s)
- J M Fick
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio FI-70211, Finland.
| | - A Ronkainen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio FI-70211, Finland
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio FI-70211, Finland
| |
Collapse
|
29
|
Gao J, Roan E, Williams JL. Regional variations in growth plate chondrocyte deformation as predicted by three-dimensional multi-scale simulations. PLoS One 2015; 10:e0124862. [PMID: 25885547 PMCID: PMC4401775 DOI: 10.1371/journal.pone.0124862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/10/2015] [Indexed: 11/17/2022] Open
Abstract
The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales.
Collapse
Affiliation(s)
- Jie Gao
- Departments of Mechanical Engineering, University of Memphis Memphis, Tennessee, 38152, United States of America
| | - Esra Roan
- Department of Biomedical Engineering, University of Memphis Memphis, Tennessee, 38152, United States of America
| | - John L Williams
- Department of Biomedical Engineering, University of Memphis Memphis, Tennessee, 38152, United States of America
| |
Collapse
|
30
|
Erdemir A, Bennetts C, Davis S, Reddy A, Sibole S. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow. Interface Focus 2015; 5:20140081. [PMID: 25844153 DOI: 10.1098/rsfs.2014.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Understanding the mechanical environment of articular cartilage and chondrocytes is of the utmost importance in evaluating tissue damage which is often related to failure of the fibre architecture and mechanical injury to the cells. This knowledge also has significant implications for understanding the mechanobiological response in healthy and diseased cartilage and can drive the development of intervention strategies, ranging from the design of tissue-engineered constructs to the establishment of rehabilitation protocols. Spanning multiple spatial scales, a wide range of biomechanical factors dictate this mechanical environment. Computational modelling and simulation provide descriptive and predictive tools to identify multiscale interactions, and can lead towards a greater comprehension of healthy and diseased cartilage function, possibly in an individualized manner. Cartilage and chondrocyte mechanics can be examined in silico, through post-processing or feed-forward approaches. First, joint-tissue level simulations, typically using the finite-element method, solve boundary value problems representing the joint articulation and underlying tissue, which can differentiate the role of compartmental joint loading in cartilage contact mechanics and macroscale cartilage field mechanics. Subsequently, tissue-cell scale simulations, driven by the macroscale cartilage mechanical field information, can predict chondrocyte deformation metrics along with the mechanics of the surrounding pericellular and extracellular matrices. A high-throughput modelling and simulation framework is necessary to develop models representative of regional and population-wide variations in cartilage and chondrocyte anatomy and mechanical properties, and to conduct large-scale analysis accommodating a multitude of loading scenarios. However, realization of such a framework is a daunting task, with technical difficulties hindering the processes of model development, scale coupling, simulation and interpretation of the results. This study aims to summarize various strategies to address the technical challenges of post-processing-based simulations of cartilage and chondrocyte mechanics with the ultimate goal of establishing the foundations of a high-throughput multiscale analysis framework. At the joint-tissue scale, rapid development of regional models of articular contact is possible by automating the process of generating parametric representations of cartilage boundaries and depth-dependent zonal delineation with associated constitutive relationships. At the tissue-cell scale, models descriptive of multicellular and fibrillar architecture of cartilage zones can also be generated in an automated fashion. Through post-processing, scripts can extract biphasic mechanical metrics at a desired point in the cartilage to assign loading and boundary conditions to models at the lower spatial scale of cells. Cell deformation metrics can be extracted from simulation results to provide a simplified description of individual chondrocyte responses. Simulations at the tissue-cell scale can be parallelized owing to the loosely coupled nature of the feed-forward approach. Verification studies illustrated the necessity of a second-order data passing scheme between scales and evaluated the role that the microscale representative volume size plays in appropriately predicting the mechanical response of the chondrocytes. The tools summarized in this study collectively provide a framework for high-throughput exploration of cartilage biomechanics, which includes minimally supervised model generation, and prediction of multiscale biomechanical metrics across a range of spatial scales, from joint regions and cartilage zones, down to that of the chondrocytes.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Computational Biomodeling (CoBi) Core , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA
| | - Craig Bennetts
- Computational Biomodeling (CoBi) Core , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA
| | - Sean Davis
- Computational Biomodeling (CoBi) Core , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Department of Mechanical Engineering , University of Akron , Akron, OH 44325 , USA
| | - Akhil Reddy
- Computational Biomodeling (CoBi) Core , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Weill Cornell Medical College , New York, NY 10065 , USA
| | - Scott Sibole
- Computational Biomodeling (CoBi) Core , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195 , USA ; Human Performance Laboratory, Faculty of Kinesiology , University of Calgary , Calgary, Alberta , Canada T2N 1N4
| |
Collapse
|
31
|
Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 2015; 10:e0119816. [PMID: 25822615 PMCID: PMC4379081 DOI: 10.1371/journal.pone.0119816] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Chondrocytes reorganize the extracellular matrix of articular cartilage in response to externally applied loads. Thereby, different loading characteristics lead to different biological responses. Despite of active research in this area, it is still unclear which parts of the extracellular matrix adapt in what ways, and how specific loading characteristics affect matrix changes. This review focuses on the influence of cyclic tensile strain on chondrocyte metabolism in vitro. It also aimed to identify anabolic or catabolic chondrocyte responses to different loading protocols. The key findings show that loading cells up to 3% strain, 0.17 Hz, and 2 h, resulted in weak or no biological responses. Loading between 3–10% strain, 0.17–0.5 Hz, and 2–12 h led to anabolic responses; and above 10% strain, 0.5 Hz, and 12 h catabolic events predominated. However, this review also discusses that various other factors are involved in the remodeling of the extracellular matrix in response to loading, and that parameters like an inflammatory environment might influence the biological response.
Collapse
Affiliation(s)
- Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- * E-mail:
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|