1
|
Kotelsky A, Carrier JS, Buckley MR. Quantification of Cartilage Poroelastic Material Properties Via Analysis of Loading-Induced Cell Death. J Biomech Eng 2024; 146:081006. [PMID: 38530647 PMCID: PMC11080949 DOI: 10.1115/1.4065194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used-in combination with inverse finite element modeling-to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties.
Collapse
Affiliation(s)
- Alexander Kotelsky
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627
| | - Joseph S. Carrier
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627
- University of Rochester
| | - Mark R. Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627
| |
Collapse
|
2
|
Hadzipasic M, Zhang S, Huang Z, Passaro R, Sten MS, Shankar GM, Nia HT. Emergence of nanoscale viscoelasticity from single cancer cells to established tumors. Biomaterials 2024; 305:122431. [PMID: 38169188 PMCID: PMC10837793 DOI: 10.1016/j.biomaterials.2023.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Tumors are complex materials whose physical properties dictate growth and treatment outcomes. Recent evidence suggests time-dependent physical properties, such as viscoelasticity, are crucial, distinct mechanical regulators of cancer progression and malignancy, yet the genesis and consequences of tumor viscoelasticity are poorly understood. Here, using Wide-bandwidth AFM-based ViscoElastic Spectroscopy (WAVES) coupled with mathematical modeling, we probe the origins of tumor viscoelasticity. From single carcinoma cells to increasingly sized carcinoma spheroids to established tumors, we describe a stepwise evolution of dynamic mechanical properties that create a nanorheological signature of established tumors: increased stiffness, decreased rate-dependent stiffening, and reduced energy dissipation. We dissect this evolution of viscoelasticity by scale, and show established tumors use fluid-solid interactions as the dominant mechanism of mechanical energy dissipation as opposed to fluid-independent intrinsic viscoelasticity. Additionally, we demonstrate the energy dissipation mechanism in spheroids and established tumors is negatively correlated with the cellular density, and this relationship strongly depends on an intact actin cytoskeleton. These findings define an emergent and targetable signature of the physical tumor microenvironment, with potential for deeper understanding of tumor pathophysiology and treatment strategies.
Collapse
Affiliation(s)
- Muhamed Hadzipasic
- Department of Biomedical Engineering, Boston University Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Zhuoying Huang
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Rachel Passaro
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Margaret S Sten
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University Boston, MA, USA.
| |
Collapse
|
3
|
Piacenti AR, Adam C, Hawkins N, Wagner R, Seifert J, Taniguchi Y, Proksch R, Contera S. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy. Macromolecules 2024; 57:1118-1127. [PMID: 38370912 PMCID: PMC10867883 DOI: 10.1021/acs.macromol.3c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
Polymeric materials are widely used in industries ranging from automotive to biomedical. Their mechanical properties play a crucial role in their application and function and arise from the nanoscale structures and interactions of their constitutive polymer molecules. Polymeric materials behave viscoelastically, i.e., their mechanical responses depend on the time scale of the measurements; quantifying these time-dependent rheological properties at the nanoscale is relevant to develop, for example, accurate models and simulations of those materials, which are needed for advanced industrial applications. In this paper, an atomic force microscopy (AFM) method based on the photothermal actuation of an AFM cantilever is developed to quantify the nanoscale loss tangent, storage modulus, and loss modulus of polymeric materials. The method is then validated on styrene-butadiene rubber (SBR), demonstrating the method's ability to quantify nanoscale viscoelasticity over a continuous frequency range up to 5 orders of magnitude (0.2-20,200 Hz). Furthermore, this method is combined with AFM viscoelastic mapping obtained with amplitude modulation-frequency modulation (AM-FM) AFM, enabling the extension of viscoelastic quantification over an even broader frequency range and demonstrating that the novel technique synergizes with preexisting AFM techniques for quantitative measurement of viscoelastic properties. The method presented here introduces a way to characterize the viscoelasticity of polymeric materials and soft and biological matter in general at the nanoscale for any application.
Collapse
Affiliation(s)
- Alba R. Piacenti
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| | - Casey Adam
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
- Department
of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
| | - Nicholas Hawkins
- Department
of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
| | - Ryan Wagner
- School
of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacob Seifert
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| | | | - Roger Proksch
- Asylum
Research – An Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Sonia Contera
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| |
Collapse
|
4
|
Song J, Zeng X, Li C, Yin H, Mao S, Ren D. Alteration in cartilage matrix stiffness as an indicator and modulator of osteoarthritis. Biosci Rep 2024; 44:BSR20231730. [PMID: 38014522 PMCID: PMC10794814 DOI: 10.1042/bsr20231730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and destruction, leading to joint ankylosis and disability. The major challenge in diagnosing OA at early stage is not only lack of clinical symptoms but also the insufficient histological and immunohistochemical signs. Alteration in cartilage stiffness during OA progression, especially at OA initiation, has been confirmed by growing evidences. Moreover, the stiffness of cartilage extracellular matrix (ECM), pericellular matrix (PCM) and chondrocytes during OA development are dynamically changed in unique and distinct fashions, revealing possibly inconsistent conclusions when detecting cartilage matrix stiffness at different locations and scales. In addition, it will be discussed regarding the mechanisms through which OA-related cartilage degenerations exhibit stiffened or softened matrix, highlighting some critical events that generally incurred to cartilage stiffness alteration, as well as some typical molecules that participated in constituting the mechanical properties of cartilage. Finally, in vitro culturing chondrocytes in various stiffness-tunable scaffolds provided a reliable method to explore the matrix stiffness-dependent modulation of chondrocyte metabolism, which offers valuable information on optimizing implant scaffolds to maximally promote cartilage repair and regeneration during OA. Overall, this review systematically and comprehensively elucidated the current progresses in the relationship between cartilage stiffness alteration and OA progression. We hope that deeper attention and understanding in this researching field will not only develop more innovative methods in OA early detection and diagnose but also provide promising ideas in OA therapy and prognosis.
Collapse
Affiliation(s)
- Jing Song
- Qingdao University Affiliated Qingdao Women and Children’s Hospital, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Xuemin Zeng
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Chenzhi Li
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Hongyan Yin
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Sui Mao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Dapeng Ren
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| |
Collapse
|
5
|
Davis S, Zekonyte J, Karali A, Roldo M, Blunn G. Early Degenerative Changes in a Spontaneous Osteoarthritis Model Assessed by Nanoindentation. Bioengineering (Basel) 2023; 10:995. [PMID: 37760097 PMCID: PMC10525236 DOI: 10.3390/bioengineering10090995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding early mechanical changes in articular cartilage (AC) and subchondral bone (SB) is crucial for improved treatment of osteoarthritis (OA). The aim of this study was to develop a method for nanoindentation of fresh, unfixed osteochondral tissue to assess the early changes in the mechanical properties of AC and SB. Nanoindentation was performed throughout the depth of AC and SB in the proximal tibia of Dunkin Hartley guinea pigs at 2 months, 3 months, and 2 years of age. The contralateral tibias were either histologically graded for OA or analyzed using immunohistochemistry. The results showed an increase in the reduced modulus (Er) in the deep zone of AC during early-stage OA (6.0 ± 1.75 MPa) compared to values at 2 months (4.04 ± 1.25 MPa) (*** p < 0.001). In severe OA (2-year) specimens, there was a significant reduction in Er throughout the superficial and middle AC zones, which correlated to increased ADAMTS 4 and 5 staining, and proteoglycan loss in these regions. In the subchondral bone, a 35.0% reduction in stiffness was observed between 2-month and 3-month specimens (*** p < 0.001). The severe OA age group had significantly increased SB stiffness of 36.2% and 109.6% compared to 2-month and 3-month-old specimens respectively (*** p < 0.001). In conclusion, this study provides useful information about the changes in the mechanical properties of both AC and SB during both early- and late-stage OA and indicates that an initial reduction in stiffness of the SB and an increase in stiffness in the deep zone of AC may precede early-stage cartilage degeneration.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
| |
Collapse
|
6
|
Oftadeh R, Azadi M, Donovan M, Langer J, Liao IC, Ortiz C, Grodzinsky AJ, Luengo GS. Poroelastic behavior and water permeability of human skin at the nanoscale. PNAS NEXUS 2023; 2:pgad240. [PMID: 37614672 PMCID: PMC10443659 DOI: 10.1093/pnasnexus/pgad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Topical skin care products and hydrating compositions (moisturizers or injectable fillers) have been used for years to improve the appearance of, for example facial wrinkles, or to increase "plumpness". Most of the studies have addressed these changes based on the overall mechanical changes associated with an increase in hydration state. However, little is known about the water mobility contribution to these changes as well as the consequences to the specific skin layers. This is important as the biophysical properties and the biochemical composition of normal stratum corneum, epithelium, and dermis vary tremendously from one another. Our current studies and results reported here have focused on a novel approach (dynamic atomic force microscopy-based nanoindentation) to quantify biophysical characteristics of individual layers of ex vivo human skin. We have discovered that our new methods are highly sensitive to the mechanical properties of individual skin layers, as well as their hydration properties. Furthermore, our methods can assess the ability of these individual layers to respond to both compressive and shear deformations. In addition, since human skin is mechanically loaded over a wide range of deformation rates (frequencies), we studied the biophysical properties of skin over a wide frequency range. The poroelasticity model used helps to quantify the hydraulic permeability of the skin layers, providing an innovative method to evaluate and interpret the impact of hydrating compositions on water mobility of these different skin layers.
Collapse
Affiliation(s)
- Ramin Oftadeh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mojtaba Azadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Engineering, San Francisco State University, San Francisco, CA 94132, USA
| | - Mark Donovan
- L’OREAL Research and Innovation, Aulnay sous Bois, 93106, France
| | | | - I-Chien Liao
- L'OREAL Research and Innovation, Clark, NJ 07066, USA
| | - Christine Ortiz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gustavo S Luengo
- L’OREAL Research and Innovation, Aulnay sous Bois, 93106, France
| |
Collapse
|
7
|
Lloyd DG, Saxby DJ, Pizzolato C, Worsey M, Diamond LE, Palipana D, Bourne M, de Sousa AC, Mannan MMN, Nasseri A, Perevoshchikova N, Maharaj J, Crossley C, Quinn A, Mulholland K, Collings T, Xia Z, Cornish B, Devaprakash D, Lenton G, Barrett RS. Maintaining soldier musculoskeletal health using personalised digital humans, wearables and/or computer vision. J Sci Med Sport 2023:S1440-2440(23)00070-1. [PMID: 37149408 DOI: 10.1016/j.jsams.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES The physical demands of military service place soldiers at risk of musculoskeletal injuries and are major concerns for military capability. This paper outlines the development new training technologies to prevent and manage these injuries. DESIGN Narrative review. METHODS Technologies suitable for integration into next-generation training devices were examined. We considered the capability of technologies to target tissue level mechanics, provide appropriate real-time feedback, and their useability in-the-field. RESULTS Musculoskeletal tissues' health depends on their functional mechanical environment experienced in military activities, training and rehabilitation. These environments result from the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing joint tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and strain), which may be enabled by real-time biofeedback. Recent research has shown that these biofeedback technologies are possible by integrating a patient's personalised digital twin and wireless wearable devices. Personalised digital twins are personalised neuromusculoskeletal rigid body and finite element models that work in real-time by code optimisation and artificial intelligence. Model personalisation is crucial in obtaining physically and physiologically valid predictions. CONCLUSIONS Recent work has shown that laboratory-quality biomechanical measurements and modelling can be performed outside the laboratory with a small number of wearable sensors or computer vision methods. The next stage is to combine these technologies into well-designed easy to use products.
Collapse
Affiliation(s)
- David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia.
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Matthew Worsey
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Dinesh Palipana
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Medicine, Dentistry and Health, Griffith University, Australia
| | - Matthew Bourne
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Ana Cardoso de Sousa
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Malik Muhammad Naeem Mannan
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Azadeh Nasseri
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Nataliya Perevoshchikova
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Jayishni Maharaj
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Claire Crossley
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Alastair Quinn
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Kyle Mulholland
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Tyler Collings
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Zhengliang Xia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Bradley Cornish
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Daniel Devaprakash
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; VALD Performance, Australia
| | | | - Rodney S Barrett
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| |
Collapse
|
8
|
Belluzzi E, Todros S, Pozzuoli A, Ruggieri P, Carniel EL, Berardo A. Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11041014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Articular cartilage is a complex connective tissue with the fundamental functions of load bearing, shock absorption and lubrication in joints. However, traumatic events, aging and degenerative pathologies may affect its structural integrity and function, causing pain and long-term disability. Osteoarthritis represents a health issue, which concerns an increasing number of people worldwide. Moreover, it has been observed that this pathology also affects the mechanical behavior of the articular cartilage. To better understand this correlation, the here proposed review analyzes the physiological aspects that influence cartilage microstructure and biomechanics, with a special focus on the pathological changes caused by osteoarthritis. Particularly, the experimental data on human articular cartilage are presented with reference to different techniques adopted for mechanical testing and the related theoretical mechanical models usually applied to articular cartilage are briefly discussed.
Collapse
|
9
|
Kurz B, Hart ML, Rolauffs B. Mechanical Articular Cartilage Injury Models and Their Relevance in Advancing Therapeutic Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:107-124. [PMID: 37052850 DOI: 10.1007/978-3-031-25588-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This chapter details how Alan Grodzinsky and his team unraveled the complex electromechanobiological structure-function relationships of articular cartilage and used these insights to develop an impressively versatile shear and compression model. In this context, this chapter focuses (i) on the effects of mechanical compressive injury on multiple articular cartilage properties for (ii) better understanding the molecular concept of mechanical injury, by studying gene expression, signal transduction and the release of potential injury biomarkers. Furthermore, we detail how (iii) this was used to combine mechanical injury with cytokine exposure or co-culture systems for generating a more realistic trauma model to (iv) investigate the therapeutic modulation of the injurious response of articular cartilage. Impressively, Alan Grodzinsky's research has been and will remain to be instrumental in understanding the proinflammatory response to injury and in developing effective therapies that are based on an in-depth understanding of complex structure-function relationships that underlay articular cartilage function and degeneration.
Collapse
Affiliation(s)
- Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Kiel, Germany.
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
10
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
11
|
Hybrid fluorescence-AFM explores articular surface degeneration in early osteoarthritis across length scales. Acta Biomater 2021; 126:315-325. [PMID: 33753314 DOI: 10.1016/j.actbio.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Atomic force microscopy (AFM) has become a powerful tool for the characterization of materials at the nanoscale. Nevertheless, its application to hierarchical biological tissue like cartilage is still limited. One reason is that such samples are usually millimeters in size, while the AFM delivers much more localized information. Here a combination of AFM and fluorescence microscopy is presented where features on a millimeter sized tissue sample are selected by fluorescence microscopy on the micrometer scale and then mapped down to nanometer precision by AFM under native conditions. This served us to show that local changes in the organization of fluorescent stained cells, a marker for early osteoarthritis, correlate with a significant local reduction of the elastic modulus, local thinning of the collagen fibers, and a roughening of the articular surface. This approach is not only relevant for cartilage, but in general for the characterization of native biological tissue from the macro- to the nanoscale. STATEMENT OF SIGNIFICANCE: Different length scales have to be studied to understand the function and dysfunction of hierarchically organized biomaterials or tissues. Here we combine a highly stable AFM with fluorescence microscopy and precisely motorized movement to correlate micro- and nanoscopic properties of articular cartilage on a millimeter sized sample under native conditions. This is necessary for unraveling the relationship between microscale organization of chondrocytes, micrometer scale changes in articular cartilage properties and nanoscale organization of collagen (including D-banding). We anticipate that such studies pave the way for a guided design of hierarchical biomaterials.
Collapse
|
12
|
Perni S, Prokopovich P. Rheometer enabled study of cartilage frequency-dependent properties. Sci Rep 2020; 10:20696. [PMID: 33244092 PMCID: PMC7693262 DOI: 10.1038/s41598-020-77758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
Despite the well-established dependence of cartilage mechanical properties on the frequency of the applied load, most research in the field is carried out in either load-free or constant load conditions because of the complexity of the equipment required for the determination of time-dependent properties. These simpler analyses provide a limited representation of cartilage properties thus greatly reducing the impact of the information gathered hindering the understanding of the mechanisms involved in this tissue replacement, development and pathology. More complex techniques could represent better investigative methods, but their uptake in cartilage research is limited by the highly specialised training required and cost of the equipment. There is, therefore, a clear need for alternative experimental approaches to cartilage testing to be deployed in research and clinical settings using more user-friendly and financial accessible devices. Frequency dependent material properties can be determined through rheometry that is an easy to use requiring a relatively inexpensive device; we present how a commercial rheometer can be adapted to determine the viscoelastic properties of articular cartilage. Frequency-sweep tests were run at various applied normal loads on immature, mature and trypsinased (as model of osteoarthritis) cartilage samples to determine the dynamic shear moduli (G*, G′ G″) of the tissues. Moduli increased with increasing frequency and applied load; mature cartilage had generally the highest moduli and GAG depleted samples the lowest. Hydraulic permeability (KH) was estimated from the rheological data and decreased with applied load; GAG depleted cartilage exhibited higher hydraulic permeability than either immature or mature tissues. The rheometer-based methodology developed was validated by the close comparison of the rheometer-obtained cartilage characteristics (G*, G′, G″, KH) with results obtained with more complex testing techniques available in literature. Rheometry is relatively simpler and does not require highly capital intensive machinery and staff training is more accessible; thus the use of a rheometer would represent a cost-effective approach for the determination of frequency-dependent properties of cartilage for more comprehensive and impactful results for both healthcare professional and R&D.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Redwood BuildingCardiff, CF10 3NB, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Redwood BuildingCardiff, CF10 3NB, UK.
| |
Collapse
|
13
|
Chery DR, Han B, Zhou Y, Wang C, Adams SM, Chandrasekaran P, Kwok B, Heo SJ, Enomoto-Iwamoto M, Lu XL, Kong D, Iozzo RV, Birk DE, Mauck RL, Han L. Decorin regulates cartilage pericellular matrix micromechanobiology. Matrix Biol 2020; 96:1-17. [PMID: 33246102 DOI: 10.1016/j.matbio.2020.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.
Collapse
Affiliation(s)
- Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Ying Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
14
|
Han G, Boz U, Eriten M, Henak CR. Glycosaminoglycan depletion increases energy dissipation in articular cartilage under high-frequency loading. J Mech Behav Biomed Mater 2020; 110:103876. [PMID: 32957186 DOI: 10.1016/j.jmbbm.2020.103876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022]
Abstract
High-frequency material behavior of cartilage at macroscopic lengths is not widely understood, despite a wide range of frequencies and contact lengths experienced in vivo. For example, cartilage at different stages of matrix integrity can experience high-frequency loading during traumatic impact, making high-frequency behavior relevant in the context of structural failure. Therefore, this study examined macroscopic dissipative and mechanical responses of intact and glycosaminoglycan (GAG)-depleted cartilage under previously unexplored high-frequency loading. These dynamic responses were complemented with the evaluation of quasi-static responses. A custom dynamic mechanical analyzer was used to obtain dynamic behavior, and stress relaxation testing was performed to obtain quasi-static behavior. Under high-frequency loading, cartilage energy dissipation increased with GAG depletion and decreased with strain; dynamic modulus exhibited opposite trends. Similarly, under quasi-static loading, equilibrium modulus and relaxation time of cartilage decreased with GAG depletion. The increased energy dissipation after GAG depletion under high-frequency loading was likely due to increased viscoelastic dissipation. These findings broaden our understanding of fundamental properties of cartilage as a function of solid matrix integrity in an unprecedented loading regime. They also provide a foundation for analyzing energy dissipation associated with cartilage failure induced by traumatic impact.
Collapse
Affiliation(s)
- Guebum Han
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA.
| | - Utku Boz
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA.
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 University Ave., Madison, WI, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
15
|
Yan JF, Qin WP, Xiao BC, Wan QQ, Tay FR, Niu LN, Jiao K. Pathological calcification in osteoarthritis: an outcome or a disease initiator? Biol Rev Camb Philos Soc 2020; 95:960-985. [PMID: 32207559 DOI: 10.1111/brv.12595] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
In the progression of osteoarthritis, pathological calcification in the affected joint is an important feature. The role of these crystallites in the pathogenesis and progression of osteoarthritis is controversial; it remains unclear whether they act as a disease initiator or are present as a result of joint damage. Recent studies reported that the molecular mechanisms regulating physiological calcification of skeletal tissues are similar to those regulating pathological or ectopic calcification of soft tissues. Pathological calcification takes place when the equilibrium is disrupted. Calcium phosphate crystallites are identified in most affected joints and the presence of these crystallites is closely correlated with the extent of joint destruction. These observations suggest that pathological calcification is most likely to be a disease initiator instead of an outcome of osteoarthritis progression. Inhibiting pathological crystallite deposition within joint tissues therefore represents a potential therapeutic target in the management of osteoarthritis.
Collapse
Affiliation(s)
- Jian-Fei Yan
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Wen-Pin Qin
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Bo-Cheng Xiao
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Qian-Qian Wan
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Franklin R Tay
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China.,Department of Endodontics, College of Graduate Studies, Augusta University, 1430, John Wesley Gilbert Drive, Augusta, GA, 30912, U.S.A
| | - Li-Na Niu
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Kai Jiao
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
16
|
Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. J Clin Med 2019; 8:jcm8111865. [PMID: 31684201 PMCID: PMC6912408 DOI: 10.3390/jcm8111865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023] Open
Abstract
The nanoindentation method was applied to determine the elastic modulus and hardness of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). The mean elastic modulus of HWB cartilage was 4.46 ± 4.44 MPa in comparison to that of the LWB region (9.81 ± 8.88 MPa, p < 0.001). Similarly, the hardness was significantly lower in HWB tissue (0.317 ± 0.397 MPa) than in LWB cartilage (0.455 ± 0.434 MPa, p < 0.001). When adjusted to patients’ ages, the mean elastic modulus and hardness were both significantly lower in the age group over 70 years (p < 0.001). A statistically significant difference in mechanical parameters was also found in grade 3 and 4 OA. This study provides an insight into the nanomechanical properties of the knee articular cartilage and provides a starting point for personalized cartilage grafts that are compatible with the mechanical properties of the native tissue.
Collapse
Affiliation(s)
- Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland.
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland.
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany.
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| |
Collapse
|
17
|
Wang C, Brisson BK, Terajima M, Li Q, Hoxha K, Han B, Goldberg AM, Sherry Liu X, Marcolongo MS, Enomoto-Iwamoto M, Yamauchi M, Volk SW, Han L. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol 2019; 85-86:47-67. [PMID: 31655293 DOI: 10.1016/j.matbio.2019.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/- mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.
Collapse
Affiliation(s)
- Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Kevt'her Hoxha
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Abby M Goldberg
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Michele S Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States.
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, Liu XS, Lu XL, Enomoto-Iwamoto M, Qin L, Mauck RL, Iozzo RV, Birk DE, Han L. Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix. ACS NANO 2019; 13:11320-11333. [PMID: 31550133 PMCID: PMC6892632 DOI: 10.1021/acsnano.9b04477] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Joint biomechanical functions rely on the integrity of cartilage extracellular matrix. Understanding the molecular activities that govern cartilage matrix assembly is critical for developing effective cartilage regeneration strategies. This study elucidated the role of decorin, a small leucine-rich proteoglycan, in the structure and biomechanical functions of cartilage. In decorin-null cartilage, we discovered a substantial reduction of aggrecan content, the major proteoglycan of cartilage matrix, and mild changes in collagen fibril nanostructure. This loss of aggrecan resulted in significantly impaired biomechanical properties of cartilage, including decreased modulus, elevated hydraulic permeability, and reduced energy dissipation capabilities. At the cellular level, we found that decorin functions to increase the retention of aggrecan in the neo-matrix of chondrocytes, rather than to directly influence the biosynthesis of aggrecan. At the molecular level, we demonstrated that decorin significantly increases the adhesion between aggrecan and aggrecan molecules and between aggrecan molecules and collagen II fibrils. We hypothesize that decorin plays a crucial structural role in mediating the matrix integrity and biomechanical functions of cartilage by providing physical linkages to increase the adhesion and assembly of aggrecan molecules at the nanoscale.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Pavan Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Sheila M. Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ramin Oftadeh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Christopher Y. Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - X. Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Lycke RJ, Walls MK, Calve S. Computational Modeling of Developing Cartilage Using Experimentally Derived Geometries and Compressive Moduli. J Biomech Eng 2019; 141:081002. [PMID: 30874718 PMCID: PMC6528734 DOI: 10.1115/1.4043208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/06/2019] [Indexed: 12/22/2022]
Abstract
During chondrogenesis, tissue organization changes dramatically. We previously showed that the compressive moduli of chondrocytes increase concomitantly with extracellular matrix (ECM) stiffness, suggesting cells were remodeling to adapt to the surrounding environment. Due to the difficulty in analyzing the mechanical response of cells in situ, we sought to create an in silico model that would enable us to investigate why cell and ECM stiffness increased in tandem. The goal of this study was to establish a methodology to segment, quantify, and generate mechanical models of developing cartilage to explore how variations in geometry and material properties affect strain distributions. Multicellular geometries from embryonic day E16.5 and postnatal day P3 murine cartilage were imaged in three-dimensional (3D) using confocal microscopy. Image stacks were processed using matlab to create geometries for finite element analysis using ANSYS. The geometries based on confocal images and isolated, single cell models were compressed 5% and the equivalent von Mises strain of cells and ECM were compared. Our simulations indicated that cells had similar strains at both time points, suggesting that the stiffness and organization of cartilage changes during development to maintain a constant strain profile within cells. In contrast, the ECM at P3 took on more strain than at E16.5. The isolated, single-cell geometries underestimated both cell and ECM strain and were not able to capture the similarity in cell strain at both time points. We expect this experimental and computational pipeline will facilitate studies investigating other model systems to implement physiologically derived geometries.
Collapse
Affiliation(s)
- Roy J Lycke
- Weldon School of Biomedical Engineering,Purdue University,206 South Martin Jischke Drive,West Lafayette, IN 47907e-mail:
| | - Michael K Walls
- Weldon School of Biomedical Engineering,Purdue University,206 South Martin Jischke Drive,West Lafayette, IN 47907e-mail:
| | - Sarah Calve
- Weldon School of Biomedical Engineering,Purdue University,206 South Martin Jischke Drive,West Lafayette, IN 47907e-mail:
| |
Collapse
|
20
|
Marchiori G, Berni M, Boi M, Filardo G. Cartilage mechanical tests: Evolution of current standards for cartilage repair and tissue engineering. A literature review. Clin Biomech (Bristol, Avon) 2019; 68:58-72. [PMID: 31158591 DOI: 10.1016/j.clinbiomech.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Repair procedures and tissue engineering are solutions available in the clinical practice for the treatment of damaged articular cartilage. Regulatory bodies defined the requirements that any products, intended to regenerate cartilage, should have to be applied. In order to verify these requirements, the Food and Drug Administration (FDA, USA) and the International Standard Organization (ISO) indicated some Standard tests, which allow evaluating, in a reproducible way, the performances of scaffolds/treatments for cartilage tissue regeneration. METHODS A review of the literature about cartilage mechanical characterization found 394 studies, from 1970 to date. They were classified by material (simulated/animal/human cartilage) and method (theoretical/applied; static/dynamic; standard/non-standard study), and analyzed by nation and year of publication. FINDINGS While Standard methods for cartilage mechanical characterization still refer to studies developed in the eighties, expertise and interest on cartilage mechanics research are evolving continuously and internationally, with studies both in vitro - on human and animal tissues - and in silico, dealing with tissue function and modelling, using static and dynamic loading conditions. INTERPRETATION there is a consensus on the importance of mechanical characterization that should be considered to evaluate cartilage treatments. Still, relative Standards need to be updated to describe advanced constructs and procedures for cartilage regeneration in a more exhaustive way. The use of the more complex, fibre-reinforced biphasic model, instead of the standard simple biphasic model, to describe cartilage response to loading, and the standardisation of dynamic tests can represent a first step in this direction.
Collapse
Affiliation(s)
- Gregorio Marchiori
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matteo Berni
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, NanoBiotechnology Laboratory (NaBi), Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giuseppe Filardo
- IRCCS Istituto Ortopedico Rizzoli, NanoBiotechnology Laboratory (NaBi), Via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Applied and Translational Research Center, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
21
|
Cui SJ, Fu Y, Liu Y, Kou XX, Zhang JN, Gan YH, Zhou YH, Wang XD. Chronic inflammation deteriorates structure and function of collagen fibril in rat temporomandibular joint disc. Int J Oral Sci 2019; 11:2. [PMID: 30783108 PMCID: PMC6381164 DOI: 10.1038/s41368-018-0036-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Collagen is the building component of temporomandibular joint (TMJ) discs and is often affected by inflammation in temporomandibular disorders. The macromechanical properties of collagen are deteriorated by chronic inflammation. However, the mechanism by which inflammation influences disc function remains unknown. The relationship between the ultrastructure and nanomechanical properties of collagen in inflamed discs should be clarified. Seven-week-old female Sprague-Dawley rats were randomly divided into two groups. Chronic TMJ inflammation was induced by intra-articular injection of complete Freund's adjuvant, and samples were harvested after 5 weeks. Picrosirius staining revealed multiple colours under polarized light, which represented alternative collagen bundles in inflamed discs. Using atomic force microscopy scanning, the magnitude of Young's modulus was reduced significantly accompanied with disordered collagen fibril arrangement with porous architecture of inflamed discs. Transmission electron microscopy scanning revealed a non-uniform distribution of collagen fibres, and oversized collagen fibrils were observed in inflamed discs. Fourier transform infrared microspectroscopy revealed a decrease in 1 338 cm-1/amide II area ratio of collagen in different regions. The peak positions of amide I and amide II bands were altered in inflamed discs, indicating collagen unfolding. Our results suggest that sustained inflammation deteriorates collagen structures, resulting in the deterioration of the ultrastructure and nanomechanical properties of rat TMJ discs.
Collapse
Affiliation(s)
- Sheng-Jie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China
| | - Yu Fu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China
| | - Xiao-Xing Kou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China
| | - Jie-Ni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China
| | - Ye-Hua Gan
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China. .,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.
| | - Xue-Dong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China. .,Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, China.
| |
Collapse
|
22
|
Kotelsky A, Woo CW, Delgadillo LF, Richards MS, Buckley MR. An Alternative Method to Characterize the Quasi-Static, Nonlinear Material Properties of Murine Articular Cartilage. J Biomech Eng 2018; 140:2657496. [PMID: 29049670 DOI: 10.1115/1.4038147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/08/2022]
Abstract
With the onset and progression of osteoarthritis (OA), articular cartilage (AC) mechanical properties are altered. These alterations can serve as an objective measure of tissue degradation. Although the mouse is a common and useful animal model for studying OA, it is extremely challenging to measure the mechanical properties of murine AC due to its small size (thickness < 50 μm). In this study, we developed novel and direct approach to independently quantify two quasi-static mechanical properties of mouse AC: the load-dependent (nonlinear) solid matrix Young's modulus (E) and drained Poisson's ratio (ν). The technique involves confocal microscope-based multiaxial strain mapping of compressed, intact murine AC followed by inverse finite element analysis (iFEA) to determine E and ν. Importantly, this approach yields estimates of E and ν that are independent of the initial guesses used for iterative optimization. As a proof of concept, mechanical properties of AC on the medial femoral condyles of wild-type mice were obtained for both trypsin-treated and control specimens. After proteolytic tissue degradation induced through trypsin treatment, a dramatic decrease in E was observed (compared to controls) at each of the three tested loading conditions. A significant decrease in ν due to trypsin digestion was also detected. These data indicate that the method developed in this study may serve as a valuable tool for comparative studies evaluating factors involved in OA pathogenesis using experimentally induced mouse OA models.
Collapse
Affiliation(s)
- Alexander Kotelsky
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Chandler W Woo
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Michael S Richards
- Department of Surgery, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rm 2.4153, Rochester, NY 14627 e-mail:
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| |
Collapse
|
23
|
Hui Mingalone CK, Liu Z, Hollander JM, Garvey KD, Gibson AL, Banks RE, Zhang M, McAlindon TE, Nielsen HC, Georgakoudi I, Zeng L. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. J Transl Med 2018; 98:656-669. [PMID: 29540857 PMCID: PMC7735372 DOI: 10.1038/s41374-018-0040-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability whose mechanism of pathogenesis is largely elusive. Local inflammation is thought to play a key role in OA progression, especially in injury-associated OA. While multiple inflammatory cytokines are detected, the timing and extent of overall inflammatory activities in early OA and the manner by which joint inflammation correlates with cartilage structural damage are still unclear. We induced OA via destabilization of the medial meniscus (DMM) in NFκB luciferase reporter mice, whose bioluminescent signal reflects the activity of NFκB, a central mediator of inflammation. Bioluminescence imaging data showed that DMM and sham control joints had a similar surge of inflammation at 1-week post-surgery, but the DMM joint exhibited a delay in resolution of inflammation in subsequent weeks. A similar trend was observed with synovitis, which we found to be mainly driven by synovial cell density and inflammatory infiltration rather than synovial lining thickness. Interestingly, an association between synovitis and collagen structural damage was observed in early OA. Using Second Harmonic Generation (SHG) imaging, we analyzed collagen fiber organization in articular cartilage. Zonal differences in collagen fiber thickness and organization were observed as soon as OA initiated after DMM surgery, and persisted over time. Even at 1-week post-surgery, the DMM joint showed a decrease in collagen fiber thickness in the deep zone and an increase in collagen fiber disorganization in the superficial zone. Since we were able detect and quantify collagen structural changes very early in OA development by SHG imaging, we concluded that SHG imaging is a highly sensitive tool to evaluate pathological changes in OA. In summary, this study uncovered a dynamic profile of inflammation and joint cartilage damage during OA initiation and development, providing novel insights into OA pathology.
Collapse
Affiliation(s)
- Carrie K. Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Judith M. Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Kirsten D. Garvey
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Averi L. Gibson
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rose E. Banks
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Division of Rheumatology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Heber C. Nielsen
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA. .,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
24
|
Connizzo BK, Grodzinsky AJ. Multiscale Poroviscoelastic Compressive Properties of Mouse Supraspinatus Tendons Are Altered in Young and Aged Mice. J Biomech Eng 2018; 140:2666618. [PMID: 29238818 PMCID: PMC5816244 DOI: 10.1115/1.4038745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/04/2017] [Indexed: 02/02/2023]
Abstract
Rotator cuff disorders are one of the most common causes of shoulder pain and disability in the aging population but, unfortunately, the etiology is still unknown. One factor thought to contribute to the progression of disease is the external compression of the rotator cuff tendons, which can be significantly increased by age-related changes such as muscle weakness and poor posture. The objective of this study was to investigate the baseline compressive response of tendon and determine how this response is altered during maturation and aging. We did this by characterizing the compressive mechanical, viscoelastic, and poroelastic properties of young, mature, and aged mouse supraspinatus tendons using macroscale indentation testing and nanoscale high-frequency AFM-based rheology testing. Using these multiscale techniques, we found that aged tendons were stiffer than their mature counterparts and that both young and aged tendons exhibited increased hydraulic permeability and energy dissipation. We hypothesize that regional and age-related variations in collagen morphology and organization are likely responsible for changes in the multiscale compressive response as these structural parameters may affect fluid flow. Importantly, these results suggest a role for age-related changes in the progression of tendon degeneration, and we hypothesize that decreased ability to resist compressive loading via fluid pressurization may result in damage to the extracellular matrix (ECM) and ultimately tendon degeneration. These studies provide insight into the regional multiscale compressive response of tendons and indicate that altered compressive properties in aging tendons may be a major contributor to overall tendon degeneration.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- Department of Biological Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139
| | - Alan J. Grodzinsky
- Department of Biological Engineering,Massachusetts Institute of Technology,
Cambridge, MA 02139;
Center for Biomedical Engineering,Massachusetts Institute of Technology,
Cambridge, MA 02139;
Department of Electrical Engineeringand Computer Science,
Massachusetts Institute of Technology,
Cambridge, MA 02139;
Department of Mechanical Engineering,Massachusetts Institute of Technology,
Cambridge, MA 02139
e-mail:
| |
Collapse
|
25
|
Chandran PL, Dimitriadis EK, Mertz EL, Horkay F. Microscale mapping of extracellular matrix elasticity of mouse joint cartilage: an approach to extracting bulk elasticity of soft matter with surface roughness. SOFT MATTER 2018; 14:2879-2892. [PMID: 29582024 PMCID: PMC5922260 DOI: 10.1039/c7sm02045g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cartilage is composed of cells and an extracellular matrix, the latter being a composite of a collagen mesh interpenetrated by proteoglycans responsible for tissue osmotic swelling. The matrix composition and structure vary through the tissue depth. Mapping such variability requires tissue sectioning to gain access. The resulting surface roughness, and concomitant proteoglycan loss contribute to large uncertainties in elastic modulus estimates. To extract elasticity values for the bulk matrix which are not obfuscated by the indeterminate surface layer, we developed a novel experimental and data analysis methodology. We analyzed the surface roughness to optimize the probe size, and performed high-resolution (1 μm) elasticity mapping on thin (∼12 μm), epiphyseal newborn mouse cartilage sections cut parallel to the bone longitudinal axis or normal to the articular surface. Mild fixation prevented the major proteoglycan loss observed in unfixed specimens but not the stress release that resulted in thickness changes in the sectioned matrix. Our novel data analysis method introduces a virtual contact point as a fitting parameter for the Hertz model, to minimize the effects of surface roughness and corrects for the finite section thickness. Our estimates of cartilage elasticity converge with increasing indentation depth and, unlike previous data interpretations, are consistent with linearly elastic material. A high cell density that leaves narrow matrix septa between cells may cause the underestimation of elastic moduli, whereas fixation probably causes an overestimation. The proposed methodology has broader relevance to nano- and micro-indentation of soft materials with multiple length scales of organization and whenever surface effects (including roughness, electrostatics, van der Waals forces, etc.) become significant.
Collapse
|
26
|
Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomater 2018; 70:249-259. [PMID: 29425716 DOI: 10.1016/j.actbio.2018.01.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
In this study, a poroviscoelastic finite element model (FEM) was developed and used in conjunction with an AFM-based wide-bandwidth nanorheology system to predict the frequency-dependent mechanical behavior of tendon and dermis subjected to compression via nanoindentation. The aim was to distinguish between loading rates that are dominated by either poroelasticity, viscoelasticity, or the superposition of these processes. Using spherical probe tips having different radii, the force and tip displacement were measured and the magnitude, E∗, and phase angle, ϕ, of the dynamic complex modulus were evaluated for mouse supraspinatus tendon and mouse dermis. The peak frequencies of the phase angle were associated with the characteristic time constants of poroelastic and viscoelastic material behavior. The developed FE model could predict the separate poroelastic and viscoelastic responses of these soft tissues over a 4 decade frequency range, showing good agreement with experimental results. We observed that poroelasticity was the dominant energy dissipation mechanism for mouse dermis and supraspinatus tendon at higher indentation frequencies (102 to 104 Hz) whereas viscoelasticity was typically dominant at lower frequencies (<102 Hz). These findings show the underlying mechanical behavior of biological connective tissues and give insight into the role played by these different energy dissipation mechanisms in governing the function of these tissues at nanoscale. STATEMENT OF SIGNIFICANCE Soft biological tissues exhibit complex, load- and time-dependent mechanical behavior. Evaluating their mechanical behavior requires sophisticated experimental tools and numerical models that can capture the fundamental mechanisms governing tissue function. Using an Atomic-force-microscopy-based rheology system and finite element models, the roles of the two most dominant time-dependent mechanisms (poroelasticity and viscoelasticity) that govern the dynamic loading behavior of mouse skin and tendon have been investigated. FE models were able to predict and quantify the contribution of each mechanism to the overall dynamic response and confirming the presence of these two distinct mechanisms in the mechanical response. Overall, these results provide novel insight into the viscoelastic and poroelastic properties of mouse skin and tendon and promote better understanding of the underlying origins of each mechanism.
Collapse
|
27
|
Xia Y, Darling EM, Herzog W. Functional properties of chondrocytes and articular cartilage using optical imaging to scanning probe microscopy. J Orthop Res 2018; 36:620-631. [PMID: 28975657 PMCID: PMC5839958 DOI: 10.1002/jor.23757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
Mature chondrocytes in adult articular cartilage vary in number, size, and shape, depending on their depth in the tissue, location in the joint, and source species. Chondrocytes are the primary structural, functional, and metabolic unit in articular cartilage, the loss of which will induce fatigue to the extracellular matrix (ECM), eventually leading to failure of the cartilage and impairment of the joint as a whole. This brief review focuses on the functional and biomechanical studies of chondrocytes and articular cartilage, using microscopic imaging from optical microscopies to scanning probe microscopy. Three topics are covered in this review, including the functional studies of chondrons by optical imaging (unpolarized and polarized light and infrared light, two-photon excitation microscopy), the probing of chondrocytes and cartilage directly using microscale measurement techniques, and different imaging approaches that can measure chondrocyte mechanics and chondrocyte biological signaling under in situ and in vivo environments. Technical advancement in chondrocyte research during recent years has enabled new ways to study the biomechanical and functional properties of these cells and cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:620-631, 2018.
Collapse
Affiliation(s)
- Yang Xia
- Dept of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Eric M. Darling
- Dept of Molecular Pharmacology, Physiology, and Biotechnology, School of Engineering, Dept of Orthopaedics, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | - Walter Herzog
- Faculties of Kinesiology, Engineering and Medicine, University of Calgary, AB T2T 1N4, Canada
| |
Collapse
|
28
|
Han B, Nia HT, Wang C, Chandrasekaran P, Li Q, Chery DR, Li H, Grodzinsky AJ, Han L. AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2033-2049. [PMID: 31423463 PMCID: PMC6697429 DOI: 10.1021/acsbiomaterials.7b00307] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our objective is to provide an in-depth review of the recent technical advances of atomic force microscopy (AFM)-based nanomechanical tests and their contribution to a better understanding and diagnosis of osteoarthritis (OA), as well as the repair of tissues undergoing degeneration during OA progression. We first summarize a range of technical approaches for AFM-based nanoindentation, including considerations in both experimental design and data analysis. We then provide a more detailed description of two recently developed modes of AFM-nanoindentation, a high-bandwidth nanorheometer system for studying poroviscoelasticity and an immunofluorescence-guided nanomechanical mapping technique for delineating the pericellular matrix (PCM) and territorial/interterritorial matrix (T/IT-ECM) of surrounding cells in connective tissues. Next, we summarize recent applications of these approaches to three aspects of joint-related healthcare and disease: cartilage aging and OA, developmental biology and OA pathogenesis in murine models, and nanomechanics of the meniscus. These studies were performed over a hierarchy of length scales, from the molecular, cellular to the whole tissue level. The advances described here have contributed greatly to advancing the fundamental knowledge base for improved understanding, detection, and treatment of OA.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Radiation Oncology, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Daphney R. Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Li
- College of Architecture and the Built Environment, Philadelphia University, Philadelphia, Pennsylvania 19144, United States
| | - Alan J. Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Uddin MH, Wang H, Rogerson FM, Lee PVS, Zhang X. Effects of stimulated aggrecanolysis on nanoscale morphological and mechanical properties of wild-type and aggrecanase-resistant mutant mice cartilages. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:72. [PMID: 28803430 DOI: 10.1140/epje/i2017-11561-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
A key event in arthritis pathogenesis is the degradation of aggrecan, the major component in articular cartilage. In this work, we investigate the effects of stimulated aggrecanolysis on the morphological and nanomechanical properties of cartilage harvested from wild-type mice and aggrecanase-resistant mutant mice named "Jaffa". The cartilages were native or were subjected to stimulated aggrecanolysis by interleukin-1[Formula: see text] (IL-1[Formula: see text]) treatment. The nanoscale morphological and mechanical properties of the sectioned cartilages were measured by using a sharp probe by atomic force microscopy (AFM). The IL-1[Formula: see text] treatment resulted in a higher nanoroughess and stiffness of the cartilage from wild-type mice. However, the same treatment did not lead to any measurable change in the nanoroughness or stiffness of the cartilage from mutant mice Jaffa. This suggests that blocking aggrecanolysis by genetic modification has created the stability in the structures and mechanical properties of the cartilage at nanoscale. The present study provides insight into the mechanism of aggrecan degradation, which can complement the examination by biochemical and histological techniques.
Collapse
Affiliation(s)
- Md Hemayet Uddin
- Melbourne Central of Nanofabrication, Victorian Node of Australian National Fabrication Facility, 3149, Clayton, Victoria, Australia
| | - Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, China.
| | - Fraser M Rogerson
- Department of Paediatrics, University of Melbourne, 3010, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children's Hospital, 3010, Parkville, Victoria, Australia
| | - Peter Vee-Sin Lee
- Department of Mechanical Engineering, University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Xuehua Zhang
- Soft Matter and Interfaces Group, School of Engineering, RMIT University, 3001, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Carlson AK, McCutchen CN, June RK. Mechanobiological implications of articular cartilage crystals. Curr Opin Rheumatol 2017; 29:157-162. [DOI: 10.1097/bor.0000000000000368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Osteoarthritis year in review 2016: mechanics. Osteoarthritis Cartilage 2017; 25:190-198. [PMID: 28100420 DOI: 10.1016/j.joca.2016.09.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 02/02/2023]
Abstract
Inappropriate biomechanics, namely wear-and-tear, has been long believed to be a main cause of osteoarthritis (OA). However, this view is now being re-evaluated, especially when examined alongside mechanobiology and new biomechanical studies. These are multiscale experimental and computational studies focussing on cell- and tissue-level mechanobiology through to organ- and whole-body-level biomechanics, which focuses on the biomechanical and biochemical environment of the joint tissues. This review examined papers from April 2015 to April 2016, with a focus on multiscale experimental and computational biomechanical studies of OA. Assessing the onset or progression of OA at organ- and whole-body-levels, gait analysis, medical imaging and neuromusculoskeletal modelling revealed the extent to which tissue damage changes the view of inappropriate biomechanics. Traditional gait analyses studies reported that conservative treatments can alter joint biomechanics, thereby improving pain and function experienced by those with OA. Results of animal models of OA were consistent with these human studies, showing interactions among bone, cartilage and meniscus biomechanics and the onset and/or progression OA. Going down size scales, experimental and computational studies probed the nanosize biomechanics of molecules, cells and extracellular matrix, and demonstrated how the interactions between biomechanics and morphology affect cartilage dynamic poroelastic behaviour and pathways to OA. Finally, integration of multiscale experimental data and computational models were proposed to predict cartilage extracellular matrix remodelling and the development of OA. Summarising, experimental and computational methods provided a nuanced biomechanical understanding of the sub-cellular, cellular, tissue, organ and whole-body mechanisms involved in OA.
Collapse
|
32
|
Connizzo BK, Grodzinsky AJ. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech 2017; 54:11-18. [PMID: 28233551 DOI: 10.1016/j.jbiomech.2017.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
33
|
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5:16044. [PMID: 28149655 PMCID: PMC5240031 DOI: 10.1038/boneres.2016.44] [Citation(s) in RCA: 689] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.
Collapse
Affiliation(s)
- Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St Louis, MO, USA
| | - Weiwei Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
Doyran B, Tong W, Li Q, Jia H, Zhang X, Chen C, Enomoto-Iwamoto M, Lu XL, Qin L, Han L. Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2017; 25:108-117. [PMID: 27568574 PMCID: PMC5182132 DOI: 10.1016/j.joca.2016.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aims to demonstrate that cartilage nanoindentation modulus is a highly sensitive indicator of the onset and spatiotemporal progression of post-traumatic osteoarthritis (PTOA) in murine models. DESIGN Destabilization of the medial meniscus (DMM) surgery was performed on the right knees of 12-week old male, wild-type C57BL/6 mice, with Sham control on contralateral left knees. Atomic force microscopy (AFM)-based nanoindentation was applied to quantify the nanoindentation modulus, Eind, of femoral condyle cartilage at 3 days to 12 weeks after surgery. The modulus changes were compared against the timeline of histological OA signs. Meanwhile, at 8 weeks after surgery, changes in meniscus, synovium and subchondral bone were evaluated to reveal the spatial progression of PTOA. RESULTS The modulus of medial condyle cartilage was significantly reduced at 1 week after DMM, preceding the histological OA signs, which only became detectable at 4-8 weeks after. This reduction is likely due to concomitantly elevated proteolytic activities, as blocking enzymatic activities in mice can attenuate this modulus reduction. In later OA, lateral condyle cartilage and medial meniscus also started to be weakened, illustrating the whole-organ nature of PTOA. CONCLUSIONS This study underscores the high sensitivity of nanoindentation in examining the initiation, attenuation and progression of PTOA in murine models. Meanwhile, modulus changes highlight concomitant changes in lateral cartilage and meniscus during the advancement of OA.
Collapse
Affiliation(s)
- B Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - W Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Q Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - H Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, School of Medicine, ShiHeZi University, ShiHeZi, Xinjiang 832000, PR China
| | - X Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - C Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - M Enomoto-Iwamoto
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - X L Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - L Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
35
|
Azadi M, Nia HT, Gauci SJ, Ortiz C, Fosang AJ, Grodzinsky AJ. Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse. J Biomech 2016; 49:1634-1640. [PMID: 27086115 DOI: 10.1016/j.jbiomech.2016.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/04/2016] [Accepted: 03/28/2016] [Indexed: 11/28/2022]
Abstract
Aggrecan loss in human and animal cartilage precedes clinical symptoms of osteoarthritis, suggesting that aggrecan loss is an initiating step in cartilage pathology. Characterizing early stages of cartilage degeneration caused by aging and overuse is important in the search for therapeutics. In this study, atomic force microscopy (AFM)-based force-displacement micromechanics, AFM-based wide bandwidth nanomechanics (nanodynamic), and histologic assessments were used to study changes in distal femur cartilage of wildtype mice and mice in which the aggrecan interglobular domain was mutated to make the cartilage aggrecanase-resistant. Half the animals were subjected to voluntary running-wheel exercise of varying durations. Wildtype mice at three selected age groups were compared. While histological assessment was not sensitive enough to capture any statistically significant changes in these relatively young populations of mice, micromechanical assessment captured changes in the quasi-equilibrium structural-elastic behavior of the cartilage matrix. Additionally, nanodynamic assessment captured changes in the fluid-solid poroelastic behavior and the high frequency stiffness of the tissue, which proved to be the most sensitive assessment of changes in cartilage associated with aging and joint-overuse. In wildtype mice, aging caused softening of the cartilage tissue at the microscale and at the nanoscale. Softening with increased animal age was found at high loading rates (frequencies), suggesting an increase in hydraulic permeability, with implications for loss of function pertinent to running and impact-injury. Running caused substantial changes in fluid-solid interactions in aggrecanase-resistant mice, suggestive of tissue degradation. However, higher nanodynamic stiffness magnitude and lower hydraulic permeability was observed in running aggrecanase-resistant mice compared to running wildtype controls at the same age, thereby suggesting protection from joint-overuse.
Collapse
Affiliation(s)
- Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA 94132, United States; Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Hadi Tavakoli Nia
- Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Stephanie J Gauci
- University of Melbourne Department of Pediatrics & Murdoch Children׳s Research Institute, Parkville, Australia
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Amanda J Fosang
- University of Melbourne Department of Pediatrics & Murdoch Children׳s Research Institute, Parkville, Australia
| | - Alan J Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
36
|
van Hoorn H, Kurniawan NA, Koenderink GH, Iannuzzi D. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. SOFT MATTER 2016; 12:3066-73. [PMID: 26908197 PMCID: PMC4819682 DOI: 10.1039/c6sm00300a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
There is a strong demand for nanoindentation methods to probe the heterogeneous viscoelastic properties of soft tissues. Important applications include diagnosis of early onset diseases such as arthritis and investigations into cellular mechanoresponse in tissue. Quantification of tissue mechanics at length and time scales relevant to biological processes, however, remains a technical challenge. Here, we present a new nanoindentation approach that is ideally suited to probe the viscoelastic properties of soft, hydrated tissues. We built a ferrule-top probe that uses wavelength modulation in a Fabry-Pérot cavity configuration to detect cantilever deflection and to drive a feedback-controlled piezoelectric actuator. This technique allows us to control the static load applied onto the sample using an all-optical mm-sized probe. We extract the local elastic and viscous moduli of the samples by superposing a small oscillatory load and recording the indentation depth at the frequency of oscillation. By using a set of silicone elastomers with a range of stiffnesses representative of biological tissues, we demonstrate that the technique can accurately determine moduli over a wide range (0.1-100 kPa) and over a frequency range of 0.01-10 Hz. Direct comparison with macroscopic rheology measurements yields excellent quantitative agreement, without any fitting parameters. Finally, we show how this method can provide a spatially-resolved map of large variations in mechanical properties (orders of magnitude) across the surface of soft samples thanks to high sensitivity over large (>μm) cantilever deflections. This approach paves the way to investigations into the local dynamic mechanical properties of biological soft matter.
Collapse
Affiliation(s)
- Hedde van Hoorn
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, Amsterdam, The Netherlands. and Laserlab Amsterdam, VU University, De Boelelaan 1081, Amsterdam, The Netherlands
| | | | - Gijsje H Koenderink
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, Amsterdam, The Netherlands. and FOM institute AMOLF, Science Park 104, Amsterdam, The Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, Amsterdam, The Netherlands. and Laserlab Amsterdam, VU University, De Boelelaan 1081, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage 2016; 24:27-35. [PMID: 26707990 PMCID: PMC4693146 DOI: 10.1016/j.joca.2015.08.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 02/02/2023]
Abstract
Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.
Collapse
|
38
|
Li Q, Doyran B, Gamer LW, Lu XL, Qin L, Ortiz C, Grodzinsky AJ, Rosen V, Han L. Biomechanical properties of murine meniscus surface via AFM-based nanoindentation. J Biomech 2015; 48:1364-70. [PMID: 25817332 DOI: 10.1016/j.jbiomech.2015.02.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 01/15/2023]
Abstract
This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip≈5µm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction. The indentation resistance was calculated as both the effective modulus, Eind, via the isotropic Hertz model, and the effective stiffness, Sind = dF/dD. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1±0.8MPa for 12 weeks of age, mean±SEM, n=13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4±0.1MPa, n=6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models.
Collapse
Affiliation(s)
- Qing Li
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Basak Doyran
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|