1
|
Simon M, Indermaur M, Schenk D, Voumard B, Zderic I, Mischler D, Pretterklieber M, Zysset P. Homogenized finite element analysis of distal tibia sections: Achievements and limitations. Bone Rep 2024; 21:101752. [PMID: 38590390 PMCID: PMC10999809 DOI: 10.1016/j.bonr.2024.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (μFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model. Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (μCT). The sections were tested in compression until failure, unloaded and scanned again in μCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns. Bone mineral content (BMC) showed a good correlation with stiffness (R2 = 0.92) and yield (R2 = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R2 = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R2 = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2). The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process.
Collapse
Affiliation(s)
- Mathieu Simon
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Michael Indermaur
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Denis Schenk
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Ivan Zderic
- AO Research Institute Davos, Davos, Switzerland
| | | | - Michael Pretterklieber
- Division of macroscopical and clinical Anatomy, Medical University of Graz, Graz, Austria
| | - Philippe Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Colabella L, Naili S, Le Cann S, Haiat G. Effect of collagen fibril orientation on the anisotropic properties of peri-implant bone. Biomech Model Mechanobiol 2024; 23:879-891. [PMID: 38300439 DOI: 10.1007/s10237-023-01811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
In orthopedic and dental surgery, the implantation of biomaterials within the bone to restore the integrity of the treated organ has become a standard procedure. Their long-term stability relies on the osseointegration phenomena, where bone grows onto and around metallic implants, creating a bone-implant interface. Bone is a highly hierarchical material that evolves spatially and temporally during this healing phase. A deeper understanding of its biomechanical characteristics is needed, as they are determinants for surgical success. In this context, we propose a multiscale homogenization model to evaluate the effective elastic properties of bone as a function of the distance from the implant, based on the tissue's structure and composition at lower scales. The model considers three scales: hydroxyapatite foam (nanoscale), ultrastructure (microscale), and tissue (mesoscale). The elastic properties and the volume fraction of the elementary constituents of bone matrix (mineral, collagen, and water), the orientation of the collagen fibril relative to the implant surface, and the mesoscale porosity constitute the input data of the model. The effect of a spatiotemporal variation in the collagen fibrils' orientation on the bone anisotropic properties in the proximity of the implant was investigated. The findings revealed a strong variation of the components of the effective elasticity tensor of the bone as a function of the distance from the implant. The effective elasticity appears to be primarily sensitive to the porosity (mesoscale) rather than to the collagen fibrils' orientation (sub-micro scale). However, the orientation of the fibrils has a significant influence on the isotropy of the bone. When analyzing the symmetry properties of the effective elasticity tensor, the ratio between the isotropic and hexagonal components is determined by a combination of the porosity and the fibrils' orientation. A decrease in porosity leads to a decrease in bone isotropy and, in turn, an increase in the impact of the fibrils' orientation. These results demonstrate that the collagen fibril orientation should be taken into account to properly describe the effective elastic anisotropy of bone at the organ scale.
Collapse
Affiliation(s)
- Lucas Colabella
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, F-94010, Creteil, France
- INTEMA, CONICET, Av. Cristóbal Colón 10850, B7606BWV, Mar del Plata, Argentina
| | - Salah Naili
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Creteil, France
| | - Sophie Le Cann
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, F-94010, Creteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, F-94010, Creteil, France.
| |
Collapse
|
3
|
Haines MS, Kimball A, Dove D, Chien M, Strauch J, Santoso K, Meenaghan E, Eddy KT, Fazeli PK, Misra M, Miller KK. Deficits in volumetric bone mineral density, bone microarchitecture, and estimated bone strength in women with atypical anorexia nervosa compared to healthy controls. Int J Eat Disord 2024; 57:785-798. [PMID: 37322610 PMCID: PMC10721730 DOI: 10.1002/eat.24014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Anorexia nervosa is associated with low bone mineral density (BMD) and deficits in bone microarchitecture and strength. Low BMD is common in atypical anorexia nervosa, in which criteria for anorexia nervosa are met except for low weight. We investigated whether women with atypical anorexia nervosa have deficits in bone microarchitecture and estimated strength at the peripheral skeleton. METHOD Measures of BMD and microarchitecture were obtained in 28 women with atypical anorexia nervosa and 27 controls, aged 21-46 years. RESULTS Mean tibial volumetric BMD, cortical thickness, and failure load were lower, and radial trabecular number and separation impaired, in atypical anorexia nervosa versus controls (p < .05). Adjusting for weight, deficits in tibial cortical bone variables persisted (p < .05). Women with atypical anorexia nervosa and amenorrhea had lower volumetric BMD and deficits in microarchitecture and failure load versus those with eumenorrhea and controls. Those with a history of overweight/obesity or fracture had deficits in bone microarchitecture versus controls. Tibial deficits were particularly marked. Less lean mass and longer disease duration were associated with deficits in high-resolution peripheral quantitative computed tomography (HR-pQCT) variables in atypical anorexia nervosa. DISCUSSION Women with atypical anorexia nervosa have lower volumetric BMD and deficits in bone microarchitecture and strength at the peripheral skeleton versus controls, independent of weight, and particularly at the tibia. Women with atypical anorexia nervosa and amenorrhea, less lean mass, longer disease duration, history of overweight/obesity, or fracture history may be at higher risk. This is salient as deficits in HR-pQCT variables are associated with increased fracture risk. PUBLIC SIGNIFICANCE Atypical anorexia nervosa is a psychiatric disorder in which psychological criteria for anorexia nervosa are met despite weight being in the normal range. We demonstrate that despite weight in the normal range, women with atypical anorexia nervosa have impaired bone density, structure, and strength compared to healthy controls. Whether this translates to an increased risk of incident fracture in this population requires further investigation.
Collapse
Affiliation(s)
- Melanie S Haines
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Kimball
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Devanshi Dove
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Melanie Chien
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julianne Strauch
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kate Santoso
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kamryn T Eddy
- Harvard Medical School, Boston, Massachusetts, USA
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Müller P, Synek A, Stauß T, Steinnagel C, Ehlers T, Gembarski PC, Pahr D, Lachmayer R. Development of a density-based topology optimization of homogenized lattice structures for individualized hip endoprostheses and validation using micro-FE. Sci Rep 2024; 14:5719. [PMID: 38459092 PMCID: PMC10923877 DOI: 10.1038/s41598-024-56327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Prosthetic implants, particularly hip endoprostheses, often lead to stress shielding because of a mismatch in compliance between the bone and the implant material, adversely affecting the implant's longevity and effectiveness. Therefore, this work aimed to demonstrate a computationally efficient method for density-based topology optimization of homogenized lattice structures in a patient-specific hip endoprosthesis. Thus, the root mean square error (RMSE) of the stress deviations between the physiological femur model and the optimized total hip arthroplasty (THA) model compared to an unoptimized-THA model could be reduced by 81 % and 66 % in Gruen zone (GZ) 6 and 7. However, the method relies on homogenized finite element (FE) models that only use a simplified representation of the microstructural geometry of the bone and implant. The topology-optimized hip endoprosthesis with graded lattice structures was synthesized using algorithmic design and analyzed in a virtual implanted state using micro-finite element (micro-FE) analysis to validate the optimization method. Homogenized FE and micro-FE models were compared based on averaged von Mises stresses in multiple regions of interest. A strong correlation (CCC > 0.97) was observed, indicating that optimizing homogenized lattice structures yields reliable outcomes. The graded implant was additively manufactured to ensure the topology-optimized result's feasibility.
Collapse
Affiliation(s)
- Patrik Müller
- Institute of Product Development, Leibniz University of Hannover, Garbsen, 30823, Germany.
| | - Alexander Synek
- TU Wien, Institute for Lightweight Design and Structural Biomechanics, Vienna, 1060, Austria
| | - Timo Stauß
- Institute of Product Development, Leibniz University of Hannover, Garbsen, 30823, Germany
| | - Carl Steinnagel
- Institute of Product Development, Leibniz University of Hannover, Garbsen, 30823, Germany
| | - Tobias Ehlers
- Institute of Product Development, Leibniz University of Hannover, Garbsen, 30823, Germany
| | | | - Dieter Pahr
- TU Wien, Institute for Lightweight Design and Structural Biomechanics, Vienna, 1060, Austria
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, 3500, Austria
| | - Roland Lachmayer
- Institute of Product Development, Leibniz University of Hannover, Garbsen, 30823, Germany
| |
Collapse
|
5
|
Haines MS, Kaur S, Scarff G, Lauze M, Gerweck A, Slattery M, Oreskovic NM, Ackerman KE, Tenforde AS, Popp KL, Bouxsein ML, Miller KK, Misra M. Male Runners With Lower Energy Availability Have Impaired Skeletal Integrity Compared to Nonathletes. J Clin Endocrinol Metab 2023; 108:e1063-e1073. [PMID: 37079740 PMCID: PMC10505543 DOI: 10.1210/clinem/dgad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
CONTEXT Female athletes, particularly runners, with insufficient caloric intake for their energy expenditure [low energy availability (EA) or relative energy deficiency] are at risk for impaired skeletal integrity. Data are lacking in male runners. OBJECTIVE To determine whether male runners at risk for energy deficit have impaired bone mineral density (BMD), microarchitecture, and estimated strength. DESIGN Cross-sectional. SETTING Clinical research center. PARTICIPANTS 39 men (20 runners, 19 controls), ages 16-30 years. MAIN OUTCOME MEASURES Areal BMD (dual-energy x-ray absorptiometry); tibia and radius volumetric BMD and microarchitecture (high-resolution peripheral quantitative computed tomography); failure load (microfinite element analysis); serum testosterone, estradiol, leptin; energy availability. RESULTS Mean age (24.5 ± 3.8 y), lean mass, testosterone, and estradiol levels were similar; body mass index, percent fat mass, leptin, and lumbar spine BMD Z-score (-1.4 ± 0.8 vs -0.8 ± 0.8) lower (P < .05); and calcium intake and running mileage higher (P ≤ .01) in runners vs controls. Runners with EA CONCLUSIONS Despite weight-bearing activity, skeletal integrity is impaired in male runners with lower caloric intake relative to exercise energy expenditure, which may increase bone stress injury risk. Lower estradiol and lean mass are associated with lower tibial strength in runners.
Collapse
Affiliation(s)
- Melanie S Haines
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Snimarjot Kaur
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Geetanjali Scarff
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meghan Lauze
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anu Gerweck
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolas M Oreskovic
- Harvard Medical School, Boston, MA 02115, USA
- Department of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kathryn E Ackerman
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adam S Tenforde
- Harvard Medical School, Boston, MA 02115, USA
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Cambridge, MA 02129, USA
| | - Kristin L Popp
- Harvard Medical School, Boston, MA 02115, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
- Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Mary L Bouxsein
- Harvard Medical School, Boston, MA 02115, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Synek A, Ortner L, Pahr DH. Accuracy of osseointegrated screw-bone construct stiffness and peri-implant loading predicted by homogenized FE models relative to micro-FE models. J Mech Behav Biomed Mater 2023; 140:105740. [PMID: 36863197 DOI: 10.1016/j.jmbbm.2023.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Computational predictions of stiffness and peri-implant loading of screw-bone constructs are highly relevant to investigate and improve bone fracture fixations. Homogenized finite element (hFE) models have been used for this purpose in the past, but their accuracy has been questioned given the numerous simplifications, such as neglecting screw threads and modelling the trabecular bone structure as a continuum. This study aimed to investigate the accuracy of hFE models of an osseointegrated screw-bone construct when compared to micro-FE models considering the simplified screw geometry and different trabecular bone material models. Micro-FE and hFE models were created from 15 cylindrical bone samples with a virtually inserted, osseointegrated screw (fully bonded interface). Micro-FE models were created including the screw with threads (=reference models) and without threads to quantify the error due to screw geometry simplification. In the hFE models, the screws were modelled without threads and four different trabecular bone material models were used, including orthotropic and isotropic material derived from homogenization with kinematic uniform boundary conditions (KUBC), as well as from periodicity-compatible mixed uniform boundary conditions (PMUBC). Three load cases were simulated (pullout, shear in two directions) and errors in the construct stiffness and the volume average strain energy density (SED) in the peri-implant region were evaluated relative to the micro-FE model with a threaded screw. The pooled error caused by only omitting screw threads was low (max: 8.0%) compared to the pooled error additionally including homogenized trabecular bone material (max: 92.2%). Stiffness was predicted most accurately using PMUBC-derived orthotropic material (error: -0.7 ± 8.0%) and least accurately using KUBC-derived isotropic material (error: +23.1 ± 24.4%). Peri-implant SED averages were generally well correlated (R2 ≥ 0.76), but slightly over- or underestimated by the hFE models and SED distributions were qualitatively different between hFE and micro-FE models. This study suggests that osseointegrated screw-bone construct stiffness can be predicted accurately using hFE models when compared to micro-FE models and that volume average peri-implant SEDs are well correlated. However, the hFE models are highly sensitive to the choice of trabecular bone material properties. PMUBC-derived isotropic material properties represented the best trade-off between model accuracy and complexity in this study.
Collapse
Affiliation(s)
- Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria.
| | - Lukas Ortner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria; Division Biomechanics, Karl Landsteiner University of Health Sciences, Austria
| |
Collapse
|
7
|
Esper PLG, Rodrigues FG, Melo TL, Ormanji MS, Campos CM, Alvarenga JC, Caparbo VDF, Carvalho AB, Pereira RMR, Heilberg IP. Bone density, microarchitecture and estimated strength in stone formers: a cross-sectional HR-pQCT study. Nephrol Dial Transplant 2023; 38:425-434. [PMID: 35274705 DOI: 10.1093/ndt/gfac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Low areal bone mineral density (BMD), increased fracture risk and altered bone remodeling have been described among stone formers (SFs), but the magnitude of these findings differs by age, sex, menopausal status and urinary calcium (uCa). This study aimed to investigate volumetric BMD (vBMD), bone microarchitecture and biomechanical properties by high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA) in young SFs, irrespective of calciuria, further distinguishing trabecular from cortical compartments. METHODS HR-pQCT/FEA was performed at the distal tibia (DT) and distal radius (DR) in 106 SFs (57 males and 49 premenopausal females; median age 37 years) and compared with 106 non-SFs (NSFs) retrieved from an existing database, matched for age, sex and body mass index (BMI). Biochemical/hormonal serum and urinary parameters were obtained from SFs. RESULTS SFs exhibited significantly lower trabecular number (TbN) and higher trabecular separation (TbSp) than NSFs at both anatomical sites and lower cortical porosity in the DR. In a subgroup analysis separated by sex, female SFs presented significantly lower TbvBMD, relative bone volume fraction (BV/TV) and TbN and higher TbSp than NSFs at both sites, while male SFs showed significantly lower stiffness and failure load. Multivariate analysis showed TbN to be independently associated with sex and BMI at both sites and with uCa at the DR. CONCLUSIONS The present findings suggest that bone disease represents an early event among SFs, associated at least in part with calcium excretion and mainly characterized by trabecular bone microarchitecture impairment, especially among women, but with reduced bone strength parameters in men.
Collapse
Affiliation(s)
| | | | - Thalita Lima Melo
- Nutrition Post Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Carlos M Campos
- Heart Institute, Universidade de São Paulo, São Paulo, Brazil; Instituto Prevent Senior
| | - Jackeline Couto Alvarenga
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Valeria de Falco Caparbo
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Rosa Maria Rodrigues Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ita Pfeferman Heilberg
- Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil.,Nutrition Post Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Stefanek P, Synek A, Dall'Ara E, Pahr DH. Comparison of linear and nonlinear stepwise μFE displacement predictions to digital volume correlation measurements of trabecular bone biopsies. J Mech Behav Biomed Mater 2023; 138:105631. [PMID: 36592570 DOI: 10.1016/j.jmbbm.2022.105631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Digital volume correlation (DVC) enables to evaluate the ability of μFE models in predicting experimental results on the mesoscale. In this study predicted displacement fields of three different linear and materially nonlinear μFE simulation methods were compared to DVC measured displacement fields at specific load steps in the elastic regime (StepEl) and after yield (StepUlt). Five human trabecular bone biopsies from a previous study were compressed in several displacement steps until failure. At every compression step, μCT images (resolution: 36 μm) were recorded. A global DVC algorithm was applied to compute the displacement fields at all loading steps. The unloaded 3D images were then used to generate homogeneous, isotropic, linear and materially nonlinear μFE models. Three different μFE simulation methods were used: linear (L), nonlinear (NL), and nonlinear stepwise (NLS). Regarding L and NL, the boundary conditions were derived from the interpolated displacement fields at StepEl and StepUlt, while for the NLS method nonlinear changes of the boundary conditions of the experiments were captured using the DVC displacement field of every available load step until StepEl and StepUlt. The predicted displacement fields of all μFE simulation methods were in good agreement with the DVC measured displacement fields (individual specimens: R2>0.83 at StepEl and R2>0.59 at StepUlt; pooled data: R2>0.97 at StepEl and R2>0.92 at StepUlt). At StepEl, all three simulation methods showed similar intercepts, slopes, and coefficients of determination while the nonlinear μFE models improved the prediction of the displacement fields slightly in all Cartesian directions at StepUlt (individual specimens: L: R2>0.59 and NL, NLS: R2>0.68; pooled data: L: R2>0.92 and NL, NLS: R2>0.94). Damaged/overstrained elements in L, NL, and NLS occurred at similar locations but the number of overstrained elements was overestimated when using the L simulation method. Considering the increased solving time of the nonlinear μFE models as well as the acceptable performance in displacement prediction of the linear μFE models, one can conclude that for similar use cases linear μFE models represent the best compromise between computational effort and accuracy of the displacement field predictions.
Collapse
Affiliation(s)
- Pia Stefanek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria.
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, UK
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria; Division Biomechanics, Karl Landsteiner University of Health Sciences, Austria
| |
Collapse
|
9
|
Haines MS, Kimball A, Meenaghan E, Santoso K, Colling C, Singhal V, Ebrahimi S, Gleysteen S, Schneider M, Ciotti L, Belfer P, Eddy KT, Misra M, Miller KK. Denosumab increases spine bone density in women with anorexia nervosa: a randomized clinical trial. Eur J Endocrinol 2022; 187:697-708. [PMID: 36134902 PMCID: PMC9746654 DOI: 10.1530/eje-22-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022]
Abstract
Objective Anorexia nervosa is complicated by high bone resorption, low bone mineral density (BMD), and increased fracture risk. We investigated whether off-label antiresorptive therapy with denosumab increases BMD in women with anorexia nervosa. Design Twelve-month, randomized, double-blind, placebo-controlled study. Methods Thirty ambulatory women with anorexia nervosa and areal BMD (aBMD) T-score <-1.0 at ≥1 sites were randomized to 12 months of denosumab (60 mg subcutaneously q6 months)(n = 20) or placebo (n = 10). Primary end point was postero-anterior (PA) lumbar spine aBMD by dual-energy x-ray absorptiometry. Secondary end points included femoral neck aBMD, tibia and radius volumetric BMD and bone microarchitecture by high-resolution peripheral quantitative CT, tibia and radius failure load by finite element analysis (FEA), and markers of bone turnover. Results Baseline mean (±s.d.) age (29 ± 8 (denosumab) vs 29 ± 7 years (placebo)), BMI (19.0 ± 1.7 vs 18.0 ± 2.0 kg/m2), and aBMD (PA spine Z-score -1.6±1.1 vs -1.7±1.4) were similar between groups. PA lumbar spine aBMD increased in the denosumab vs placebo group over 12 months (P = 0.009). The mean (95% CI) increase in PA lumbar spine aBMD was 5.5 (3.8-7.2)% in the denosumab group and 2.2 (-0.3-4.7)% in the placebo group. The change in femoral neck aBMD was similar between groups. Radial trabecular number increased, radial trabecular separation decreased, and tibial cortical porosity decreased in the denosumab vs placebo group (P ≤ 0.006). Serum C-terminal telopeptide of type I collagen and procollagen type I N-terminal propeptide decreased in the denosumab vs placebo group (P < 0.0001). Denosumab was well tolerated. Conclusions Twelve months of antiresorptive therapy with denosumab reduced bone turnover and increased spine aBMD, the skeletal site most severely affected in women with anorexia nervosa.
Collapse
Affiliation(s)
- Melanie S Haines
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Kimball
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kate Santoso
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Caitlin Colling
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seda Ebrahimi
- Cambridge Eating Disorder Center, Cambridge, Massachusetts, USA
| | - Suzanne Gleysteen
- Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Marcie Schneider
- Greenwich Adolescent & Young Adult Medicine, Greenwich, Connecticut, USA
| | - Lori Ciotti
- The Renfrew Center, Boston, Massachusetts, USA
| | - Perry Belfer
- Harvard Medical School, Boston, Massachusetts, USA
- Newton-Wellesley Eating Disorders & Behavioral Medicine, Brookline, Massachusetts, USA
- McLean Hospital, Belmont, Massachusetts, USA
| | - Kamryn T Eddy
- Harvard Medical School, Boston, Massachusetts, USA
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Unified validation of a refined second-generation HR-pQCT based homogenized finite element method to predict strength of the distal segments in radius and tibia. J Mech Behav Biomed Mater 2022; 131:105235. [DOI: 10.1016/j.jmbbm.2022.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 11/22/2022]
|
11
|
Hosseinitabatabaei S, Mikolajewicz N, Zimmermann EA, Rummler M, Steyn B, Julien C, Rauch F, Willie BM. 3D Image Registration Marginally Improves the Precision of HR-pQCT Measurements Compared to Cross-Sectional-Area Registration in Adults With Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:908-924. [PMID: 35258112 DOI: 10.1002/jbmr.4541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/05/2022] [Accepted: 03/04/2022] [Indexed: 11/09/2022]
Abstract
Repositioning error in longitudinal high-resolution peripheral-quantitative computed tomography (HR-pQCT) imaging can lead to different bone volumes being assessed over time. To identify the same bone volumes at each time point, image registration is used. While cross-sectional area image registration corrects axial misalignment, 3D registration additionally corrects rotations. Other registration methods involving matched angle analysis (MA) or boundary transformations (3D-TB) can be used to limit interpolation error in 3D-registering micro-finite-element data. We investigated the effect of different image registration methods on short-term in vivo precision in adults with osteogenesis imperfecta, a collagen-related genetic disorder resulting in low bone mass, impaired quality, and increased fragility. The radii and tibiae of 29 participants were imaged twice on the same day with full repositioning. We compared the precision error of different image registration methods for density, microstructural, and micro-finite-element outcomes with data stratified based on anatomical site, motion status, and scanner generation. Regardless of the stratification, we found that image registration improved precision for total and trabecular bone mineral densities, trabecular and cortical bone mineral contents, area measurements, trabecular bone volume fraction, separation, and heterogeneity, as well as cortical thickness and perimeter. 3D registration marginally outperformed cross-sectional area registration for some outcomes, such as trabecular bone volume fraction and separation. Similarly, precision of micro-finite-element outcomes was improved after image registration, with 3D-TB and MA methods providing greatest improvements. Our regression model confirmed the beneficial effect of image registration on HR-pQCT precision errors, whereas motion had a detrimental effect on precision even after image registration. Collectively, our results indicate that 3D registration is recommended for longitudinal HR-pQCT imaging in adults with osteogenesis imperfecta. Since our precision errors are similar to those of healthy adults, these results can likely be extended to other populations, although future studies are needed to confirm this. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Seyedmahdi Hosseinitabatabaei
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| | | | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Beatrice Steyn
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Frank Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Revel M, Gardegaront M, Bermond F, Mitton D, Follet H. A credible homogenized finite element model to predict radius fracture in the case of a forward fall. J Mech Behav Biomed Mater 2022; 131:105206. [DOI: 10.1016/j.jmbbm.2022.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/15/2022]
|
13
|
Miller T, Qin L, Hung VWY, Ying MTC, Tsang CSL, Ouyang H, Chung RCK, Pang MYC. Gait speed and spasticity are independently associated with estimated failure load in the distal tibia after stroke: an HR-pQCT study. Osteoporos Int 2022; 33:713-724. [PMID: 34636938 DOI: 10.1007/s00198-021-06191-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
UNLABELLED This HR-pQCT study was conducted to examine bone properties of the distal tibia post-stroke and to identify clinical outcomes that were associated with these properties at this site. It was found that spasticity and gait speed were independently associated with estimated failure load in individuals with chronic stroke. PURPOSE (1) To examine the influence of stroke on distal tibia bone properties and (2) the association between these properties and clinical outcomes in people with chronic stroke. METHODS Sixty-four people with stroke (age, 60.8 ± 7.7 years; time since stroke, 5.7 ± 3.9 years) and 64 controls (age: 59.4 ± 7.8 years) participated in this study. High-resolution peripheral quantitative computed tomography (HR-pQCT) was used to scan the bilateral distal tibia, and estimated failure load was calculated by automated finite element analysis. Echo intensity of the medial gastrocnemius muscle and blood flow of the popliteal artery were assessed with ultrasound. The 10-m walk test (10MWT), Fugl-Meyer Motor Assessment (FMA), and Composite Spasticity Scale (CSS) were also administered. RESULTS The percent side-to-side difference (%SSD) in estimated failure load, cortical area, thickness, and volumetric bone mineral density (vBMD), and trabecular and total vBMD were significantly greater in the stroke group than their control counterparts (Cohen's d = 0.48-1.51). Isometric peak torque and echo intensity also showed significant within- and between-groups differences (p ≤ 0.01). Among HR-pQCT variables, the %SSD in estimated failure load was empirically chosen as one example of the strong discriminators between the stroke group and control group, after accounting for other relevant factors. The 10MWT and CSS subscale for ankle clonus remained significantly associated with the %SSD in estimated failure load after adjusting for other relevant factors (p ≤ 0.05). CONCLUSION The paretic distal tibia showed more compromised vBMD, cortical area, cortical thickness, and estimated failure load than the non-paretic tibia. Gait speed and spasticity were independently associated with estimated failure load. As treatment programs focusing on these potentially modifiable stroke-related impairments are feasible to administer, future studies are needed to determine the efficacy of such intervention strategies for improving bone strength in individuals with chronic stroke.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Ling Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Vivian W Y Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Michael T C Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Charlotte S L Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Huixi Ouyang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
14
|
Revel M, Bermond F, Duboeuf F, Mitton D, Follet H. Influence of loading conditions in finite element analysis assessed by HR-pQCT on ex vivo fracture prediction. Bone 2022; 154:116206. [PMID: 34547523 DOI: 10.1016/j.bone.2021.116206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Many fractures occur in individuals with normal areal Bone Mineral Density (aBMD) measured by Dual X-ray Absorptiometry (DXA). High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) allows for non-invasive evaluation of bone stiffness and strength through micro finite element (μFE) analysis at the tibia and radius. These μFE outcomes are strongly associated with fragility fractures but do not provide clear enhancement compared with DXA measurements. The objective of this study was to establish whether a change in loading conditions in standard μFE analysis assessed by HR-pQCT enhance the discrimination of low-trauma fractured radii (n = 11) from non-fractured radii (n = 16) obtained experimentally throughout a mechanical test reproducing a forward fall. Micro finite element models were created using HR-pQCT images, and linear analyses were performed using four different types of loading conditions (axial, non-axial with two orientations and torsion). No significant differences were found between the failure load assessed with the axial and non-axial models. The different loading conditions tested presented the same area under the receiver operating characteristic (ROC) curves of 0.79 when classifying radius fractures with an accuracy of 81.5%. In comparison, the area under the curve (AUC) is 0.77 from DXA-derived ultra-distal aBMD of the forearm with an accuracy of 85.2%. These results suggest that the restricted HR-pQCT scanned region seems not sensitive to loading conditions for the prediction of radius fracture risk based on ex vivo experiments (n = 27).
Collapse
Affiliation(s)
- M Revel
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France; Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - F Bermond
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - F Duboeuf
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - D Mitton
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - H Follet
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France.
| |
Collapse
|
15
|
Foessl I, Bassett JHD, Bjørnerem Å, Busse B, Calado Â, Chavassieux P, Christou M, Douni E, Fiedler IAK, Fonseca JE, Hassler E, Högler W, Kague E, Karasik D, Khashayar P, Langdahl BL, Leitch VD, Lopes P, Markozannes G, McGuigan FEA, Medina-Gomez C, Ntzani E, Oei L, Ohlsson C, Szulc P, Tobias JH, Trajanoska K, Tuzun Ş, Valjevac A, van Rietbergen B, Williams GR, Zekic T, Rivadeneira F, Obermayer-Pietsch B. Bone Phenotyping Approaches in Human, Mice and Zebrafish - Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork"). Front Endocrinol (Lausanne) 2021; 12:720728. [PMID: 34925226 PMCID: PMC8672201 DOI: 10.3389/fendo.2021.720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Research Centre for Women’s Health, Oslo University Hospital, Oslo, Norway
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | | | - Maria Christou
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, Ghent, Belgium
| | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Victoria D. Leitch
- Innovative Manufacturing Cooperative Research Centre, Royal Melbourne Institute of Technology, School of Engineering, Carlton, VIC, Australia
| | - Philippe Lopes
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Ling Oei
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Lyon, France
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, University of Bristol, Bristol, United Kingdom
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Şansın Tuzun
- Physical Medicine & Rehabilitation Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Amina Valjevac
- Department of Human Physiology, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tatjana Zekic
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Ovesy M, Silva-Henao JD, Fletcher JWA, Gueorguiev B, Zysset PK, Varga P. Non-linear explicit micro-FE models accurately predict axial pull-out force of cortical screws in human tibial cortical bone. J Mech Behav Biomed Mater 2021; 126:105002. [PMID: 34894498 DOI: 10.1016/j.jmbbm.2021.105002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/22/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Screws are the most frequently used implants for treatment of bone fractures and play an essential role in determining fixation stability. Robust prediction of the bone-screw interface failure would enable development of improved fixation strategies and implant designs, ultimately reducing failure rates and improving outcomes of bone fracture treatments. This study aimed to compare the accuracy of micro-computed tomography image based bone volume measures, linear micro-finite element (FE) and non-linear micro-FE simulations in predicting pull-out force of 3.5 mm screws in human cadaveric tibial cortical bone. Axial pull-out experiments were performed in forty samples harvested from a single human tibia to measure ultimate force, which was correlated with bone volume around the screw and the predictions by both linear micro-FE and non-linear explicit micro-FE models. Correlation strength was similar for bone volume around the screw (R2 = 0.866) and linear micro-FE (R2 = 0.861), but the explicit non-linear micro-FE models were able to capture the experimental results more accurately (R2 = 0.913) and quantitatively correctly. Therefore, this technique may have potential for future in silico studies aiming at implant design optimization.
Collapse
Affiliation(s)
- Marzieh Ovesy
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Juan Diego Silva-Henao
- AO Research Institute Davos, Davos, Switzerland; Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | | | | | - Philippe K Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| |
Collapse
|
17
|
Plett RM, Kemp TD, Burt LA, Billington EO, Hanley DA, Boyd SK. Using 3D image registration to maximize the reproducibility of longitudinal bone strength assessment by HR-pQCT and finite element analysis. Osteoporos Int 2021; 32:1849-1857. [PMID: 33624139 DOI: 10.1007/s00198-021-05896-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
UNLABELLED We developed and validated a finite element (FE) approach for longitudinal high-resolution peripheral quantitative computed tomography (HR-pQCT) studies using 3D image registration to account for misalignment between images. This reduced variability in longitudinal FE estimates and improved our ability to measure in vivo changes in HR-pQCT studies of bone strength. INTRODUCTION We developed and validated a finite element (FE) approach for longitudinal high-resolution peripheral quantitative computed tomography (HR-pQCT) studies using 3D rigid-body registration (3DR) to maximize reproducibility by accounting for misalignment between images. METHODS In our proposed approach, we used the full common bone volume defined by 3DR to estimate standard FE parameters. Using standard HR-pQCT imaging protocols, we validated the 3DR approach with ex vivo samples of the distal radius (n = 10, four repeat scans) by assessing whether 3DR can reduce measurement variability from repositioning error. We used in vivo data (n = 40, five longitudinal scans) to assess the sensitivity of 3DR to detect changes in bone strength at the distal radius by the standard deviation of the rate of change (σ), where the ideal value of σ is minimized to define true change. FE estimates by 3DR were compared to estimates by no registration (NR) and slice-matching (SM). RESULTS Group-wise comparisons of ex vivo variation (CVRMS, %) found that FE measurement precision was improved by SM (CVRMS < 0.80%) and 3DR (CVRMS < 0.62%) compared to NR (CVRMS~2%), and 3DR was advantageous as repositioning error increased. Longitudinal in vivo reproducibility was minimized by 3DR for failure load estimates (σ = 0.008 kN/month). CONCLUSION Although 3D registration cannot negate motion artifacts, it plays an important role in detecting and reducing variability in FE estimates for longitudinal HR-pQCT data and is well suited for estimating effects of interventions in in vivo longitudinal studies of bone strength.
Collapse
Affiliation(s)
- R M Plett
- Biomedical Engineering Graduate Program, Faculty of Graduate Studies, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | - T D Kemp
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada
| | - L A Burt
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | - E O Billington
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - D A Hanley
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada.
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH. Alterations in osteocyte lacunar morphology affect local bone tissue strains. J Mech Behav Biomed Mater 2021; 123:104730. [PMID: 34438250 DOI: 10.1016/j.jmbbm.2021.104730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Osteocytes are capable of remodeling their perilacunar bone matrix, which causes considerable variations in the shape and size of their lacunae. If these variations in lacunar morphology cause changes in the mechanical environment of the osteocytes, in particular local strains, they would subsequently affect bone mechanotransduction, since osteocytes are likely able to directly sense these strains. The purpose of this study is to quantify the effect of alterations in osteocyte lacunar morphology on peri-lacunar bone tissue strains. To this end, we related the actual lacunar shape in fibulae of six young-adult (5-month) and six old (23-month) mice, quantified by high-resolution micro-computed tomography, to microscopic strains, analyzed by micro-finite element modeling. We showed that peak effective strain increased by 12.6% in osteocyte cell bodies (OCYs), 9.6% in pericellular matrix (PCM), and 5.3% in extra cellular matrix (ECM) as the lacunae volume increased from 100-200 μm3 to 500-600 μm3. Lacunae with a larger deviation (>8°) in orientation from the longitudinal axis of the bone are exposed to 8% higher strains in OCYs, 6.5% in PCM, 4.2% in ECM than lacunae with a deviation in orientation below 8°. Moreover, increased lacuna sphericity from 0 to 0.5 to 0.7-1 led to 25%, 23%, and 13% decrease in maximum effective strains in OCYs, PCM, and ECM, respectively. We further showed that due to the presence of smaller and more round lacunae in old mice, local bone tissue strains are on average 5% lower in the vicinity of lacunae and their osteocytes of old mice compared to young. Understanding how changes in lacunar morphology affect the micromechanical environment of osteocytes presents a first step in unraveling their potential role in impaired bone mechanoresponsiveness with e.g. aging.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Zanchetta MB, Jerkovich F, Nuñez S, Mocarbel Y, Pignatta A, Elías N, Díaz AG, Roganovich JM, Vigovich C, Balonga MC, Cohen AC, Mumbach G, Gonzalez S, Plantalech L, Fradinger E, Zanchetta JR. Impaired bone microarchitecture and strength in patients with tumor-induced osteomalacia. J Bone Miner Res 2021; 36:1502-1509. [PMID: 33950560 DOI: 10.1002/jbmr.4325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 12/29/2022]
Abstract
Some studies based on bone biopsy have demonstrated that in patients with tumor-induced osteomalacia (TIO) the mineralization process of the bone matrix is profoundly disturbed. However, the interrelationship between clinical and biochemical features and bone microarchitecture in this disease needs further analysis. With this purpose in mind, we set out three objectives: (i) to determine bone microarchitecture and estimated bone strength in a group of patients with tumor-induced osteomalacia using high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA), (ii) to investigate correlations between duration of disease, biochemical features, bone density, HR-pQCT and FEA parameters, and (iii) to compare HR-pQCT and FEA parameters with a healthy control group. Ten patients with TIO were included. All patients had non-resolved disease. At the distal radius, all bone microarchitecture parameters were significantly affected in patients with TIO in comparison with healthy controls. At the distal tibia, all parameters were significantly impaired, except for trabecular thickness. All the parameters were more affected in the distal tibia than in the distal radius. Women with TIO (n = 7) had significantly lower bone strength parameters than healthy controls. In men (n = 3), bone strength parameters were significantly lower than in the control group at the distal tibia. Alkaline phosphatase levels exhibited a negative correlation with microarchitecture parameters, failure load, and stiffness. Higher levels of parathyroid hormone correlated with poorer microarchitecture parameters. We believe that in TIO, hormonal disturbances and the lack of mechanical stimulus specially converge to generate an extremely harmful combination for bone health. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- María Belén Zanchetta
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Universidad del Salvador, LIBERTAD 836 1 PISO, BUENOS AIRES, Argentina, C1012AAR, Argentina
| | - Fernando Jerkovich
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Universidad del Salvador, LIBERTAD 836 1 PISO, BUENOS AIRES, Argentina, C1012AAR, Argentina.,División Endocrinología, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Selva Nuñez
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Universidad del Salvador, LIBERTAD 836 1 PISO, BUENOS AIRES, Argentina, C1012AAR, Argentina
| | - Yamile Mocarbel
- División Endocrinología, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Pignatta
- Servicio de Endocrinología, Hospital Interzonal San Juan Bautista, San Fernando del Valle de Catamarca, Argentina
| | - Natalia Elías
- Servicio de Endocrinología, Metabolismo, Nutrición y Diabetes, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Graciela Díaz
- División Endocrinología, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - María Celeste Balonga
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Universidad del Salvador, LIBERTAD 836 1 PISO, BUENOS AIRES, Argentina, C1012AAR, Argentina
| | | | | | | | - Luisa Plantalech
- Servicio de Endocrinología y Medicina Nuclear, Sector Osteopatías, Hospital Italiano, Buenos Aires, Buenos Aires, Argentina
| | - Erich Fradinger
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Universidad del Salvador, LIBERTAD 836 1 PISO, BUENOS AIRES, Argentina, C1012AAR, Argentina
| | - José Rubén Zanchetta
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Universidad del Salvador, LIBERTAD 836 1 PISO, BUENOS AIRES, Argentina, C1012AAR, Argentina
| |
Collapse
|
20
|
Sacher S, Hernandez CJ, Donnelly E. Characterization of Ultralow Density Cellular Solids: Lessons from 30 years of Bone Biomechanics Research. ADVANCED ENGINEERING MATERIALS 2021; 23:2100206. [PMID: 34456625 PMCID: PMC8389487 DOI: 10.1002/adem.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 06/13/2023]
Abstract
Advances in additive manufacturing techniques have enabled the development of micro-architectured materials displaying a combination of low-density and lightweight structures with high specific strength and toughness. The mechanical performance of micro-architectured materials can be assessed using standard techniques; however, when studying low- and ultralow density micro-architectured materials, standard characterization techniques can be subject to experimental artifacts. Additionally, quantitative assessment and comparisons of microarchitectures with distinct lattice patterns is not always straightforward. Cancellous bone is a natural, ultralow density (porosity often exceeding 90%), irregular, cellular solid that has been thoroughly characterized in terms of micro-architecture and mechanical performance over the past 30 years. However, most the literature on cancellous bone mechanical properties and micro-structure-function relationships is in the medical literature and is not immediately accessible to materials designers. Here we provide a brief review of state-of-the-art approaches for characterizing the micro-architecture and mechanical performance of ultralow density cancellous bone, including methods of addressing experimental artifacts during mechanical characterization of ultralow density cellular solids, methods of quantifying microarchitecture, and currently understood structure-function relationships.
Collapse
Affiliation(s)
- Sara Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Christopher J Hernandez
- Research Division, Hospital for Special Surgery, New York, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
21
|
Brémaud L, Cai X, Brenner R, Grimal Q. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties. Biomech Model Mechanobiol 2021; 20:1509-1518. [PMID: 33884512 DOI: 10.1007/s10237-021-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
The mineralization level is heterogeneous in cortical bone extracellular matrix as a consequence of remodeling. Models of the effective elastic properties at the millimeter scale have been developed based on idealizations of the vascular pore network and matrix properties. Some popular models do not take into account the heterogeneity of the matrix. However, the errors on the predicted elasticity when the difference in elastic properties between osteonal and interstitial tissues is not modeled have not been quantified. This work provides an estimation of the maximum error. We compare the effective elasticity of a representative volume element (RVE) assuming (1) different elastic properties in osteonal and interstitial tissues vs. (2) average matrix properties. In order to account for the variability of bone microstructure, we use a collection of high resolution images of the pore network to build RVEs. In each RVE we assumed a constant osteonal wall thickness and we artificially varied this thickness between 35 and 140 [Formula: see text]m to create RVEs with different amounts of osteonal tissue. The homogenization problem was solved with a fast Fourier transform (FFT)-based numerical scheme. We found that the error depends on pore volume fraction and varies on average from 1 to [Formula: see text] depending on the assumed diameter of the osteons. The results suggest that matrix heterogeneity may be disregarded in cortical bone models in most practical cases.
Collapse
Affiliation(s)
- Luc Brémaud
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.,Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 75005, Paris, France
| | - Xiran Cai
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.,School of Information Science and Technology, ShanghaiTech University, Pudong District, 201210, Shanghai, China
| | - Renald Brenner
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 75005, Paris, France
| | - Quentin Grimal
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.
| |
Collapse
|
22
|
Miller T, Ying MTC, Hung VWY, Tsang CSL, Ouyang H, Chung RCK, Qin L, Pang MYC. Determinants of estimated failure load in the distal radius after stroke: An HR-pQCT study. Bone 2021; 144:115831. [PMID: 33359893 DOI: 10.1016/j.bone.2020.115831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Bone health is often compromised after stroke and the distal radius is a common site of fragility fractures. The macro- and mircoproperties of bone tissue after stroke and their clinical correlates are understudied. The objectives of the study were to use High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT) to investigate the bone properties at the distal radius, and to identify the correlates of estimated failure load for the distal radius in people with chronic stroke. This was a cross-sectional study of 64 people with stroke (age: 60.8 ± 7.7 years, stroke duration: 5.7 ± 3.9 years) and 64 age- and sex-matched controls. Bilateral bone structural, densitometric, geometric and strength parameters of the distal radius were measured using HR-pQCT. The architecture, stiffness and echo intensity of the bilateral biceps brachii muscle and brachial artery blood flow were evaluated using diagnostic ultrasound. Other outcomes included the Fugl-Meyer Motor Assessment (FMA), Motor Activity Log (MAL), and Composite Spasticity Scale (CSS). The results revealed a significant side (paretic vs non-paretic for the stroke group, non-dominant vs dominant for controls) by group (stroke vs control) interaction effect for estimated failure load, cortical area, cortical thickness, trabecular number and trabecular separation, and all volumetric density parameters. Post-hoc analysis showed percent side-to-side differences in bone outcomes were greater in the stroke group than the control group, with the exception of trabecular thickness and intracortical porosity. Among the HR-pQCT variables, percent side-to-side difference in trabecular volumetric bone mineral density contributed the most to the percent side-to-side difference in estimated failure load in the stroke group (R2 change = 0.334, β = 1.106). Stroke-related impairments (FMA, MAL, CSS) were found to be significant determinants of the percent side-to-side difference in estimated failure load (R2 change = 0.233, β = -0.480). This was the first study to examine bone microstructure post-stroke. We found that the paretic distal radius had compromised bone structural properties and lower estimated failure load compared to the non-paretic side. Motor impairment was a determinant of estimated bone strength at the distal radius and may be a potential intervention target for improving bone health post-stroke.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Michael T C Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Vivian W Y Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Charlotte S L Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Huixi Ouyang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Ling Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
23
|
The relationship between orthopedic clinical imaging and bone strength prediction. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Stipsitz M, Zysset PK, Pahr DH. Prediction of the Inelastic Behaviour of Radius Segments: Damage-based Nonlinear Micro Finite Element Simulation vs Pistoia Criterion. J Biomech 2021; 116:110205. [PMID: 33476984 DOI: 10.1016/j.jbiomech.2020.110205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
The Pistoia criterion (PC) is widely used to estimate the failure load of distal radius segments based on linear micro Finite Element (μFE) analyses. The advantage of the PC is that a simple strain-threshold and a tissue volume fraction can be used to predict failure properties. In this study, the PC is compared to materially nonlinear μFE analyses, where the bone tissue is modelled as an elastic, damageable material. The goal was to investigate for which outcomes the PC is sufficient and when a nonlinear (NL) simulation is required. Three types of simulation results were compared: (1) prediction of the failure load, (2) load sharing of cortical and trabecular regions, and (3) distribution of local damaged/overstrained tissue at the maximum sustainable load. The failure load obtained experimentally could be predicted well with both the PC and the NL simulations using linear regression. Although the PC strongly overestimated the failure load, it was sufficient to predict adequately normalized apparent results. An optimised PC (oPC) was proposed which uses experimental data to calibrate the individual volume of overstrained tissue. The main areas of local over-straining predicted by the oPC were the same as estimated by the NL simulation, although the oPC predicted more diffuse regions. However, the oPC relied on an individual calibration requiring the experimental failure load while the NL simulation required no a priori knowledge of the experimental failure load.
Collapse
Affiliation(s)
- Monika Stipsitz
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria
| | - Philippe K Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Austria; Division Biomechanics, Karl Landsteiner University, Austria
| |
Collapse
|
25
|
Daniels AM, Bevers MSAM, Sassen S, Wyers CE, van Rietbergen B, Geusens PPMM, Kaarsemaker S, Hannemann PFW, Poeze M, van den Bergh JP, Janzing HMJ. Improved Detection of Scaphoid Fractures with High-Resolution Peripheral Quantitative CT Compared with Conventional CT. J Bone Joint Surg Am 2020; 102:2138-2145. [PMID: 33079896 DOI: 10.2106/jbjs.20.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Computed tomography (CT), magnetic resonance imaging, and bone scintigraphy are second-line imaging techniques that are frequently used for the evaluation of patients with a clinically suspected scaphoid fracture. However, as a result of varying diagnostic performance results, no true reference standard exists for scaphoid fracture diagnosis. We hypothesized that the use of high-resolution peripheral quantitative CT (HR-pQCT) in patients with a clinically suspected scaphoid fracture could improve scaphoid fracture detection compared with conventional CT in the clinical setting. METHODS The present study included 91 consecutive patients (≥18 years of age) who presented to the emergency department with a clinically suspected scaphoid fracture between December 2017 and October 2018. All patients were clinically reassessed within 14 days after first presentation, followed by CT and HR-pQCT. If a scaphoid fracture was present, the fracture type was determined according to the Herbert classification system and correlation between CT and HR-pQCT was estimated with use of the Kendall W statistic or coefficient of concordance (W) (the closer to 1, the higher the correlation). RESULTS The cohort included 45 men and 46 women with a median age of 52 years (interquartile range, 29 to 67 years). HR-pQCT revealed a scaphoid fracture in 24 patients (26%), whereas CT revealed a scaphoid fracture in 15 patients (16%). Patients with a scaphoid fracture were younger and more often male. The correlation between CT and HR-pQCT was high for scaphoid fracture type according to the Herbert classification system (W = 0.793; 95% confidence interval [CI], 0.57 to 0.91; p < 0.001) and very high for scaphoid fracture location (W = 0.955; 95%, CI 0.90 to 0.98; p < 0.001). CONCLUSIONS In the present study, the number of patients diagnosed with a scaphoid fracture was 60% higher when using HR-pQCT as compared with CT. These findings imply that a substantial proportion of fractures-in this study, more than one-third-will be missed by the current application of CT scanning in patients with a clinically suspected scaphoid fracture. LEVEL OF EVIDENCE Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- A M Daniels
- Departments of Surgery (A.M.D. and H.M.J.J.), Radiology (S.S.), Internal Medicine (C.E.W. and J.P.v.d.B.), and Orthopedic Surgery (S.K.), VieCuri Medical Centre, Venlo, the Netherlands.,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - M S A M Bevers
- Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - S Sassen
- Departments of Surgery (A.M.D. and H.M.J.J.), Radiology (S.S.), Internal Medicine (C.E.W. and J.P.v.d.B.), and Orthopedic Surgery (S.K.), VieCuri Medical Centre, Venlo, the Netherlands
| | - C E Wyers
- Departments of Surgery (A.M.D. and H.M.J.J.), Radiology (S.S.), Internal Medicine (C.E.W. and J.P.v.d.B.), and Orthopedic Surgery (S.K.), VieCuri Medical Centre, Venlo, the Netherlands.,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Departments of Internal Medicine (C.E.W., P.P.M.M.G., and J.P.v.d.B.) and Surgery and Trauma Surgery (P.F.W.H. and M.P.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - B van Rietbergen
- Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University, Maastricht, the Netherlands
| | - P P M M Geusens
- Departments of Internal Medicine (C.E.W., P.P.M.M.G., and J.P.v.d.B.) and Surgery and Trauma Surgery (P.F.W.H. and M.P.), Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University, Maastricht, the Netherlands
| | - S Kaarsemaker
- Departments of Surgery (A.M.D. and H.M.J.J.), Radiology (S.S.), Internal Medicine (C.E.W. and J.P.v.d.B.), and Orthopedic Surgery (S.K.), VieCuri Medical Centre, Venlo, the Netherlands
| | - P F W Hannemann
- Departments of Internal Medicine (C.E.W., P.P.M.M.G., and J.P.v.d.B.) and Surgery and Trauma Surgery (P.F.W.H. and M.P.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M Poeze
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Departments of Internal Medicine (C.E.W., P.P.M.M.G., and J.P.v.d.B.) and Surgery and Trauma Surgery (P.F.W.H. and M.P.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - J P van den Bergh
- Departments of Surgery (A.M.D. and H.M.J.J.), Radiology (S.S.), Internal Medicine (C.E.W. and J.P.v.d.B.), and Orthopedic Surgery (S.K.), VieCuri Medical Centre, Venlo, the Netherlands.,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Departments of Internal Medicine (C.E.W., P.P.M.M.G., and J.P.v.d.B.) and Surgery and Trauma Surgery (P.F.W.H. and M.P.), Maastricht University Medical Centre, Maastricht, the Netherlands.,Faculty of Medicine, Hasselt University, Belgium
| | - H M J Janzing
- Departments of Surgery (A.M.D. and H.M.J.J.), Radiology (S.S.), Internal Medicine (C.E.W. and J.P.v.d.B.), and Orthopedic Surgery (S.K.), VieCuri Medical Centre, Venlo, the Netherlands
| |
Collapse
|
26
|
Hosseinitabatabaei S, Kawalilak CE, McDonald MP, Kontulainen SA, Johnston JD. Distal radius sections offer accurate and precise estimates of forearm fracture load. Clin Biomech (Bristol, Avon) 2020; 80:105144. [PMID: 32829235 DOI: 10.1016/j.clinbiomech.2020.105144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Forearm fracture risk can be estimated via factor-of-risk: the ratio of applied impact force to forearm fracture load. Simple techniques are available for estimating impact force associated with a fall; estimating forearm fracture load is more challenging. Our aim was to assess whether failure load estimates of sections of the distal radius (acquired using High-Resolution peripheral Quantitative Computed Tomography and finite element modeling) offer accurate and precise estimates of forearm fracture load. METHODS We scanned a section of the distal radius of 19 cadaveric forearms (female, mean age 83.7, SD 8.3), and 34 women (75.0, 7.7). Sections were converted to finite element models and failure loads were acquired for different failure criteria. We assessed forearm fracture load using experimental testing simulating a fall on the outstretched hand. We used linear regression to derive relationships between ex vivo forearm fracture load and finite element derived distal radius failure load. We used derived regression coefficients to estimate forearm fracture load, and assessed explained variance and prediction error. We used root-mean-squared coefficients of variation to assess in vivo precision errors of estimated forearm fracture load. FINDINGS Failure load estimates of sections of the distal radius, used in conjunction with derived regression coefficients, explained 89-90% of the variance in experimentally-measured forearm fracture load with prediction errors <6.8% and precision errors <5.0%. INTERPRETATION Failure load estimates of distal radius sections can reliably estimate forearm fracture load experienced during a fall. Forearm fracture load estimates can be used to improve factor-of-risk predictions for forearm fracture.
Collapse
Affiliation(s)
- Seyedmahdi Hosseinitabatabaei
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Chantal E Kawalilak
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Matthew P McDonald
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Saija A Kontulainen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK S7N 5B2, Canada
| | - James D Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
27
|
Schenk D, Mathis A, Lippuner K, Zysset P. In vivo repeatability of homogenized finite element analysis based on multiple HR-pQCT sections for assessment of distal radius and tibia strength. Bone 2020; 141:115575. [PMID: 32795679 DOI: 10.1016/j.bone.2020.115575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Micro finite element analysis (μFE) is a widely applied tool in biomedical research for assessing in vivo mechanical properties of bone at measurement sites, including the ultra-distal radius and tibia. A finite element approach (hFE) based on homogenized constitutive models for trabecular bone offers an attractive alternative for clinical use, as it is computationally less expensive than traditional μFE. The respective patient-specific models for in vivo bone strength estimation are usually based on standard clinical high-resolution peripheral quantitative CT (HR-pQCT) measurements. They include a scan region of roughly 10 mm in height and are referred to as single-sections. It has been shown, that these small peripheral bone sections don't reliably cover the fracture line in Colles' fractures and therefore the weakest region at the radius. Recently introduced multiple section (multiple adjacent single-sections) measurements might improve the evaluation of bone strength, but little is known about the repeatability of hFE estimations in general, and especially for multiple section measurement protocols. Accordingly, the aim of the present work is to quantify repeatability of clinical in vivo bone strength measurement by hFE on multiple section HR-pQCT reconstructions at the distal radius and tibia. METHODS Nineteen healthy Swiss women (43.6y ± 17.8y) and twenty men (48.2y ± 19.4y) were examined with HR-pQCT at 61 μm isotropic voxel resolution. Each subject was first scanned three times using a double-section (336 slices) at the distal radius and then three times using a triple-section (504 slices) at the distal tibia. The multiple section HR-pQCT reconstructions were graded for motion artefacts and non-linear hFE models (radius and tibia) and linear μFE models (only radius) were generated for estimation of stiffness and ultimate load. Then in vivo repeatability errors were computed in terms of root mean square coefficients of variation (CV). RESULTS In vivo repeatability errors of non-linear hFE stiffness (S) and ultimate load (F) were significantly higher at the radius (S: 2.71% and F: 2.97%) compared to the tibia (S: 1.21%, F: 1.45%). Multiple section linear μFE at the radius resulted in substantially higher repeatability errors (S: 5.38% and F: 10.80%) compared to hFE. DISCUSSION/CONCLUSION Repeatability errors of hFE outcomes based on multiple section measurements at the distal radius and tibia were generally lower compared to respective reported single-section μFE repeatability errors. Therefore, hFE is an attractive alternative to today's gold standard of μFE models and should especially be encouraged when analyzing multiple section measurements.
Collapse
Affiliation(s)
- Denis Schenk
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
| | - Andrea Mathis
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2020; 31:1607-1627. [PMID: 32458029 PMCID: PMC7429313 DOI: 10.1007/s00198-020-05438-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The application of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess bone microarchitecture has grown rapidly since its introduction in 2005. As the use of HR-pQCT for clinical research continues to grow, there is an urgent need to form a consensus on imaging and analysis methodologies so that studies can be appropriately compared. In addition, with the recent introduction of the second-generation HrpQCT, which differs from the first-generation HR-pQCT in scan region, resolution, and morphological measurement techniques, there is a need for guidelines on appropriate reporting of results and considerations as the field adopts newer systems. METHODS A joint working group between the International Osteoporosis Foundation, American Society of Bone and Mineral Research, and European Calcified Tissue Society convened in person and by teleconference over several years to produce the guidelines and recommendations presented in this document. RESULTS An overview and discussion is provided for (1) standardized protocol for imaging distal radius and tibia sites using HR-pQCT, with the importance of quality control and operator training discussed; (2) standardized terminology and recommendations on reporting results; (3) factors influencing accuracy and precision error, with considerations for longitudinal and multi-center study designs; and finally (4) comparison between scanner generations and other high-resolution CT systems. CONCLUSION This article addresses the need for standardization of HR-pQCT imaging techniques and terminology, provides guidance on interpretation and reporting of results, and discusses unresolved issues in the field.
Collapse
Affiliation(s)
- D E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - J Paccou
- Department of Rheumatology, MABlab UR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - A Ghasem-Zadeh
- Departments of Endocrinology and Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bioclinica, Inc., Hamburg, Germany
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Johnston JD, McDonald MP, Kontulainen SA. Off-axis loads cause failure of the distal radius at lower magnitudes than axial loads: A side-to-side experimental study. J Orthop Res 2020; 38:1688-1692. [PMID: 31989687 DOI: 10.1002/jor.24601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 02/04/2023]
Abstract
Off-axis loading associated with a fall onto the outstretched hand has been hypothesized to induce distal radius failure at lower magnitudes than axially directed loading commonly used in biomechanical models for estimating fracture risk. However, this hypothesis has not been tested with side-to-side experimental testing. The objective of this study was to compare distal radius failure loads between forearm pairs experimentally tested in an axial or off-axis loading configuration. We acquired 18 pairs of cadaveric forearms from 18 female donors (mean age (standard deviation): 84.4 (7.9) years). Each forearm pair was tested to failure using either an axial compression test (vertical orientation with 0° dorsal inclination, 3°-6° radial inclination) or an off-axis test corresponding to the hand position during a fall (15° dorsal inclination, 3°-6° radial inclination). Failure testing was performed at 3 mm/s onto the palm of the hand until fracture occurred. Of the 18 pairs, 11 sustained a distal radius fracture. We compared failure loads between the two groups using a paired t test. Results indicated that failure load under off-axis loading was 29% lower than failure load under axial compressive loading (mean difference: -0.31 kN; 95% confidence interval: -0.47 to -0.16 kN, P = .001). In conclusion, off-axis loading associated with a fall onto the outstretched hand resulted in a 29% lower failure load. Integrating an off-axis loading configuration into current biomechanical models of distal radius bone strength may prevent overestimating of failure load and may offer a clinically relevant option to estimate distal radius fracture risk and monitor therapy efficacy.
Collapse
Affiliation(s)
- James D Johnston
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew P McDonald
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Saija A Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
30
|
Ovesy M, Aeschlimann M, Zysset PK. Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone. J Biomech 2020; 107:109844. [DOI: 10.1016/j.jbiomech.2020.109844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 02/09/2023]
|
31
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Gauthier R, Follet H, Langer M, Peyrin F, Mitton D. What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure? Proc Inst Mech Eng H 2020; 234:247-254. [DOI: 10.1177/0954411919884776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cortical bone fracture mechanisms are well studied under quasi-static loading. The influence of strain rate on crack propagation mechanisms needs to be better understood, however. We have previously shown that several aspects of the bone micro-structure are involved in crack propagation, such as the complete porosity network, including the Haversian system and the lacunar network, as well as biochemical aspects, such as the maturity of collagen cross-links. The aim of this study is to investigate the influence of strain rate on the toughness of human cortical bone with respect to its microstructure and organic non-collagenous composition. Two strain rates will be considered: quasi-static loading (10−4 s−1), a standard condition, and a higher loading rate (10−1 s−1), representative of a fall. Cortical bone samples were extracted from eight female donors (age 50–91 years). Three-point bending tests were performed until failure. Synchrotron radiation micro-computed tomography imaging was performed to assess bone microstructure including the Haversian system and the lacunar system. Collagen enzymatic cross-link maturation was measured using a high performance liquid chromatography column. Results showed that that under quasi-static loading, the elastic contribution of the fracture process is correlated to both the collagen cross-links maturation and the microstructure, while the plastic contribution is correlated only to the porosity network. Under fall-like loading, bone organization appears to be less linked to crack propagation.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| |
Collapse
|
33
|
Mikolajewicz N, Bishop N, Burghardt AJ, Folkestad L, Hall A, Kozloff KM, Lukey PT, Molloy-Bland M, Morin SN, Offiah AC, Shapiro J, van Rietbergen B, Wager K, Willie BM, Komarova SV, Glorieux FH. HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res 2020; 35:446-459. [PMID: 31643098 DOI: 10.1002/jbmr.3901] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/19/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a noninvasive imaging modality for assessing volumetric bone mineral density (vBMD) and microarchitecture of cancellous and cortical bone. The objective was to (1) assess fracture-associated differences in HR-pQCT bone parameters; and (2) to determine if HR-pQCT is sufficiently precise to reliably detect these differences in individuals. We systematically identified 40 studies that used HR-pQCT (39/40 used XtremeCT scanners) to assess 1291 to 3253 and 3389 to 10,687 individuals with and without fractures, respectively, ranging in age from 10.9 to 84.7 years with no comorbid conditions. Parameters describing radial and tibial bone density, microarchitecture, and strength were extracted and percentage differences between fracture and control subjects were estimated using a random effects meta-analysis. An additional meta-analysis of short-term in vivo reproducibility of bone parameters assessed by XtremeCT was conducted to determine whether fracture-associated differences exceeded the least significant change (LSC) required to discern measured differences from precision error. Radial and tibial HR-pQCT parameters, including failure load, were significantly altered in fracture subjects, with differences ranging from -2.6% (95% confidence interval [CI] -3.4 to -1.9) in radial cortical vBMD to -12.6% (95% CI -15.0 to -10.3) in radial trabecular vBMD. Fracture-associated differences reported by prospective studies were consistent with those from retrospective studies, indicating that HR-pQCT can predict incident fracture. Assessment of study quality, heterogeneity, and publication biases verified the validity of these findings. Finally, we demonstrated that fracture-associated deficits in total and trabecular vBMD and certain tibial cortical parameters can be reliably discerned from HR-pQCT-related precision error and can be used to detect fracture-associated differences in individual patients. Although differences in other HR-pQCT measures, including failure load, were significantly associated with fracture, improved reproducibility is needed to ensure reliable individual cross-sectional screening and longitudinal monitoring. In conclusion, our study supports the use of HR-pQCT in clinical fracture prediction. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Research Center, Shriners Hospital for Children, Montreal, Canada.,Department of Dentistry, McGill University, Montreal, Canada
| | - Nick Bishop
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Andrew J Burghardt
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Lars Folkestad
- Department of Clinical Research, Odense University Hospital, Odense, Denmark
| | | | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Amaka C Offiah
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Jay Shapiro
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Bettina M Willie
- Research Center, Shriners Hospital for Children, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Svetlana V Komarova
- Research Center, Shriners Hospital for Children, Montreal, Canada.,Department of Dentistry, McGill University, Montreal, Canada
| | | |
Collapse
|
34
|
Arnold EL, Clement J, Rogers KD, Garcia-Castro F, Greenwood C. The use of μCT and fractal dimension for fracture prediction in osteoporotic individuals. J Mech Behav Biomed Mater 2020; 103:103585. [PMID: 32090913 DOI: 10.1016/j.jmbbm.2019.103585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
Osteoporosis (OP) is a widespread condition with commonly associated fracture sites at the hip, vertebra and wrist. This study examines the effects of age and osteoporosis on bone quality by comparing the efficacy of using parameters which indicate bone quality (both traditional clinical parameters such as bone mineral density (BMD), as well as apparent Young's modulus determined by finite element analysis, among others) to predict fracture. Non-fracture samples were collected from the femoral heads of 83 donors (44 males, 39 females), and fracture samples were obtained from the femoral heads of 17 donors (female). Microarchitectural parameters (Bone Volume/Total Volume [BV/TV], Bone Surface/Bone Volume [BS/BV], Tissue Mineral Density [TMD, etc.]) were measured from μCT of each sample as well as 2D and 3D fractal dimension (D2D and D3D respectively). A cube was cropped from μCT images and an isotropic hexahedral element was assigned to each voxel. Finite element analysis was used to calculate the Young's modulus for each sample. Overall, values for microarchitectural characteristics, fractal dimension measurements and Young's Modulus were consistent with values within literature. Significant correlations are observed between age and BV/TV for non-fracture males and females, as well as between age and volumetric BMD (vBMD) for the same groups. Significant differences are present between age-matched non-fracture and fracture females for BV/TV, BS/BV, vBMD, TMD, D2D, D3D, (p < 0.01 for all). Properties which are not age dependent are significantly different between age-matched non-fracture and fracture specimens, indicating OP is a disease, and not just an accelerated aging process.
Collapse
Affiliation(s)
- Emily L Arnold
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK.
| | - John Clement
- Melbourne Dental School, University of Melbourne, Australia
| | - Keith D Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | | | | |
Collapse
|
35
|
Pinho JP, Forner-Cordero A, Rodrigues Pereira RM, Hernandez AJ, Dórea EL, Mezêncio B, Takayama L, Alvarenga JC, Serrão JC, Amadio AC. A High-Intensity Exercise Intervention Improves Older Women Lumbar Spine and Distal Tibia Bone Microstructure and Function: A 20-Week Randomized Controlled Trial. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2020; 8:2100108. [PMID: 31966932 PMCID: PMC6964965 DOI: 10.1109/jtehm.2019.2963189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/10/2019] [Accepted: 12/05/2019] [Indexed: 12/28/2022]
Abstract
Introduction: The effects of ageing on bone can be mitigated with different types of physical training, such as power training. However, stimuli that combine increasing external and internal loads concomitantly may improve bone quality. The goal of this study was to assess the efficacy of a combined power and plyometric training on lumbar spine and distal tibia microstructure and function. Methods: 38 sedentary elderly women between 60 and 70 years were randomly allocated in experimental (N = 21) and control group (N = 17). The effects of the 20-week protocol on lumbar spine microstructure and tibia microstructure and function were assessed by trabecular bone score (TBS), high resolution peripheral quantitative computed tomography (HR-pQCT) and microfinite element analysis. Results: when compared to the effects found in the control group, the experimental group showed significant improvements in lumbar spine TBS (Hedges' g = 0.77); and in distal tibia trabecular thickness (g = 0.82) and trabecular bone mineral density (g=0.63). Conclusion: our findings underscore the effectiveness of the proposed intervention, suggesting it as a new strategy to slow down and even reverse the structural and functional losses in the skeletal system due to ageing.
Collapse
Affiliation(s)
- João Pedro Pinho
- Laboratory of Biomechanics, School of Physical Education and SportsUniversity of São PauloSão Paulo05508-220Brazil
- Biomechatronics LaboratoryEscola Politécnica of the University of São PauloSão Paulo05508-220Brazil
| | - Arturo Forner-Cordero
- Biomechatronics LaboratoryEscola Politécnica of the University of São PauloSão Paulo05508-220Brazil
- Institute of Advanced StudiesSão Paulo05508-220Brazil
| | | | - Arnaldo José Hernandez
- Department of Orthopedics and Traumatology, Medical SchoolUniversity of São PauloSão Paulo05508-220Brazil
| | - Egídio Lima Dórea
- University Hospital, University of São PauloSão Paulo05508-220Brazil
| | - Bruno Mezêncio
- Laboratory of Biomechanics, School of Physical Education and SportsUniversity of São PauloSão Paulo05508-220Brazil
| | - Liliam Takayama
- Biomechatronics LaboratoryEscola Politécnica of the University of São PauloSão Paulo05508-220Brazil
| | | | - Júlio Cerca Serrão
- Laboratory of Biomechanics, School of Physical Education and SportsUniversity of São PauloSão Paulo05508-220Brazil
| | - Alberto Carlos Amadio
- Laboratory of Biomechanics, School of Physical Education and SportsUniversity of São PauloSão Paulo05508-220Brazil
| |
Collapse
|
36
|
Jiang H, Robinson DL, McDonald M, Lee PVS, Kontulainen SA, Johnston JD, Yates CJ, Wark JD. Predicting experimentally-derived failure load at the distal radius using finite element modelling based on peripheral quantitative computed tomography cross-sections (pQCT-FE): A validation study. Bone 2019; 129:115051. [PMID: 31472298 DOI: 10.1016/j.bone.2019.115051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023]
Abstract
Dual energy X-ray absorptiometry, the current clinical criterion method for osteoporosis diagnosis, has limitations in identifying individuals with increased fracture risk, especially at the distal radius. Peripheral quantitative computed tomography (pQCT) can provide volumetric bone density data, as well as information on bone geometry, which makes it possible to establish finite element (FE) models of the distal radius from which bone strength and stiffness can be calculated. In this study, we compared experimental mechanical failure load data of the forearm with pQCT- based FE (pQCT-FE) modelling properties. Sixteen cadaveric forearm specimens were experimentally loaded until failure. Estimated stiffness and strength variables of compression, shear, bending and torsion were calculated from pQCT-FE modelling of single cross-sections of 0.2 × 0.2 × 2.4 mm of the radius pQCT image. A moderate-to-strong coefficient of determination (r2) was observed between experimental failure load and pQCT-FE variables. The highest r2 was observed for bending stiffness (r2 = 0.83). This study validates the use of pQCT-FE in the assessment of distal radius bone strength for future studies.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew McDonald
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | | | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Christopher J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - John D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, Australia.
| |
Collapse
|
37
|
Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure. Biomech Model Mechanobiol 2019; 19:861-874. [PMID: 31749070 PMCID: PMC7203600 DOI: 10.1007/s10237-019-01254-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/05/2019] [Indexed: 01/15/2023]
Abstract
An efficient solver for large-scale linear \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \hbox {FE}$$\end{document}μFE simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${36}\,{{\upmu }\hbox {m}}$$\end{document}36μm. Suitable material parameters were identified based on two biopsies by comparison with axial tension and compression experiments. The good parallel performance and low memory footprint of the solver were preserved. Excellent correlation of the maximum apparent stress was found between simulations and experiments (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^2 > 0.97$$\end{document}R2>0.97). The development of local damage regions was observable due to the nonlinear nature of the simulations. A novel elasticity limit was proposed based on the local damage information. The elasticity limit was found to be lower than the 0.2% yield point. Systematic differences in the yield behavior of biopsies under apparent compression and tension loading were observed. This indicates that damage distributions could lead to more insight into the failure mechanisms of trabecular bone.
Collapse
|
38
|
The Implantation of Bioactive Glass Granules Can Contribute the Load-Bearing Capacity of Bones Weakened by Large Cortical Defects. MATERIALS 2019; 12:ma12213481. [PMID: 31652996 PMCID: PMC6862453 DOI: 10.3390/ma12213481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
Abstract
Bioactive glass (BAG) granules (S53P4) have shown good clinical results in one-stage treatment of osteomyelitis. During this treatment, a cortical window is created, and infected bone is debrided, which results in large defects that affect the mechanical properties of the bone. This study aimed to evaluate the role of BAG granules in load-bearing bone defect grafting. First, the influence of the geometry of the cortical window on the bone bending stiffness and estimated failure moments was evaluated using micro finite element analysis (µFE). This resulted in significant differences between the variations in width and length. In addition, µFE analysis showed that BAG granules contribute to bearing loads in simulated compression of a tibia with a defect grafted with BAG and a BAG and bone morsel mixture. These mixtures potentially can unload the cortical bone that is weakened by a large defect directly after the operation by up to approximately 25%, but only in case of optimal load transfer through the mixture.
Collapse
|
39
|
Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis. J Mech Behav Biomed Mater 2019; 98:301-310. [DOI: 10.1016/j.jmbbm.2019.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
|
40
|
Diez-Perez A, Brandi ML, Al-Daghri N, Branco JC, Bruyère O, Cavalli L, Cooper C, Cortet B, Dawson-Hughes B, Dimai HP, Gonnelli S, Hadji P, Halbout P, Kaufman JM, Kurth A, Locquet M, Maggi S, Matijevic R, Reginster JY, Rizzoli R, Thierry T. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res 2019; 31:1375-1389. [PMID: 31422565 PMCID: PMC6763416 DOI: 10.1007/s40520-019-01294-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this paper was to review the available approaches for bone strength assessment, osteoporosis diagnosis and fracture risk prediction, and to provide insights into radiofrequency echographic multi spectrometry (REMS), a non-ionizing axial skeleton technique. METHODS A working group convened by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis met to review the current image-based methods for bone strength assessment and fracture risk estimation, and to discuss the clinical perspectives of REMS. RESULTS Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is the consolidated indicator for osteoporosis diagnosis and fracture risk assessment. A more reliable fracture risk estimation would actually require an improved assessment of bone strength, integrating also bone quality information. Several different approaches have been proposed, including additional DXA-based parameters, quantitative computed tomography, and quantitative ultrasound. Although each of them showed a somewhat improved clinical performance, none satisfied all the requirements for a widespread routine employment, which was typically hindered by unclear clinical usefulness, radiation doses, limited accessibility, or inapplicability to spine and hip, therefore leaving several clinical needs still unmet. REMS is a clinically available technology for osteoporosis diagnosis and fracture risk assessment through the estimation of BMD on the axial skeleton reference sites. Its automatic processing of unfiltered ultrasound signals provides accurate BMD values in view of fracture risk assessment. CONCLUSIONS New approaches for improved bone strength and fracture risk estimations are needed for a better management of osteoporotic patients. In this context, REMS represents a valuable approach for osteoporosis diagnosis and fracture risk prediction.
Collapse
Affiliation(s)
- Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar/IMIM and CIBERFES, Autonomous University of Barcelona, Passeig Maritim 25-29, 08003, Barcelona, Spain.
| | - Maria Luisa Brandi
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jaime C Branco
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olivier Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - Loredana Cavalli
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Bernard Cortet
- Department of Rheumatology and EA 4490, University-Hospital of Lille, Lille, France
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Peyman Hadji
- Frankfurter Hormon und Osteoporose Zentrum, Frankfurt, Germany
| | | | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Andreas Kurth
- Department of Orthopaedic Surgery and Osteology, Klinikum Frankfurt, Frankfurt, Germany
- Mayor Teaching Hospital, Charite Medical School, Berlin, Germany
| | - Medea Locquet
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Stefania Maggi
- National Research Council, Aging Program, Institute of Neuroscience, Padua, Italy
| | - Radmila Matijevic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Clinical Center of Vojvodina, Clinic for Orthopedic Surgery, Novi Sad, Serbia
| | - Jean-Yves Reginster
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Thomas Thierry
- Department of Rheumatology, Hospital Nord, CHU St Etienne, St Etienne, France
- INSERM 1059, University of Lyon, St Etienne, France
| |
Collapse
|
41
|
Arias-Moreno AJ, Hosseini HS, Bevers M, Ito K, Zysset P, van Rietbergen B. Validation of distal radius failure load predictions by homogenized- and micro-finite element analyses based on second-generation high-resolution peripheral quantitative CT images. Osteoporos Int 2019; 30:1433-1443. [PMID: 30997546 PMCID: PMC6614386 DOI: 10.1007/s00198-019-04935-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
UNLABELLED This study developed a well-standardized and reproducible approach for micro-finite element (mFE) and homogenized-FE (hFE) analyses that can accurately predict the distal radius failure load using either mFE or hFE models when using the approaches and parameters developed in this study. INTRODUCTION Micro-FE analyses based on high-resolution peripheral quantitative CT (HR-pQCT) images are frequently used to predict distal radius failure load. With the introduction of a second-generation HR-pQCT device, however, the default modelling approach no longer provides accurate results. The aim of this study was to develop a well-standardized and reproducible approach for mFE and hFE analyses that can provide precise and accurate results for distal radius failure load predictions based on second-generation HR-pQCT images. METHODS Second-generation HR-pQCT was used to scan the distal 20-mm section of 22 cadaver radii. The sections were excised and mechanically tested afterwards. For these sections, mFE and hFE models were made that were used to identify required material parameters by comparing predicted and measured results. Using these parameters, the models were cropped to represent the 10-mm region recommended for clinical studies to test their performance for failure load prediction. RESULTS After identification of material parameters, the measured failure load of the 20-mm segments was in good agreement with the results of mFE models (R2 = 0.969, slope = 1.035) and hFE models (R2 = 0.966, slope = 0.890). When the models were restricted to the clinical region, mFE still accurately predicted the measured failure load (R2 = 0.955, slope = 1.021), while hFE predictions were precise but tended to overpredict the failure load (R2 = 0.952, slope = 0.780). CONCLUSIONS It was concluded that it is possible to accurately predict the distal radius failure load using either mFE or hFE models when using the approaches and parameters developed in this study.
Collapse
Affiliation(s)
- A J Arias-Moreno
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands
- Department of Mechanics and Production, Autonomous University of Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas, Colombia
| | - H S Hosseini
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland
| | - M Bevers
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands
| | - P Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland
| | - B van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands.
| |
Collapse
|
42
|
Cai X, Brenner R, Peralta L, Olivier C, Gouttenoire PJ, Chappard C, Peyrin F, Cassereau D, Laugier P, Grimal Q. Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. J R Soc Interface 2019; 16:20180911. [PMID: 30958180 PMCID: PMC6408344 DOI: 10.1098/rsif.2018.0911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
With ageing and various diseases, the vascular pore volume fraction (porosity) in cortical bone increases, and the morphology of the pore network is altered. Cortical bone elasticity is known to decrease with increasing porosity, but the effect of the microstructure is largely unknown, while it has been thoroughly studied for trabecular bone. Also, popular micromechanical models have disregarded several micro-architectural features, idealizing pores as cylinders aligned with the axis of the diaphysis. The aim of this paper is to quantify the relative effects on cortical bone anisotropic elasticity of porosity and other descriptors of the pore network micro-architecture associated with pore number, size and shape. The five stiffness constants of bone assumed to be a transversely isotropic material were measured with resonant ultrasound spectroscopy in 55 specimens from the femoral diaphysis of 29 donors. The pore network, imaged with synchrotron radiation X-ray micro-computed tomography, was used to derive the pore descriptors and to build a homogenization model using the fast Fourier transform (FFT) method. The model was calibrated using experimental elasticity. A detailed analysis of the computed effective elasticity revealed in particular that porosity explains most of the variations of the five stiffness constants and that the effects of other micro-architectural features are small compared to usual experimental errors. We also have evidence that modelling the pore network as an ensemble of cylinders yields biased elasticity values compared to predictions based on the real micro-architecture. The FFT homogenization method is shown to be particularly efficient to model cortical bone.
Collapse
Affiliation(s)
- Xiran Cai
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Renald Brenner
- Institut Jean le Rond ∂’Alembert, Sorbonne Université, CNRS UMR 7190, 75005 Paris, France
| | - Laura Peralta
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Cécile Olivier
- CREATIS, Université de Lyon, INSERM U1206, CNRS UMR 5220 , INSA-Lyon, UCBL, 69621 Villeurbanne, France
- ESRF, 38043 Grenoble, France
| | | | | | - Françoise Peyrin
- CREATIS, Université de Lyon, INSERM U1206, CNRS UMR 5220 , INSA-Lyon, UCBL, 69621 Villeurbanne, France
- ESRF, 38043 Grenoble, France
| | - Didier Cassereau
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Pascal Laugier
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Quentin Grimal
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| |
Collapse
|
43
|
Jiang BC, Villareal DT. Weight Loss-Induced Reduction of Bone Mineral Density in Older Adults with Obesity. J Nutr Gerontol Geriatr 2019; 38:100-114. [PMID: 30794099 DOI: 10.1080/21551197.2018.1564721] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Obesity in older adults is a growing public health problem, yet the appropriate treatment remains controversial partly due to evidence that weight loss reduces bone mass and may increase fracture risk. The purpose of this review is to summarize the research to date on the effects of diet-induced weight loss on bone health in obese (body mass index 30 kg/m2 and above) older (aged 65 years or older) adults. Observational studies have shown that weight loss in this population decreases total hip bone mineral density and increases the risk of frailty fractures (composite of proximal femur, pelvis, and proximal humerus fractures). Randomized controlled trials have largely confirmed these earlier observations but have also shown that exercise, particularly progressive resistance training, can attenuate or even alleviate this bone loss. Further research incorporating outcomes concerning bone quality and mass are needed to identify the optimal exercise and nutritional regimens to counteract the bone loss.
Collapse
Affiliation(s)
- Bryan C Jiang
- a Center for Translational Research in Inflammatory Diseases (CTRID) , Michael E DeBakey VA Medical Center , Houston , TX , USA.,b Department of Medicine-Endocrinology, Metabolism, and Diabetes , Baylor College of Medicine , Houston , TX , USA
| | - Dennis T Villareal
- a Center for Translational Research in Inflammatory Diseases (CTRID) , Michael E DeBakey VA Medical Center , Houston , TX , USA.,b Department of Medicine-Endocrinology, Metabolism, and Diabetes , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
44
|
Patton DM, Bigelow EMR, Schlecht SH, Kohn DH, Bredbenner TL, Jepsen KJ. The relationship between whole bone stiffness and strength is age and sex dependent. J Biomech 2019; 83:125-133. [PMID: 30527634 PMCID: PMC6338331 DOI: 10.1016/j.jbiomech.2018.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/11/2023]
Abstract
Accurately estimating whole bone strength is critical for identifying individuals that may benefit from prophylactic treatments aimed at reducing fracture risk. Strength is often estimated from stiffness, but it is not known whether the relationship between stiffness and strength varies with age and sex. Cadaveric proximal femurs (44 Male: 18-78 years; 40 Female: 24-95 years) and radial (36 Male: 18-89 years; 19 Female: 24-95 years) and femoral diaphyses (34 Male: 18-89 years; 19 Female: 24-95 years) were loaded to failure to evaluate how the stiffness-strength relationship varies with age and sex. Strength correlated significantly with stiffness at all sites and for both sexes, as expected. However, females exhibited significantly less strength for the proximal femur (58% difference, p < 0.001). Multivariate regressions revealed that stiffness, age and PYD were significant negative independent predictors of strength for the proximal femur (Age: M: p = 0.005, F: p < 0.001, PYD: M: p = 0.022, F: p = 0.025), radial diaphysis (Age: M = 0.055, PYD: F = 0.024), and femoral diaphysis (Age: M: p = 0.014, F: p = 0.097, PYD: M: p = 0.003, F: p = 0.091). These results indicated that older bones tended to be significantly weaker for a given stiffness than younger bones. These results suggested that human bones exhibit diminishing strength relative to stiffness with aging and with decreasing PYD. Incorporating these age- and sex-specific factors may help to improve the accuracy of strength estimates.
Collapse
Affiliation(s)
- Daniella M Patton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Todd L Bredbenner
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Whittier DE, Manske SL, Kiel DP, Bouxsein M, Boyd SK. Harmonizing finite element modelling for non-invasive strength estimation by high-resolution peripheral quantitative computed tomography. J Biomech 2018; 80:63-71. [PMID: 30201250 DOI: 10.1016/j.jbiomech.2018.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
The finite element (FE) method based on high-resolution peripheral quantitative computed tomography (HR-pQCT) use a variety of tissue constitutive properties and boundary conditions at different laboratories making comparison of mechanical properties difficult. Furthermore, the advent of a second-generation HR-pQCT poses challenges due to improved resolution and a larger region of interest (ROI). This study addresses the need to harmonize results across FE models. The aims are to establish the relationship between FE results as a function of boundary conditions and a range of tissue properties for the first-generation HR-pQCT system, and to determine appropriate model parameters for the second-generation HR-pQCT system. We implemented common boundary conditions and tissue properties on a large cohort (N = 1371), and showed the relationships were highly linear (R2 > 0.99) for yield strength and reaction force between FE models. Cadaver radii measured on both generation HR-pQCT with matched ROIs were used to back-calculate a tissue modulus that accounts for the increased resolution (61 µm versus 82 µm), resulting in a modulus of 8748 MPa for second-generation HR-pQCT to produce bone yield strength and reaction force equivalent to using 6829 MPa for first-generation HR-pQCT. Finally, in vivo scans (N = 61) conducted on both generations demonstrated that the larger ROI in the second-generation system results in stronger bone outcome measures, suggesting it is not advisable to convert FE results across HR-pQCT generations without matching ROIs. Together, these findings harmonize FE results by providing a means to compare findings with different boundary conditions and tissue properties, and across scanner generations.
Collapse
Affiliation(s)
- Danielle E Whittier
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah L Manske
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mary Bouxsein
- Beth Israel Deaconess Medical Center, Center for Advanced Orthopedic Studies, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
46
|
Comparison of HR-pQCT- and microCT-based finite element models for the estimation of the mechanical properties of the calcaneus trabecular bone. Biomech Model Mechanobiol 2018; 17:1715-1730. [DOI: 10.1007/s10237-018-1051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
|
47
|
Brommage R, Ohlsson C. Translational studies provide insights for the etiology and treatment of cortical bone osteoporosis. Best Pract Res Clin Endocrinol Metab 2018; 32:329-340. [PMID: 29779585 DOI: 10.1016/j.beem.2018.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing attention is being focused on the important contributions of cortical bone to bone strength, fractures and osteoporosis therapies. Recent progress in human genome wide association studies in combination with high-throughput mouse gene knockout phenotyping efforts of multiple genes and advanced conditional gene inactivation in mouse models have successfully identified genes with crucial roles in cortical bone homeostasis. Particular attention in this review is given to genes, such as WNT16, POSTN and SFRP4, that differentially affect cortical and trabecular bone architecture. We propose that animal models of cortical bone metabolism will substantially contribute to developing anabolic osteoporosis therapies that improve cortical bone mass and reduce non-vertebral fracture risk.
Collapse
Affiliation(s)
- Robert Brommage
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
48
|
Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise Early and Often: Effects of Physical Activity and Exercise on Women's Bone Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E878. [PMID: 29710770 PMCID: PMC5981917 DOI: 10.3390/ijerph15050878] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In 2011 over 1.7 million people were hospitalized because of a fragility fracture, and direct costs associated with osteoporosis treatment exceeded 70 billion dollars in the United States. Failure to reach and maintain optimal peak bone mass during adulthood is a critical factor in determining fragility fracture risk later in life. Physical activity is a widely accessible, low cost, and highly modifiable contributor to bone health. Exercise is especially effective during adolescence, a time period when nearly 50% of peak adult bone mass is gained. Here, we review the evidence linking exercise and physical activity to bone health in women. Bone structure and quality will be discussed, especially in the context of clinical diagnosis of osteoporosis. We review the mechanisms governing bone metabolism in the context of physical activity and exercise. Questions such as, when during life is exercise most effective, and what specific types of exercises improve bone health, are addressed. Finally, we discuss some emerging areas of research on this topic, and summarize areas of need and opportunity.
Collapse
Affiliation(s)
- Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| | - Megan E Mancuso
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| | - Tiffiny A Butler
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| | - Joshua E Johnson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| |
Collapse
|
49
|
Colabella L, Ibarra Pino AA, Ballarre J, Kowalczyk P, Cisilino AP. Calculation of cancellous bone elastic properties with the polarization-based FFT iterative scheme. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2879. [PMID: 28268244 DOI: 10.1002/cnm.2879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
The Fast Fourier Transform-based method, originally introduced by Moulinec and Suquet in 1994 has gained popularity for computing homogenized properties of composites. In this work, the method is used for the computational homogenization of the elastic properties of cancellous bone. To the authors' knowledge, this is the first study where the Fast Fourier Transform scheme is applied to bone mechanics. The performance of the method is analyzed for artificial and natural bone samples of 2 species: bovine femoral heads and implanted femurs of Hokkaido rats. Model geometries are constructed using data from X-ray tomographies, and the bone tissue elastic properties are measured using microindentation and nanoindentation tests. Computed results are in excellent agreement with those available in the literature. The study shows the suitability of the method to accurately estimate the fully anisotropic elastic response of cancellous bone. Guidelines are provided for the construction of the models and the setting of the algorithm.
Collapse
Affiliation(s)
- Lucas Colabella
- INTEMA-School of Engineering, CONICET-National University of Mar del Plata, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| | - Ariel Alejandro Ibarra Pino
- INTEMA-School of Engineering, CONICET-National University of Mar del Plata, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Josefina Ballarre
- INTEMA-School of Engineering, CONICET-National University of Mar del Plata, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| | - Piotr Kowalczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Adrián Pablo Cisilino
- INTEMA-School of Engineering, CONICET-National University of Mar del Plata, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| |
Collapse
|
50
|
Assessment of trabecular bone tissue elasticity with resonant ultrasound spectroscopy. J Mech Behav Biomed Mater 2017; 74:106-110. [DOI: 10.1016/j.jmbbm.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/19/2017] [Accepted: 05/29/2017] [Indexed: 11/17/2022]
|