1
|
Arnold KM, Weaver SR, Zars EL, Tschumperlin DJ, Westendorf JJ. Inhibition of Phlpp1 preserves the mechanical integrity of articular cartilage in a murine model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2024; 32:680-689. [PMID: 38432607 PMCID: PMC11127785 DOI: 10.1016/j.joca.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Phlpp1 inhibition is a potential therapeutic strategy for cartilage regeneration and prevention of post-traumatic osteoarthritis (PTOA). To understand how Phlpp1 loss affects cartilage structure, cartilage elastic modulus was measured with atomic force microscopy (AFM) in male and female mice after injury. METHODS Osteoarthritis was induced in male and female Wildtype (WT) and Phlpp1-/- mice by destabilization of the medial meniscus (DMM). At various timepoints post-injury, activity was measured, and knee joints examined with AFM and histology. In another cohort of WT mice, the PHLPP inhibitor NSC117079 was intra-articularly injected 4 weeks after injury. RESULTS Male WT mice showed decreased activity and histological signs of cartilage damage at 12 but not 6-weeks post-DMM. Female mice showed a less severe response to DMM by comparison, with no histological changes seen at any time point. In both sexes the elastic modulus of medial condylar cartilage was decreased in WT mice but not Phlpp1-/- mice after DMM as measured by AFM. By 6-weeks, cartilage modulus had decreased from 2 MPa to 1 MPa in WT mice. Phlpp1-/- mice showed no change in modulus at 6-weeks and only a 25% decrease at 12-weeks. The PHLPP inhibitor NSC117079 protected cartilage structure and prevented signs of OA 6-weeks post-injury. CONCLUSIONS AFM is a sensitive method for detecting early changes in articular cartilage post-injury. Phlpp1 suppression, either through genetic deletion or pharmacological inhibition, protects cartilage degradation in a model of PTOA, validating Phlpp1 as a therapeutic target for PTOA.
Collapse
Affiliation(s)
- Katherine M Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | | | - Elizabeth L Zars
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Petrovic M, Kahle ER, Han L, Marcolongo MS. Biomimetic proteoglycans as a tool to engineer the structure and mechanics of porcine bioprosthetic heart valves. J Biomed Mater Res B Appl Biomater 2024; 112:e35336. [PMID: 37818847 PMCID: PMC11055403 DOI: 10.1002/jbm.b.35336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
The utility of bioprosthetic heart valves (BHVs) is limited to certain patient populations because of their poor durability compared to mechanical prosthetic valves. Histological analysis of failed porcine BHVs suggests that degeneration of the tissue extracellular matrix (ECM), specifically the loss of proteoglycans and their glycosaminoglycans (GAGs), may lead to impaired mechanical performance, resulting in nucleation and propagation of tears and ultimately failure of the prosthetic. Several strategies have been proposed to address this deterioration, including novel chemical fixatives to stabilize ECM constituents and incorporation of small molecule inhibitors of catabolic enzymes implicated in the degeneration of the BHV ECM. Here, biomimetic proteoglycans (BPGs) were introduced into porcine aortic valves ex vivo and were shown to distribute throughout the valve leaflets. Incorporation of BPGs into the heart valve leaflet increased tissue overall GAG content. The presence of BPGs also significantly increased the micromodulus of the spongiosa layer within the BHV without compromising the chemical fixation process used to sterilize and strengthen the tissue prior to implantation. These findings suggest that a targeted approach for molecularly engineering valve leaflet ECM through the use of BPGs may be a viable way to improve the mechanical behavior and potential durability of BHVs.
Collapse
Affiliation(s)
- Mark Petrovic
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Elizabeth R. Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michele S. Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
3
|
Kwok B, Chandrasekaran P, Wang C, He L, Mauck RL, Dyment NA, Koyama E, Han L. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus. Acta Biomater 2023; 168:235-251. [PMID: 37414114 PMCID: PMC10529006 DOI: 10.1016/j.actbio.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Understanding early patterning events in the extracellular matrix (ECM) formation can provide a blueprint for regenerative strategies to better recapitulate the function of native tissues. Currently, there is little knowledge on the initial, incipient ECM of articular cartilage and meniscus, two load-bearing counterparts of the knee joint. This study elucidated distinctive traits of their developing ECMs by studying the composition and biomechanics of these two tissues in mice from mid-gestation (embryonic day 15.5) to neo-natal (post-natal day 7) stages. We show that articular cartilage initiates with the formation of a pericellular matrix (PCM)-like primitive matrix, followed by the separation into distinct PCM and territorial/interterritorial (T/IT)-ECM domains, and then, further expansion of the T/IT-ECM through maturity. In this process, the primitive matrix undergoes a rapid, exponential stiffening, with a daily modulus increase rate of 35.7% [31.9 39.6]% (mean [95% CI]). Meanwhile, the matrix becomes more heterogeneous in the spatial distribution of properties, with concurrent exponential increases in the standard deviation of micromodulus and the slope correlating local micromodulus with the distance from cell surface. In comparison to articular cartilage, the primitive matrix of meniscus also exhibits exponential stiffening and an increase in heterogeneity, albeit with a much slower daily stiffening rate of 19.8% [14.9 24.9]% and a delayed separation of PCM and T/IT-ECM. These contrasts underscore distinct development paths of hyaline versus fibrocartilage. Collectively, these findings provide new insights into how knee joint tissues form to better guide cell- and biomaterial-based repair of articular cartilage, meniscus and potentially other load-bearing cartilaginous tissues. STATEMENT OF SIGNIFICANCE: Successful regeneration of articular cartilage and meniscus is challenged by incomplete knowledge of early events that drive the initial formation of the tissues' extracellular matrix in vivo. This study shows that articular cartilage initiates with a pericellular matrix (PCM)-like primitive matrix during embryonic development. This primitive matrix then separates into distinct PCM and territorial/interterritorial domains, undergoes an exponential daily stiffening of ≈36% and an increase in micromechanical heterogeneity. At this early stage, the meniscus primitive matrix shows differential molecular traits and exhibits a slower daily stiffening of ≈20%, underscoring distinct matrix development between these two tissues. Our findings thus establish a new blueprint to guide the design of regenerative strategies to recapitulate the key developmental steps in vivo.
Collapse
Affiliation(s)
- Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Lan He
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
4
|
Arnold KM, Sicard D, Tschumperlin DJ, Westendorf JJ. Atomic Force Microscopy Micro-Indentation Methods for Determining the Elastic Modulus of Murine Articular Cartilage. SENSORS (BASEL, SWITZERLAND) 2023; 23:1835. [PMID: 36850434 PMCID: PMC9967621 DOI: 10.3390/s23041835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.
Collapse
Affiliation(s)
- Katherine M. Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Orton K, Batchelor W, Ziebarth NM, Best TM, Travascio F, Jackson AR. Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy. PLoS One 2023; 18:e0280616. [PMID: 36662701 PMCID: PMC9858324 DOI: 10.1371/journal.pone.0280616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
The meniscus is a fibrocartilaginous tissue that plays an essential role in load transmission, lubrication, and stabilization of the knee. Loss of meniscus function, through degeneration or trauma, can lead to osteoarthritis in the underlying articular cartilage. To perform its crucial function, the meniscus extracellular matrix has a particular organization, including collagen fiber bundles running circumferentially, allowing the tissue to withstand tensile hoop stresses developed during axial loading. Given its critical role in preserving the health of the knee, better understanding structure-function relations of the biomechanical properties of the meniscus is critical. The main objective of this study was to measure the compressive modulus of porcine meniscus using Atomic Force Microscopy (AFM); the effects of three key factors were investigated: direction (axial, circumferential), compartment (medial, lateral) and region (inner, outer). Porcine menisci were prepared in 8 groups (= 2 directions x 2 compartments x 2 regions) with n = 9 per group. A custom AFM was used to obtain force-indentation curves, which were then curve-fit with the Hertz model to determine the tissue's compressive modulus. The compressive modulus ranged from 0.75 to 4.00 MPa across the 8 groups, with an averaged value of 2.04±0.86MPa. Only direction had a significant effect on meniscus compressive modulus (circumferential > axial, p = 0.024), in agreement with earlier studies demonstrating that mechanical properties in the tissue are anisotropic. This behavior is likely the result of the particular collagen fiber arrangement in the tissue and plays a key role in load transmission capability. This study provides important information on the micromechanical properties of the meniscus, which is crucial for understanding tissue pathophysiology, as well as for developing novel treatments for tissue repair.
Collapse
Affiliation(s)
- Kevin Orton
- Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Wyndham Batchelor
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Noel M. Ziebarth
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Thomas M. Best
- Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
- Department of Orthopedics, University of Miami Sports Medicine Institute, Coral Gables, Florida, United States of America
| | - Francesco Travascio
- Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, Florida, United States of America
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
6
|
Iijima H, Gilmer G, Wang K, Bean AC, He Y, Lin H, Tang WY, Lamont D, Tai C, Ito A, Jones JJ, Evans C, Ambrosio F. Age-related matrix stiffening epigenetically regulates α-Klotho expression and compromises chondrocyte integrity. Nat Commun 2023; 14:18. [PMID: 36627269 PMCID: PMC9832042 DOI: 10.1038/s41467-022-35359-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
Extracellular matrix stiffening is a quintessential feature of cartilage aging, a leading cause of knee osteoarthritis. Yet, the downstream molecular and cellular consequences of age-related biophysical alterations are poorly understood. Here, we show that epigenetic regulation of α-Klotho represents a novel mechanosensitive mechanism by which the aged extracellular matrix influences chondrocyte physiology. Using mass spectrometry proteomics followed by a series of genetic and pharmacological manipulations, we discovered that increased matrix stiffness drove Klotho promoter methylation, downregulated Klotho gene expression, and accelerated chondrocyte senescence in vitro. In contrast, exposing aged chondrocytes to a soft matrix restored a more youthful phenotype in vitro and enhanced cartilage integrity in vivo. Our findings demonstrate that age-related alterations in extracellular matrix biophysical properties initiate pathogenic mechanotransductive signaling that promotes Klotho promoter methylation and compromises cellular health. These findings are likely to have broad implications even beyond cartilage for the field of aging research.
Collapse
Affiliation(s)
- Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Gabrielle Gilmer
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Daniel Lamont
- Petersen Institute of Nanoscience and Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chia Tai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jeffrey J Jones
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Christopher Evans
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA.
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
8
|
Atomic force microscopy (AFM) and its applications to bone-related research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:52-66. [DOI: 10.1016/j.pbiomolbio.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
9
|
Tsinman TK, Jiang X, Han L, Koyama E, Mauck RL, Dyment NA. Intrinsic and growth-mediated cell and matrix specialization during murine meniscus tissue assembly. FASEB J 2021; 35:e21779. [PMID: 34314047 DOI: 10.1096/fj.202100499r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022]
Abstract
The incredible mechanical strength and durability of mature fibrous tissues and their extremely limited turnover and regenerative capacity underscores the importance of proper matrix assembly during early postnatal growth. In tissues with composite extracellular matrix (ECM) structures, such as the adult knee meniscus, fibrous (Collagen-I rich), and cartilaginous (Collagen-II, proteoglycan-rich) matrix components are regionally segregated to the outer and inner portions of the tissue, respectively. While this spatial variation in composition is appreciated to be functionally important for resisting complex mechanical loads associated with gait, the establishment of these specialized zones is poorly understood. To address this issue, the following study tracked the growth of the murine meniscus from its embryonic formation through its first month of growth, encompassing the critical time-window during which animals begin to ambulate and weight bear. Using histological analysis, region specific high-throughput qPCR, and Col-1, and Col-2 fluorescent reporter mice, we found that matrix and cellular features defining specific tissue zones were already present at birth, before continuous weight-bearing had occurred. These differences in meniscus zones were further refined with postnatal growth and maturation, resulting in specialization of mature tissue regions. Taken together, this work establishes a detailed timeline of the concurrent spatiotemporal changes that occur at both the cellular and matrix level throughout meniscus maturation. The findings of this study provide a framework for investigating the reciprocal feedback between cells and their evolving microenvironments during assembly of a mechanically robust fibrocartilage tissue, thus providing insight into mechanisms of tissue degeneration and effective regenerative strategies.
Collapse
Affiliation(s)
- Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eiki Koyama
- Division of Orthopaedic Surgery, Department of Surgery, Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Cosgrove BD, Loebel C, Driscoll TP, Tsinman TK, Dai EN, Heo SJ, Dyment NA, Burdick JA, Mauck RL. Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials 2021; 270:120662. [PMID: 33540172 PMCID: PMC7936657 DOI: 10.1016/j.biomaterials.2021.120662] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/24/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Exogenous mechanical cues are transmitted from the extracellular matrix to the nuclear envelope (NE), where mechanical stress on the NE mediates shuttling of transcription factors and other signaling cascades that dictate downstream cellular behavior and fate decisions. To systematically study how nuclear morphology can change across various physiologic microenvironmental contexts, we cultured mesenchymal progenitor cells (MSCs) in engineered 2D and 3D hyaluronic acid hydrogel systems. Across multiple contexts we observed highly 'wrinkled' nuclear envelopes, and subsequently developed a quantitative single-cell imaging metric to better evaluate how wrinkles in the nuclear envelope relate to progenitor cell mechanotransduction. We determined that in soft 2D environments the NE is predominately wrinkled, and that increases in cellular mechanosensing (indicated by cellular spreading, adhesion complex growth, and nuclear localization of YAP/TAZ) occurred only in absence of nuclear envelope wrinkling. Conversely, in 3D hydrogel and tissue contexts, we found NE wrinkling occurred along with increased YAP/TAZ nuclear localization. We further determined that these NE wrinkles in 3D were largely generated by actin impingement, and compared to other nuclear morphometrics, the degree of nuclear wrinkling showed the greatest correlation with nuclear YAP/TAZ localization. These findings suggest that the degree of nuclear envelope wrinkling can predict mechanotransduction state in mesenchymal progenitor cells and highlights the differential mechanisms of NE stress generation operative in 2D and 3D microenvironmental contexts.
Collapse
Affiliation(s)
- Brian D Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Tristan P Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Eric N Dai
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania Philadelphia, PA, 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Collins AT, Hu G, Newman H, Reinsvold MH, Goldsmith MR, Twomey-Kozak JN, Leddy HA, Sharma D, Shen L, DeFrate LE, Karner CM. Obesity alters the collagen organization and mechanical properties of murine cartilage. Sci Rep 2021; 11:1626. [PMID: 33452305 PMCID: PMC7810701 DOI: 10.1038/s41598-020-80599-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is a debilitating disease characterized by cartilage degradation and altered cartilage mechanical properties. Furthermore, it is well established that obesity is a primary risk factor for osteoarthritis. The purpose of this study was to investigate the influence of obesity on the mechanical properties of murine knee cartilage. Two-month old wild type mice were fed either a normal diet or a high fat diet for 16 weeks. Atomic force microscopy-based nanoindentation was used to quantify the effective indentation modulus of medial femoral condyle cartilage. Osteoarthritis progression was graded using the OARSI system. Additionally, collagen organization was evaluated with picrosirius red staining imaged using polarized light microscopy. Significant differences between diet groups were assessed using t tests with p < 0.05. Following 16 weeks of a high fat diet, no significant differences in OARSI scoring were detected. However, we detected a significant difference in the effective indentation modulus between diet groups. The reduction in cartilage stiffness is likely the result of disrupted collagen organization in the superficial zone, as indicated by altered birefringence on polarized light microscopy. Collectively, these results suggest obesity is associated with changes in knee cartilage mechanical properties, which may be an early indicator of disease progression.
Collapse
Affiliation(s)
- Amber T Collins
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Guoli Hu
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Hunter Newman
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Michael H Reinsvold
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Monique R Goldsmith
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - John N Twomey-Kozak
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Holly A Leddy
- Shared Materials Instrumentation Facility, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA.
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA.
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
12
|
Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches. Biomech Model Mechanobiol 2020; 19:1979-1996. [PMID: 32572727 DOI: 10.1007/s10237-020-01352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Menisci are fibrocartilaginous disks consisting of soft tissue with a complex biomechanical structure. They are critical determinants of the kinematics as well as the stability of the knee joint. Several studies have been carried out to formulate tissue mechanical behavior, leading to the development of a wide spectrum of constitutive laws. In addition to developing analytical tools, extensive numerical studies have been conducted on menisci modeling. This study reviews the developments of the most widely used continuum models of the meniscus mechanical properties in conjunction with emerging analytical and numerical models used to study the meniscus. The review presents relevant approaches and assumptions used to develop the models and includes discussions regarding strengths, weaknesses, and discrepancies involved in the presented models. The study presents a comprehensive coverage of relevant publications included in Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, Springer, and Scopus databases. This review aims at opening novel avenues for improving menisci modeling within the framework of constitutive modeling through highlighting the needs for further research directed toward determining key factors in gaining insight into the biomechanics of menisci which is crucial for the elaborate design of meniscal replacements.
Collapse
|
13
|
Ihnatouski M, Pauk J, Karev D, Karev B. AFM-Based Method for Measurement of Normal and Osteoarthritic Human Articular Cartilage Surface Roughness. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2302. [PMID: 32429426 PMCID: PMC7288191 DOI: 10.3390/ma13102302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
Abstract
In osteoarthrosis, pathological features of articular cartilage are associated with degeneration and nanomechanical changes. The aim of this paper is to show that indentation-atomic force microscopy can monitor wear-related biomechanical changes in the hip joint of patients with osteoarthritis. Fifty patients (N = 50), aged 40 to 65, were included in the study. The mechanical properties and the submicron surface morphology of hyaline cartilage were investigated using atomic force microscopy. Measurements of the roughness parameters of cartilage surfaces were performed, including the arithmetic average of absolute values (Ra), the maximum peak height (Rp), and the mean spacing between local peaks (S). The arithmetic mean of the absolute values of the height of healthy cartilage was 86 nm, while wear began at Ra = 73 nm. The maximum changes of values of the roughness parameters differed from the healthy ones by 71%, 80%, and 51% for Ra, Rp, and S, respectively. Young's modulus for healthy cartilage surfaces ranged from 1.7 to 0.5 MPa. For the three stages of cartilage wear, Young's modulus increased, and then it approached the maximum value and decreased. AFM seems to be a powerful tool for surface analysis of biological samples as it enables indentation measurements in addition to imaging.
Collapse
Affiliation(s)
- Mikhail Ihnatouski
- Scientific and Research Department, Yanka Kupala State University of Grodno, Grodno, Ozheshko str., 22, 230023 Grodno, Belarus;
| | - Jolanta Pauk
- Biomedical Engineering Institute, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
| | - Dmitrij Karev
- Department of Traumatology, Orthopedics and Field Surgery, Grodno State Medical University, Gorkogo str. 80, 230009 Grodno, Belarus;
| | - Boris Karev
- Department of Orthopedic and Traumatology, Grodno City Emergency Hospital, Sovietskih Pogranichnikov str., 115, 230027 Grodno, Belarus;
| |
Collapse
|
14
|
Early degeneration of the meniscus revealed by microbiomechanical alteration in a rabbit anterior cruciate ligament transection model. J Orthop Translat 2020; 21:146-152. [PMID: 32309140 PMCID: PMC7152828 DOI: 10.1016/j.jot.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background The microbiomechanical properties of the meniscus influence the cell response to the surrounding biomechanical environment and are beneficial to understand meniscus repairing and healing. To date, however, this information remains ambiguous. This study aims to characterise the microbiomechanical properties of the meniscus after degeneration in a rabbit anterior cruciate ligament transection (ACLT) model and to analyse the corresponding histology at the macroscale and chemical composition. Methods Twenty New Zealand white rabbits were used. Menisci were collected from the knee joints 4 and 8 weeks after the ACLT and from those of the corresponding control groups. The central portions of both medial and lateral menisci were investigated using atomic force microscopy, histological study, and an energy-dispersive spectrometer. The evaluation was conducted regionally within the inner, middle, and outer sites from the top layer (facing the femoral surface) to the bottom layer (facing the tibial surface) in both the lateral and medial menisci to obtain the site-dependent properties. Results At 4 weeks after surgery, the dynamic elastic modulus at the microlevel increased significantly at both the top and bottom layers compared with the intact meniscus (P = 0.021). At 8 weeks after surgery, the stiffening occurred in all regions (P = 0.030). The medial meniscus showed greater change than the lateral meniscus. All these microbiomechanical alterations occurred before the histological findings at the macroscale. Conclusion The microbiomechanical properties in the meniscus changed significantly after ACLT and were site dependent. Their alterations occurred before the histological changes of degeneration were observed. The Translational Potential of this Article The results of our study indicated that degeneration promoted meniscus stiffening. Thus, they provide a better understanding of the disease process affecting the meniscus. Our results might be beneficial to understand how mechanical forces distribute throughout the healthy and pathologic joint. They indicate the possibility of early diagnosis using a minimally invasive arthroscopic tool, as well as they might guide treatment to the healthy and pathologic meniscus and joint.
Collapse
|
15
|
Huebner P, Warren PB, Chester D, Spang JT, Brown AC, Fisher MB, Shirwaiker RA. Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment. Connect Tissue Res 2020; 61:190-204. [PMID: 31345062 DOI: 10.1080/03008207.2019.1624733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Musculoskeletal soft tissues possess highly aligned extracellular collagenous networks that provide structure and strength. Such an organization dictates tissue-specific mechanical properties but can be difficult to replicate by engineered biological substitutes. Nanofibrous electrospun scaffolds have demonstrated the ability to control cell-secreted collagen alignment, but concerns exist regarding their scalability for larger and anatomically relevant applications. Additive manufacturing processes, such as melt extrusion-based 3D-Bioplotting, allow fabrication of structurally relevant scaffolds featuring highly controllable porous microarchitectures.Materials and Methods: In this study, we investigate the effects of 3D-bioplotted scaffold design on the compressive elastic modulus of neotissue formed in vivo in a subcutaneous rat model and its correlation with the alignment of ECM collagen fibers. Polycaprolactone scaffolds featuring either 100 or 400 µm interstrand spacing were implanted for 4 or 12 weeks, harvested, cryosectioned, and characterized using atomic-force-microscopy-based force mapping.Results: The compressive elastic modulus of the neotissue formed within the 100 µm design was significantly higher at 4 weeks (p < 0.05), but no differences were observed at 12 weeks. In general, the tissue stiffness was within the same order of magnitude and range of values measured in native musculoskeletal soft tissues including the porcine meniscus and anterior cruciate ligament. Finally, a significant positive correlation was noted between tissue stiffness and the degree of ECM collagen fiber alignment (p < 0.05) resulting from contact guidance provided by scaffold strands.Conclusion: These findings demonstrate the significant effects of 3D-bioplotted scaffold microarchitectures in the organization and sub-tissue-level mechanical properties of ECM in vivo.
Collapse
Affiliation(s)
- Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Paul B Warren
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Daniel Chester
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley C Brown
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Matthew B Fisher
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
16
|
Liao L, Zhang S, Zhao L, Chang X, Han L, Huang J, Chen D. Acute Synovitis after Trauma Precedes and is Associated with Osteoarthritis Onset and Progression. Int J Biol Sci 2020; 16:970-980. [PMID: 32140066 PMCID: PMC7053339 DOI: 10.7150/ijbs.39015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a whole-joint disease characterized by cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovitis. However, it remains unclear which part of the joint undergoes initial pathological changes that drives OA onset and progression. In the present study, we investigated the longitudinal alterations of the entire knee joint using a surgically-induced OA mouse model. Histology analysis showed that synovitis occurred as early as 1 week after destabilization of the medial meniscus (DMM), which preceded the events of cartilage degradation, subchondral sclerosis and osteophyte formation. Importantly, key pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and Ccl2, major matrix degrading enzymes including Adamts4, Mmp3 and Mmp13, as well as nerve growth factor (NGF), all increased significantly in both synovium and articular cartilage. It is notable that the inductions of these factors in synovium are far more extensive than those in articular cartilage. Results from behavioral tests demonstrated that sensitization of knee joint pain developed after 8 weeks, later than histological and molecular changes. In addition, the nanoindentation modulus of the medial tibiae decreased 4 weeks after DMM surgery, simultaneous with histological OA signs, which is also later than appearance of synovitis. Collectively, our data suggested that synovitis precedes and is associated with OA, and thus synovium may be an important target to intervene in OA treatment.
Collapse
Affiliation(s)
- Lifan Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Shanxing Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiaofeng Chang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
Wang C, Brisson BK, Terajima M, Li Q, Hoxha K, Han B, Goldberg AM, Sherry Liu X, Marcolongo MS, Enomoto-Iwamoto M, Yamauchi M, Volk SW, Han L. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol 2019; 85-86:47-67. [PMID: 31655293 DOI: 10.1016/j.matbio.2019.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/- mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.
Collapse
Affiliation(s)
- Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Kevt'her Hoxha
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Abby M Goldberg
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Michele S Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States.
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, Liu XS, Lu XL, Enomoto-Iwamoto M, Qin L, Mauck RL, Iozzo RV, Birk DE, Han L. Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix. ACS NANO 2019; 13:11320-11333. [PMID: 31550133 PMCID: PMC6892632 DOI: 10.1021/acsnano.9b04477] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Joint biomechanical functions rely on the integrity of cartilage extracellular matrix. Understanding the molecular activities that govern cartilage matrix assembly is critical for developing effective cartilage regeneration strategies. This study elucidated the role of decorin, a small leucine-rich proteoglycan, in the structure and biomechanical functions of cartilage. In decorin-null cartilage, we discovered a substantial reduction of aggrecan content, the major proteoglycan of cartilage matrix, and mild changes in collagen fibril nanostructure. This loss of aggrecan resulted in significantly impaired biomechanical properties of cartilage, including decreased modulus, elevated hydraulic permeability, and reduced energy dissipation capabilities. At the cellular level, we found that decorin functions to increase the retention of aggrecan in the neo-matrix of chondrocytes, rather than to directly influence the biosynthesis of aggrecan. At the molecular level, we demonstrated that decorin significantly increases the adhesion between aggrecan and aggrecan molecules and between aggrecan molecules and collagen II fibrils. We hypothesize that decorin plays a crucial structural role in mediating the matrix integrity and biomechanical functions of cartilage by providing physical linkages to increase the adhesion and assembly of aggrecan molecules at the nanoscale.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Pavan Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Sheila M. Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ramin Oftadeh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Christopher Y. Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - X. Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Taylor V, Hicks J, Ferguson C, Willey J, Danelson K. Effects of tissue culture on the biomechanical properties of porcine meniscus explants. Clin Biomech (Bristol, Avon) 2019; 69:120-126. [PMID: 31330461 PMCID: PMC7303885 DOI: 10.1016/j.clinbiomech.2019.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The meniscus is critical for the normal functioning of the knee joint. The specific aim of this study was to validate an in vitro culture model of meniscus explants for testing the impact of culture conditions on meniscus biomechanical properties. We hypothesized that culturing menisci in the presence of intermediate and high concentration of serum would have a positive effect on the compressive stiffness of the meniscus. METHODS Unconstrained microindentation testing was performed on porcine meniscus explants cultured with varying concentrations 1%, 5%, or 10% of fetal bovine serum media. Meniscus explants that were not cultured were used as a control. These tests quantified the Young's Modulus of the listed groups of cultured and uncultured explant tissues. FINDINGS The Young's modulus for 10% cultured explants were significantly higher compared to the control, 1%, and 5% cultured meniscus explants. There was no statistical significance when the Young's modulus between control, 1%, and 5% cultured explants were compared. INTERPRETATION These results suggest that low concentrations of serum do not impart an anabolic effect on meniscus tissue explant biomechanical properties.
Collapse
Affiliation(s)
- Victor Taylor
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, D.C. 20052
| | - Justin Hicks
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157,Department of Orthopaedic Surgery, Washington University, 660 S Euclid, St. Louis, MO 63110
| | - Cristin Ferguson
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Jeffrey Willey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157,Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, WinstonSalem, NC 27157
| | - Kerry Danelson
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| |
Collapse
|
20
|
Gamer LW, Pregizer S, Gamer J, Feigenson M, Ionescu A, Li Q, Han L, Rosen V. The Role of Bmp2 in the Maturation and Maintenance of the Murine Knee Joint. J Bone Miner Res 2018; 33:1708-1717. [PMID: 29665134 DOI: 10.1002/jbmr.3441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key regulators of skeletal development, growth, and repair. Although BMP signaling is required for synovial joint formation and is also involved in preserving joint function after birth, the role of specific BMP ligands in adult joint homeostasis remains unclear. The purpose of this study was to define the role of Bmp2 in the morphogenesis and maintenance of the knee joint. To do this, we first created Bmp2-LacZ and Gdf5-LacZ knock-in mice and compared their expression patterns in the developing and postnatal murine knee joint. We then generated a knockout mouse model using the Gdf5-cre transgene to specifically delete Bmp2 within synovial joint-forming cells. Joint formation, maturation, and homeostasis were analyzed using histology, immunohistochemistry, qRT-PCR, and atomic force microscopy (AFM)-based nanoindentation to assess the cellular, molecular, and biomechanical changes in meniscus and articular cartilage. Bmp2 is expressed in the articular cartilage and meniscus of the embryonic and adult mouse knee in a pattern distinct from Gdf5. The knee joints of the Bmp2 knockout mice form normally but fail to mature properly. In the absence of Bmp2, the extracellular matrix and shape of the meniscus are altered, resulting in functional deficits in the meniscus and articular cartilage that lead to a progressive osteoarthritis (OA) like knee pathology as the animals age. These findings demonstrate that BMP activity provided by Bmp2 is required for the maturation and maintenance of the murine knee joint and reveal a unique role for Bmp2 that is distinct from Gdf5 in knee joint biology. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Steven Pregizer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Jackson Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Andreia Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Shu CC, Smith MM, Appleyard RC, Little CB, Melrose J. Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice. PeerJ 2018; 6:e5120. [PMID: 30042881 PMCID: PMC6056265 DOI: 10.7717/peerj.5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to determine the role of the perlecan (Hspg2) heparan sulphate (HS) side chains on cell and matrix homeostasis in tail and Achilles tendons in 3 and 12 week old Hspg2 exon 3 null HS deficient (Hspg2Δ3 − ∕Δ3 −) and C57 BL/6 Wild Type (WT) mice. Perlecan has important cell regulatory and matrix organizational properties through HS mediated interactions with a range of growth factors and morphogens and with structural extracellular matrix glycoproteins which define tissue function and allow the resident cells to regulate tissue homeostasis. It was expected that ablation of the HS chains on perlecan would severely disrupt normal tendon organization and functional properties and it was envisaged that this study would better define the role of HS in normal tendon function and in tendon repair processes. Tail and Achilles tendons from each genotype were biomechanically tested (ultimate tensile stress (UTS), tensile modulus (TM)) and glycosaminoglycan (GAG) and collagen (hydroxyproline) compositional analyses were undertaken. Tenocytes were isolated from tail tendons from each mouse genotype and grown in monolayer culture. These cultures were undertaken in the presence of FGF-2 to assess the cell signaling properties of each genotype. Total RNA was isolated from 3–12 week old tail and Achilles tendons and qRT-PCR was undertaken to assess the expression of the following genes Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1. Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils were imaged using transmission electron microscopy (TEM). FGF-2 stimulated tenocyte monolayers displayed elevated Adamts4, Mmp2, 3, 13 mRNA levels compared to WT mice. Non-stimulated tendon Col1A1, Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1 mRNA levels showed no major differences between the two genotypes other than a decline with ageing while LTBP2 expression increased. Eln expression also declined to a greater extent in the perlecan exon 3 null mice (P < 0.05). Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils imaged using transmission electron microscopy (TEM). This indicated a more compact form of collagen localization in the perlecan exon 3 null mice. Collagen fibrils were also smaller by TEM, which may facilitate a more condensed fibril packing accounting for the superior UTS displayed by the perlecan exon 3 null mice. The amplified catabolic phenotype of Hspg2Δ3 − ∕Δ3 − mice may account for the age-dependent decline in GAG observed in tail tendon over 3 to 12 weeks. After Achilles tenotomy Hspg2Δ3 − ∕Δ3 − and WT mice had similar rates of recovery of UTS and TM over 12 weeks post operatively indicating that a deficiency of HS was not detrimental to tendon repair.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia
| | - Richard C Appleyard
- Murray Maxwell Biomechanics Laboratory, Royal North Shore Hospital, University of Sydney, St. Leonards, New South Wales, Australia.,Surgical Skills Laboratory, Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia.,Sydney Medical School, Northern, University of Sydney, Sydney, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia.,Sydney Medical School, Northern, University of Sydney, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Li Q, Wang C, Han B, Qu F, Qi H, Li CY, Mauck RL, Han L. Impacts of maturation on the micromechanics of the meniscus extracellular matrix. J Biomech 2018; 72:252-257. [PMID: 29555076 DOI: 10.1016/j.jbiomech.2018.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 02/07/2023]
Abstract
To elucidate how maturation impacts the structure and mechanics of meniscus extracellular matrix (ECM) at the length scale of collagen fibrils and fibers, we tested the micromechanical properties of fetal and adult bovine menisci via atomic force microscopy (AFM)-nanoindentation. For circumferential fibers, we detected significant increase in the effective indentation modulus, Eind, with age. Such impact is in agreement with the increase in collagen fibril diameter and alignment during maturation, and is more pronounced in the outer zone, where collagen fibrils are more aligned and packed. Meanwhile, maturation also markedly increases the Eind of radial tie fibers, but not those of intact surface or superficial layer. These results provide new insights into the effect of maturation on the assembly of meniscus ECM, and enable the design of new meniscus repair strategies by modulating local ECM structure and mechanical behaviors.
Collapse
Affiliation(s)
- Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Feini Qu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Hao Qi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
23
|
Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues. Sci Rep 2018; 8:3295. [PMID: 29459687 PMCID: PMC5818574 DOI: 10.1038/s41598-018-21212-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.
Collapse
|
24
|
Han B, Nia HT, Wang C, Chandrasekaran P, Li Q, Chery DR, Li H, Grodzinsky AJ, Han L. AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2033-2049. [PMID: 31423463 PMCID: PMC6697429 DOI: 10.1021/acsbiomaterials.7b00307] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our objective is to provide an in-depth review of the recent technical advances of atomic force microscopy (AFM)-based nanomechanical tests and their contribution to a better understanding and diagnosis of osteoarthritis (OA), as well as the repair of tissues undergoing degeneration during OA progression. We first summarize a range of technical approaches for AFM-based nanoindentation, including considerations in both experimental design and data analysis. We then provide a more detailed description of two recently developed modes of AFM-nanoindentation, a high-bandwidth nanorheometer system for studying poroviscoelasticity and an immunofluorescence-guided nanomechanical mapping technique for delineating the pericellular matrix (PCM) and territorial/interterritorial matrix (T/IT-ECM) of surrounding cells in connective tissues. Next, we summarize recent applications of these approaches to three aspects of joint-related healthcare and disease: cartilage aging and OA, developmental biology and OA pathogenesis in murine models, and nanomechanics of the meniscus. These studies were performed over a hierarchy of length scales, from the molecular, cellular to the whole tissue level. The advances described here have contributed greatly to advancing the fundamental knowledge base for improved understanding, detection, and treatment of OA.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Radiation Oncology, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Daphney R. Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Li
- College of Architecture and the Built Environment, Philadelphia University, Philadelphia, Pennsylvania 19144, United States
| | - Alan J. Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Biomechanical properties of murine TMJ articular disc and condyle cartilage via AFM-nanoindentation. J Biomech 2017; 60:134-141. [PMID: 28688538 DOI: 10.1016/j.jbiomech.2017.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022]
Abstract
This study aims to quantify the biomechanical properties of murine temporomandibular joint (TMJ) articular disc and condyle cartilage using AFM-nanoindentation. For skeletally mature, 3-month old mice, the surface of condyle cartilage was found to be significantly stiffer (306±84kPa, mean±95% CI) than those of the superior (85±23kPa) and inferior (45±12kPa) sides of the articular disc. On the disc surface, significant heterogeneity was also detected across multiple anatomical sites, with the posterior end being the stiffest and central region being the softest. Using SEM, this study also found that the surfaces of disc are composed of anteroposteriorly oriented collagen fibers, which are sporadically covered by thinner random fibrils. Such fibrous nature results in both an F-D3/2 indentation response, which is a typical Hertzian response for soft continuum tissue under a spherical tip, and a linear F-D response, which is typical for fibrous tissues, further signifying the high degree of tissue heterogeneity. In comparison, the surface of condyle cartilage is dominated by thinner, randomly oriented collagen fibrils, leading to Hertzian-dominated indentation responses. As the first biomechanical study of murine TMJ, this work will provide a basis for future investigations of TMJ tissue development and osteoarthritis in various murine TMJ models.
Collapse
|
26
|
|
27
|
Li Q, Qu F, Han B, Wang C, Li H, Mauck RL, Han L. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix. Acta Biomater 2017; 54:356-366. [PMID: 28242455 PMCID: PMC5413404 DOI: 10.1016/j.actbio.2017.02.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
To understand how the complex biomechanical functions of the meniscus are endowed by the nanostructure of its extracellular matrix (ECM), we studied the anisotropy and heterogeneity in the micromechanical properties of the meniscus ECM. We used atomic force microscopy (AFM) to quantify the time-dependent mechanical properties of juvenile bovine meniscus at deformation length scales corresponding to the diameters of collagen fibrils. At this scale, anisotropy in the elastic modulus of the circumferential fibers, the major ECM structural unit, can be attributed to differences in fibril deformation modes: uncrimping when normal to the fiber axis, and laterally constrained compression when parallel to the fiber axis. Heterogeneity among different structural units is mainly associated with their variations in microscale fiber orientation, while heterogeneity across anatomical zones is due to alterations in collagen fibril diameter and alignment at the nanoscale. Unlike the elastic modulus, the time-dependent properties are more homogeneous and isotropic throughout the ECM. These results enable a detailed understanding of the meniscus structure-mechanics at the nanoscale, and can serve as a benchmark for understanding meniscus biomechanical functions, documenting disease progression and designing tissue repair strategies. STATEMENT OF SIGNIFICANCE Meniscal damage is a common cause of joint injury, which can lead to the development of post-traumatic osteoarthritis among young adults. Restoration of meniscus function requires repairing its highly heterogeneous and complex extracellular matrix. Employing AFM, this study quantifies the anisotropic and heterogeneous features of the meniscus ECM structure and mechanics. The micromechanical properties are interpreted within the context of the collagen fibril nanostructure and its variation with tissue anatomical locations. These results provide a fundamental structure-mechanics knowledge benchmark, against which, repair and regeneration strategies can be developed and evaluated with respect to the specialized structural and functional complexity of the native tissue.
Collapse
Affiliation(s)
- Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Feini Qu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Hao Li
- College of Architecture and the Built Environment, Philadelphia University, Philadelphia, PA 19144, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
28
|
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5:16044. [PMID: 28149655 PMCID: PMC5240031 DOI: 10.1038/boneres.2016.44] [Citation(s) in RCA: 689] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.
Collapse
Affiliation(s)
- Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St Louis, MO, USA
| | - Weiwei Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
Gao S, Guo W, Chen M, Yuan Z, Wang M, Zhang Y, Liu S, Xi T, Guo Q. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. J Mater Chem B 2017; 5:2273-2285. [DOI: 10.1039/c6tb03299k] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decellularized meniscus extracellular matrix (DMECM) and polycaprolactone (PCL) were electrospun into nanofibers to make meniscus scaffolds with good mechanical properties.
Collapse
Affiliation(s)
- Shuang Gao
- Center for Biomedical Material and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Weimin Guo
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Mingxue Chen
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Zhiguo Yuan
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Mingjie Wang
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Yu Zhang
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Shuyun Liu
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| | - Tingfei Xi
- Center for Biomedical Material and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - Quanyi Guo
- Key Lab of Musculoskeletal Trauma & War Injuries
- PLA
- Beijing Key Lab of Regenerative Medicine in Orthopedics
- Chinese PLA General Hospital
- Beijing
| |
Collapse
|
30
|
Doyran B, Tong W, Li Q, Jia H, Zhang X, Chen C, Enomoto-Iwamoto M, Lu XL, Qin L, Han L. Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2017; 25:108-117. [PMID: 27568574 PMCID: PMC5182132 DOI: 10.1016/j.joca.2016.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aims to demonstrate that cartilage nanoindentation modulus is a highly sensitive indicator of the onset and spatiotemporal progression of post-traumatic osteoarthritis (PTOA) in murine models. DESIGN Destabilization of the medial meniscus (DMM) surgery was performed on the right knees of 12-week old male, wild-type C57BL/6 mice, with Sham control on contralateral left knees. Atomic force microscopy (AFM)-based nanoindentation was applied to quantify the nanoindentation modulus, Eind, of femoral condyle cartilage at 3 days to 12 weeks after surgery. The modulus changes were compared against the timeline of histological OA signs. Meanwhile, at 8 weeks after surgery, changes in meniscus, synovium and subchondral bone were evaluated to reveal the spatial progression of PTOA. RESULTS The modulus of medial condyle cartilage was significantly reduced at 1 week after DMM, preceding the histological OA signs, which only became detectable at 4-8 weeks after. This reduction is likely due to concomitantly elevated proteolytic activities, as blocking enzymatic activities in mice can attenuate this modulus reduction. In later OA, lateral condyle cartilage and medial meniscus also started to be weakened, illustrating the whole-organ nature of PTOA. CONCLUSIONS This study underscores the high sensitivity of nanoindentation in examining the initiation, attenuation and progression of PTOA in murine models. Meanwhile, modulus changes highlight concomitant changes in lateral cartilage and meniscus during the advancement of OA.
Collapse
Affiliation(s)
- B Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - W Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Q Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - H Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, School of Medicine, ShiHeZi University, ShiHeZi, Xinjiang 832000, PR China
| | - X Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - C Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - M Enomoto-Iwamoto
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - X L Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - L Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
31
|
Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage 2016; 24:27-35. [PMID: 26707990 PMCID: PMC4693146 DOI: 10.1016/j.joca.2015.08.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 02/02/2023]
Abstract
Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.
Collapse
|
32
|
Chen X, Zhou Y, Wang L, Santare MH, Wan LQ, Lu XL. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing. Ann Biomed Eng 2015; 44:1148-58. [PMID: 26240062 DOI: 10.1007/s10439-015-1402-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL 126, Newark, DE, 19716, USA
| | - Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL 126, Newark, DE, 19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL 126, Newark, DE, 19716, USA
| | - Michael H Santare
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL 126, Newark, DE, 19716, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street SPL 126, Newark, DE, 19716, USA.
| |
Collapse
|
33
|
|
34
|
Donahue T. WITHDRAWN: Meniscus mechanics and mechanobiology. J Biomech 2015:S0021-9290(15)00218-3. [PMID: 25936969 DOI: 10.1016/j.jbiomech.2015.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.jbiomech.2015.03.020. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Tammy Donahue
- School of Biomedical Engineering Mechanical Engineering, Building A106 Engineering, United States.
| |
Collapse
|