1
|
Shahbad R, Pipinos M, Jadidi M, Desyatova A, Gamache J, MacTaggart J, Kamenskiy A. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries. Ann Biomed Eng 2024; 52:794-815. [PMID: 38321357 PMCID: PMC11455778 DOI: 10.1007/s10439-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
The femoropopliteal artery (FPA) is the main artery in the lower limb. It supplies blood to the leg muscles and undergoes complex deformations during limb flexion. Atherosclerotic disease of the FPA (peripheral arterial disease, PAD) is a major public health burden, and despite advances in surgical and interventional therapies, the clinical outcomes of PAD repairs continue to be suboptimal, particularly in challenging calcified lesions and biomechanically active locations. A better understanding of human FPA mechanical and structural characteristics in relation to age, risk factors, and the severity of vascular disease can help develop more effective and longer-lasting treatments through computational modeling and device optimization. This review aims to summarize recent research on the main biomechanical and structural properties of human superficial femoral and popliteal arteries that comprise the FPA and describe their anatomy, composition, and mechanical behavior under different conditions.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Margarita Pipinos
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Anastasia Desyatova
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA.
| |
Collapse
|
2
|
Tornifoglio B, Johnston RD, Stone AJ, Kerskens C, Lally C. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability. Biomech Model Mechanobiol 2023; 22:1515-1530. [PMID: 36652053 PMCID: PMC10511397 DOI: 10.1007/s10237-022-01671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques' risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link-between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Medical Physics and Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Torun SG, Munoz PDM, Crielaard H, Verhagen HJM, Kremers GJ, van der Steen AFW, Akyildiz AC. Local Characterization of Collagen Architecture and Mechanical Failure Properties of Fibrous Plaque Tissue of Atherosclerotic Human Carotid Arteries. Acta Biomater 2023; 164:293-302. [PMID: 37086826 DOI: 10.1016/j.actbio.2023.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Atherosclerotic plaque rupture in carotid arteries is a major cause of cerebrovascular events. Plaque rupture is the mechanical failure of the heterogeneous fibrous plaque tissue. Local characterization of the tissue's failure properties and the collagen architecture are of great importance to have insights in plaque rupture for clinical event prevention. Previous studies were limited to average rupture properties and global structural characterization, and did not provide the necessary local information. In this study, we assessed the local collagen architecture and failure properties of fibrous plaque tissue, by analyzing 30 tissue strips from 18 carotid plaques. Our study framework entailed second harmonic generation imaging for local collagen orientation and dispersion, and uniaxial tensile testing and digital image correlation for local tissue mechanics. The results showed that 87% of the imaged locations had collagen orientation close to the circumferential direction (0°) of the artery, and substantial dispersion locally. All regions combined, median [Q1:Q3] of the predominant angle measurements was -2° [-16°:16°]. The stretch ratio measurements clearly demonstrated a nonuniform stretch ratio distribution in the tissue under uniaxial loading. The rupture initiation regions had significantly higher stretch ratios (1.26 [1.15-1.40]) than the tissue average stretch ratio (1.11 [1.10-1.16]). No significant difference in collagen direction and dispersion was identified between the rupture regions and the rest of the tissue. The presented study forms an initial step towards gaining better insights into the characterization of local structural and mechanical fingerprints of fibrous plaque tissue in order to aid improved assessment of plaque rupture risk. STATEMENT OF SIGNIFICANCE: Plaque rupture risk assessment, critical to prevent cardiovascular events, requires knowledge on local failure properties and structure of collagenous plaque tissue. Our current knowledge is unfortunately limited to tissue's overall ultimate failure properties with scarce information on collagen architecture. In this study, local failure properties and collagen architecture of fibrous plaque tissue were obtained. We found predominant circumferential alignment of collagen fibers with substantial local dispersion. The tissue showed nonuniform stretch distribution under uniaxial tensile loading, with high stretches at rupture spots. This study highlights the significance of local mechanical and structural assessment for better insights into plaque rupture and the potential use of local stretches as risk marker for plaque rupture for patient-specific clinical applications.
Collapse
Affiliation(s)
- Su Guvenir Torun
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pablo de Miguel Munoz
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hanneke Crielaard
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
4
|
Understanding Atherosclerosis Pathophysiology: Can Additive Manufacturing Be Helpful? Polymers (Basel) 2023; 15:polym15030480. [PMID: 36771780 PMCID: PMC9920326 DOI: 10.3390/polym15030480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. Although this subject arouses much interest, there are limitations associated with the biomechanical investigation done in atherosclerotic tissues, namely the unstandardized tests for the mechanical characterization of these tissues and the inherent non-consensual results obtained. The variability of tests and typologies of samples hampers direct comparisons between results and hinders the complete understanding of the pathologic process involved in atherosclerosis development and progression. Therefore, a consensual and definitive evaluation of the mechanical properties of healthy and atherosclerotic blood vessels would allow the production of physical biomodels that could be used for surgeons' training and personalized surgical planning. Additive manufacturing (AM), commonly known as 3D printing, has attracted significant attention due to the potential to fabricate biomodels rapidly. However, the existing literature regarding 3D-printed atherosclerotic vascular models is still very limited. Consequently, this review intends to present the atherosclerosis disease and the consequences of this pathology, discuss the mechanical characterization of atherosclerotic vessels/plaques, and introduce AM as a potential strategy to increase the understanding of atherosclerosis treatment and pathophysiology.
Collapse
|
5
|
Lisický O, Hrubanová A, Staffa R, Vlachovský R, Burša J. Constitutive models and failure properties of fibrous tissues of carotid artery atheroma based on their uniaxial testing. J Biomech 2021; 129:110861. [PMID: 34775341 DOI: 10.1016/j.jbiomech.2021.110861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
To obtain an experimental background for the description of mechanical properties of fibrous tissues of carotid atheroma, a cohort of 141 specimens harvested from 44 patients during endarterectomies, were tested. Uniaxial stress-strain curves and ultimate stress and strain at rupture were recorded. With this cohort, the impact of the direction of load, presence of calcifications, specimen location, patient's age and sex were investigated. A significant impact of sex was revealed for the stress-strain curves and ultimate strains. The response was significantly stiffer for females than for males but, in contrast to ultimate strain, the strength was not significantly different. The differences in strength between calcified and non-calcified atheromas have reached statistical significance in the female group. At most of the analysed stress levels, the loading direction was found significant for the male cohort which was also confirmed by large differences in ultimate strains. The representative uniaxial stress-strain curves (given by median values of strains at chosen stress levels) were fitted with an isotropic hyperelastic model for different groups specified by the investigated factors while the observed differences between circumferential and longitudinal direction were captured by an anisotropic hyperelastic model. The obtained results should be valid also for the tissue of the fibrous cap, the rupture of which is to be predicted in clinics using computational modelling because it may induce arterial thrombosis and consequently a brain stroke.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic.
| | - Anna Hrubanová
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| | - Robert Staffa
- 2(nd) Department of Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Vlachovský
- 2(nd) Department of Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| |
Collapse
|
6
|
Guvenir Torun S, Torun HM, Hansen HHG, de Korte CL, van der Steen AFW, Gijsen FJH, Akyildiz AC. Multicomponent material property characterization of atherosclerotic human carotid arteries through a Bayesian Optimization based inverse finite element approach. J Mech Behav Biomed Mater 2021; 126:104996. [PMID: 34864574 DOI: 10.1016/j.jmbbm.2021.104996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Plaque rupture in atherosclerotic carotid arteries is a main cause of ischemic stroke and it is correlated with high plaque stresses. Hence, analyzing stress patterns is essential for plaque specific rupture risk assessment. However, the critical information of the multicomponent material properties of atherosclerotic carotid arteries is still lacking greatly. This work aims to characterize component-wise material properties of atherosclerotic human carotid arteries under (almost) physiological loading conditions. METHODS An inverse finite element modeling (iFEM) framework was developed to characterize fibrous intima and vessel wall material properties of 13 cross sections from five carotids. The novel pipeline comprised ex-vivo inflation testing, pre-clinical high frequency ultrasound for deriving plaque deformations, pre-clinical high-magnetic field magnetic resonance imaging, finite element modeling, and a sample efficient machine learning based Bayesian Optimization. RESULTS The nonlinear Yeoh constants for the fibrous intima and wall layers were successfully obtained. The optimization scheme of the iFEM reached the global minimum with a mean error of 3.8% in 133 iterations on average. The uniqueness of the results were confirmed with the inverted Gaussian Process (GP) model trained during the iFEM protocol. CONCLUSION The developed iFEM approach combined with the inverted GP model successfully predicted component-wise material properties of intact atherosclerotic human carotids ex-vivo under physiological-like loading conditions. SIGNIFICANCE We developed a novel iFEM framework for the nonlinear, component-wise material characterization of atherosclerotic arteries and utilized it to obtain human atherosclerotic carotid material properties. The developed iFEM framework has great potential to be advanced for patient-specific in-vivo application.
Collapse
Affiliation(s)
- Su Guvenir Torun
- Department of Biomedical Engineering, Erasmus Medical Center, 3015 GD, Rotterdam, the Netherlands.
| | - Hakki M Torun
- School of Electrical and Computer Engineering, Georgia Institute Technology, Atlanta, GA, USA
| | - Hendrik H G Hansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Chris L de Korte
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Frank J H Gijsen
- Department of Biomedical Engineering, Erasmus Medical Center, 3015 GD, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, the Netherlands
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Erasmus Medical Center, 3015 GD, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, the Netherlands
| |
Collapse
|
7
|
Lorentz KL, Gupta P, Shehabeldin MS, Cunnane EM, Ramaswamy AK, Verdelis K, DiLeo MV, Little SR, Weinbaum JS, Sfeir CS, Mandal BB, Vorp DA. CCL2 loaded microparticles promote acute patency in silk-based vascular grafts implanted in rat aortae. Acta Biomater 2021; 135:126-138. [PMID: 34496284 PMCID: PMC8595801 DOI: 10.1016/j.actbio.2021.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling. Bi-layered silk scaffolds consisting of an inner porous and outer electrospun layer were fabricated using a custom blend of Antherea Assama and Bombyx Mori silk (lyogel). Lyogel silk scaffolds alone (LG), and lyogel silk scaffolds containing microparticles (LGMP) were tested. The microparticles (MPs) were loaded with either CCL2 (LGMP+) or water (LGMP-). Scaffolds were implanted as abdominal aortic interposition grafts in Lewis rats for 1 and 8 weeks. 1-week implants exhibited patency rates of 50% (7/14), 100% (10/10), and 100% (5/5) in the LGMP-, LGMP+, and LG groups, respectively. The significantly higher patency rate for the LGMP+ group compared to the LGMP- group (p = 0.0188) suggests that CCL2 can prevent acute occlusion. Immunostaining of the explants revealed a significantly higher density of macrophages (CD68+ cells) within the outer vs. inner layer of LGMP- and LGMP+ constructs but not in LG constructs. After 8 weeks, there were no significant differences in patency rates between groups. All patent scaffolds at 8 weeks showed signs of remodeling; however, stenosis was observed within the majority of explants. This study demonstrated the successful fabrication of a custom blended silk scaffold functionalized with cell-mimicking microparticles to facilitate controlled delivery of a biological payload improving their in vivo performance. STATEMENT OF SIGNIFICANCE: This study outlines the development of a custom blended silk-based tissue-engineered vascular graft (TEVG) for use in arterial bypass or replacement surgery. A custom mixture of silk was formulated to improve biocompatibility and cellular binding to the tubular scaffold. Many current approaches to TEVGs include cells that encourage graft cellularization and remodeling; however, our technology incorporates a microparticle based delivery platform capable of delivering bioactive molecules that can mimic the function of seeded cells. In this study, we load the TEVGs with microparticles containing a monocyte attractant and demonstrate improved performance in terms of unobstructed blood flow versus blank microparticles. The acellular nature of this technology potentially reduces risk, increases reproducibility, and results in a more cost-effective graft when compared to cell-based options.
Collapse
Affiliation(s)
- Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mostafa S Shehabeldin
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Konstantinos Verdelis
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| | - Morgan V DiLeo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Charles S Sfeir
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India; School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, India.
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; The Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
Cahalane RM, Barrett HE, Ross AM, Mulvihill JJE, Purtill H, Selvarajah L, O'Brien J, Kavanagh EG, Moloneye MA, Egan SM, Leahy FC, Griffin TP, Islam MN, O'Shea PM, Walsh MT, O'Connor EM. On the association between circulating biomarkers and atherosclerotic calcification in a cohort of arterial disease participants. Nutr Metab Cardiovasc Dis 2021; 31:1533-1541. [PMID: 33810961 DOI: 10.1016/j.numecd.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Atherosclerotic calcification is a powerful predictor of cardiovascular disease. This study aims to determine whether circulating levels of a local/systemic calcification inhibitor or a marker of bone formation correlate with measures of coronary or extracoronary calcification. METHODS AND RESULTS Clinical computed tomography (CT) was performed on 64 arterial disease participants undergoing carotid and lower extremity endarterectomy. Coronary artery calcium (CAC) scores and volumes were acquired from the CT scans (n = 42). CAC scores and volumes were used to derive CAC density scores. Micro-CT was performed on excised carotid (n = 36) and lower extremity (n = 31) plaques to quantify the volume and volume fraction of extracoronary calcification. Circulating levels of dephospho-uncarboxylated Matrix Gla Protein (dp-ucMGP), fetuin-A, carboxylated and uncarboxylated osteocalcin (ucOC) were quantified using commercial immunoassays. Carotid participant CAC density scores were moderately negatively correlated with plasma dp-ucMGP (rs = -0.592, P = 0.008). A weak negative association was found between CAC scores and %ucOC for all participants (rs = -0.335, P = 0.040). Another weak negative correlation was observed between fetuin-A and the volume of calcification within excised carotid specimens (rs = -0.366, P = 0.031). Despite substantial differences in coronary and extracoronary calcium measurements, the levels of circulating biomarkers did not vary significantly between carotid and lower extremity subgroups. CONCLUSION Correlations identified between circulating biomarkers and measures of coronary and extracoronary calcium were not consistent among participant subgroups. Further research is required to determine the association between circulating biomarkers, coronary and extracoronary calcium.
Collapse
Affiliation(s)
- Rachel M Cahalane
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - Hilary E Barrett
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - Aisling M Ross
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - John J E Mulvihill
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Helen Purtill
- Health Research Institute, University of Limerick, Ireland; Department of Mathematics and Statistics, Aging Research Centre, University of Limerick, Ireland.
| | | | - Julie O'Brien
- Department of Radiology, University Hospital Limerick, Ireland.
| | - Eamon G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland.
| | | | - Siobhan M Egan
- Clinical Research Support Unit, University Hospital Limerick, Ireland.
| | - Fiona C Leahy
- Clinical Research Support Unit, University Hospital Limerick, Ireland.
| | - Tomás P Griffin
- Centre for Endocrinology, Diabetes and Metabolism, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland; Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - M N Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland; Department of Clinical Biochemistry, University Hospital Galway, Ireland.
| | - Paul M O'Shea
- Department of Clinical Biochemistry, University Hospital Galway, Ireland.
| | - Michael T Walsh
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Eibhlís M O'Connor
- Health Research Institute, University of Limerick, Ireland; Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland; Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
9
|
Extracellular Vesicles Derived from Primary Adipose Stromal Cells Induce Elastin and Collagen Deposition by Smooth Muscle Cells within 3D Fibrin Gel Culture. Bioengineering (Basel) 2021; 8:bioengineering8050051. [PMID: 33925413 PMCID: PMC8145221 DOI: 10.3390/bioengineering8050051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Macromolecular components of the vascular extracellular matrix (ECM), particularly elastic fibers and collagen fibers, are critical for the proper physiological function of arteries. When the unique biomechanical combination of these fibers is disrupted, or in the ultimate extreme where fibers are completely lost, arterial disease can emerge. Bioengineers in the realms of vascular tissue engineering and regenerative medicine must therefore ideally consider how to create tissue engineered vascular grafts containing the right balance of these fibers and how to develop regenerative treatments for situations such as an aneurysm where fibers have been lost. Previous work has demonstrated that the primary cells responsible for vascular ECM production during development, arterial smooth muscle cells (SMCs), can be induced to make new elastic fibers when exposed to secreted factors from adipose-derived stromal cells. To further dissect how this signal is transmitted, in this study, the factors were partitioned into extracellular vesicle (EV)-rich and EV-depleted fractions as well as unseparated controls. EVs were validated using electron microscopy, dynamic light scattering, and protein quantification before testing for biological effects on SMCs. In 2D culture, EVs promoted SMC proliferation and migration. After 30 days of 3D fibrin construct culture, EVs promoted SMC transcription of the elastic microfibril gene FBN1 as well as SMC deposition of insoluble elastin and collagen. Uniaxial biomechanical properties of strand fibrin constructs were no different after 30 days of EV treatment versus controls. In summary, it is apparent that some of the positive effects of adipose-derived stromal cells on SMC elastogenesis are mediated by EVs, indicating a potential use for these EVs in a regenerative therapy to restore the biomechanical function of vascular ECM in arterial disease.
Collapse
|
10
|
The composition of vulnerable plaque and its effect on arterial waveforms. J Mech Behav Biomed Mater 2021; 119:104491. [PMID: 33901965 DOI: 10.1016/j.jmbbm.2021.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Carotid plaque composition is a key factor of plaque stability and it carries significant prognostic information. The carotid unstable plaques are characterized by a thin fibrous cap (FC) ≤65μm with large lipid core (LC), while stable plaques have a thicker FC and less LC. Identifying the percentage of plaque compositions could help surgeons to make a precise decision for their patients' treatment protocol. This study aims to distinguish between stable and unstable plaque by defining the relationship between plaque composition and arterial waveform non-invasively. An in-vitro arterial system, composed of a Harvard pulsatile flow pump and artificial circulation system, was used to investigate the effect of the plaque compositions on the pulsatile arterial waveforms. Five types of arterial plaques, composed of the LC, FC, Collagen (Col) and Calcium (Ca), were implemented into the artificial carotid artery to represent the diseased arterial system with 30% of blockage. The pulsatile pressure, velocity and arterial wall movement were measured simultaneously at the site proximal to the plaque. Non-invasive wave intensity analysis (Non-WIA) was used to separate the waves into forward and backward components. The correlation between the plaque compositions and the reflected waveforms was quantitatively analysed. The experimental results indicate that the reflected waveforms are strongly correlated with the plaque compositions, where the percentages of the Col are linearly correlated with the amplitude of the backward diameter (correlation coefficient, r = 0.74) and the lipid content has a strong negative correlation with the backward diameter (r = 0.82). A slight weak correlation exists between the reflected waveform and the percentage of Ca. The strong correlation between the compositions of the plaques with the backward waveforms observed in this study demonstrates that the components of the arterial plaques could be distinguished by the arterial waveforms. This finding might lead to a potential novel non-invasive clinical tool to determine the composition of the plaques and distinguish between stable and vulnerable arterial plaques at the early stage.
Collapse
|
11
|
Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials 2021; 269:120651. [PMID: 33476892 DOI: 10.1016/j.biomaterials.2021.120651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
This study addresses a crucial gap in the literature by characterising the relationship between urethral tissue mechanics, composition and gross structure. We then utilise these data to develop a biomimetic urethral scaffold with physical properties that more accurately mimic the native tissue than existing gold standard scaffolds; small intestinal submucosa (SIS) and urinary bladder matrix (UBM). Nine human urethra samples were mechanically characterised using pressure-diameter and uniaxial extension testing. The composition and gross structure of the tissue was determined using immunohistological staining. A pressure stiffening response is observed during the application of intraluminal pressure. The elastic and viscous tissue responses to extension are free of regional or directional variance. The elastin and collagen content of the tissue correlates significantly with tissue mechanics. Building on these data, a biomimetic urethral scaffold was fabricated from collagen and elastin in a ratio that mimics the composition of the native tissue. The resultant scaffold is comprised of a dense inner layer and a porous outer layer that structurally mimic the submucosa and corpus spongiosum layers of the native tissue, respectively. The porous outer layer facilitated more uniform cell infiltration relative to SIS and UBM when implanted subcutaneously (p < 0.05). The mechanical properties of the biomimetic scaffold better mimic the native tissue compared to SIS and UBM. The tissue characterisation data presented herein paves the way for the development of biomimetic urethral grafts, and the novel scaffold we develop demonstrates positive findings that warrant further in vivo evaluation.
Collapse
|
12
|
Cunnane EM, Lorentz KL, Soletti L, Ramaswamy AK, Chung TK, Haskett DG, Luketich SK, Tzeng E, D'Amore A, Wagner WR, Weinbaum JS, Vorp DA. Development of a Semi-Automated, Bulk Seeding Device for Large Animal Model Implantation of Tissue Engineered Vascular Grafts. Front Bioeng Biotechnol 2020; 8:597847. [PMID: 33195168 PMCID: PMC7644804 DOI: 10.3389/fbioe.2020.597847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023] Open
Abstract
Vascular tissue engineering is a field of regenerative medicine that restores tissue function to defective sections of the vascular network by bypass or replacement with a tubular, engineered graft. The tissue engineered vascular graft (TEVG) is comprised of a biodegradable scaffold, often combined with cells to prevent acute thrombosis and initiate scaffold remodeling. Cells are most effectively incorporated into scaffolds using bulk seeding techniques. While our group has been successful in uniform, rapid, bulk cell seeding of scaffolds for TEVG testing in small animals using our well-validated rotational vacuum technology, this approach was not directly translatable to large scaffolds, such as those required for large animal testing or human implants. The objective of this study was to develop and validate a semi-automated cell seeding device that allows for uniform, rapid, bulk seeding of large scaffolds for the fabrication of TEVGs appropriately sized for testing in large animals and eventual translation to humans. Validation of our device revealed successful seeding of cells throughout the length of our tubular scaffolds with homogenous longitudinal and circumferential cell distribution. To demonstrate the utility of this device, we implanted a cell seeded scaffold as a carotid interposition graft in a sheep model for 10 weeks. Graft remodeling was demonstrated upon explant analysis using histological staining and mechanical characterization. We conclude from this work that our semi-automated, rotational vacuum seeding device can successfully seed porous tubular scaffolds suitable for implantation in large animals and provides a platform that can be readily adapted for eventual human use.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lorenzo Soletti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy K Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darren G Haskett
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,RiMED Foundation, Palermo, Italy
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
O'Reilly BL, Hynes N, Sultan S, McHugh PE, McGarry JP. An experimental and computational investigation of the material behaviour of discrete homogenous iliofemoral and carotid atherosclerotic plaque constituents. J Biomech 2020; 106:109801. [DOI: 10.1016/j.jbiomech.2020.109801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022]
|
14
|
Mechanical and structural properties of different types of human aortic atherosclerotic plaques. J Mech Behav Biomed Mater 2020; 109:103837. [PMID: 32543403 DOI: 10.1016/j.jmbbm.2020.103837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/23/2022]
Abstract
Atherosclerotic plaques are characterized by structural heterogeneity affecting aortic behaviour under mechanical loading. There is evidence of direct connections between the structural plaque arrangement and the risk of plaque rupture. As a consequence of aortic plaque rupture, plaque components are transferred by the bloodstream to smaller vessels, resulting in acute cardiovascular events with a poor prognosis, such as heart attacks or strokes. Hence, evaluation of the composition, structure, and biochemical profile of atherosclerotic plaques seems to be of great importance to assess the properties of a mechanically induced failure, indicating the strength and rupture vulnerability of plaque. The main goal of the research was to determine experimentally under uniaxial loading the mechanical properties of different types of the human abdominal aorta and human aortic atherosclerotic plaques identified based on vibrational spectra (ATR-FTIR and FT-Raman spectroscopy) analysis and validated by histological staining. The potential of spectroscopic techniques as a useful histopathological tool was demonstrated. Three types of atherosclerotic plaques - predominantly calcified (APC), lipid (APL), and fibrotic (APF) - were distinguished and confirmed by histopathological examinations. Compared to the normal aorta, fibrotic plaques were stiffer (median of EH for circumferential and axial directions, respectively: 8.15 MPa and 6.56 MPa) and stronger (median of σM for APLc = 1.57 MPa and APLa = 1.64 MPa), lipidic plaques were the weakest (median of σM for APLc = 0.76 MPa and APLa = 0.51 MPa), and calcified plaques were the stiffest (median of EH for circumferential and axial directions, respectively: 13.23 MPa and 6.67 MPa). Therefore, plaques detected as predominantly lipid and calcified are most prone to rupture; however, the failure process reflected by the simplification of the stress-stretch characteristics seems to vary depending on the plaque composition.
Collapse
|
15
|
Paritala PK, Yarlagadda PKDV, Kansky R, Wang J, Mendieta JB, Gu Y, McGahan T, Lloyd T, Li Z. Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue. Front Bioeng Biotechnol 2020; 8:60. [PMID: 32117939 PMCID: PMC7026010 DOI: 10.3389/fbioe.2020.00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic plaque rupture is a catastrophic event that contributes to mortality and long-term disability. A better understanding of the plaque mechanical behavior is essential for the identification of vulnerable plaques pre-rupture. Plaque is subjected to a natural dynamic mechanical environment under hemodynamic loading. Therefore, it is important to understand the mechanical response of plaque tissue under cyclic loading conditions. Moreover, experimental data of such mechanical properties are fundamental for more clinically relevant biomechanical modeling and numerical simulations for risk stratification. This study aims to experimentally and numerically characterize the stress-relaxation and cyclic mechanical behavior of carotid plaque tissue. Instron microtester equipped with a custom-developed setup was used for the experiments. Carotid plaque samples excised at endarterectomy were subjected to uniaxial tensile, stress-relaxation, and cyclic loading protocols. Thirty percent of the underlying load level obtained from the uniaxial tensile test results was used to determine the change in mechanical properties of the tissue over time under a controlled testing environment (Control tests). The stress-relaxation test data was used to calibrate the hyperelastic (neo-Hookean, Ogden, Yeoh) and linear viscoelastic (Prony series) material parameters. The normalized relaxation force increased initially and slowly stabilized toward the end of relaxation phase, highlighting the viscoelastic behavior. During the cyclic tests, there was a decrease in the peak force as a function of the cycle number indicating mechanical distension due to repeated loading that varied with different frequencies. The material also accumulated residual deformation, which increased with the cycle number. This trend showed softening behavior of the samples. The results of this preliminary study provide an enhanced understanding of in vivo stress-relaxation and cyclic behavior of the human atherosclerotic plaque tissue.
Collapse
Affiliation(s)
- Phani Kumari Paritala
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rhys Kansky
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tim McGahan
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Department of Radiology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Luo X, Du L, Li Z. Ultrasound assessment of tensile stress in carotid arteries of healthy human subjects with varying age. BMC Med Imaging 2019; 19:93. [PMID: 31783804 PMCID: PMC6884773 DOI: 10.1186/s12880-019-0394-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Arterial remodeling is thought to reflect the adaptation of the vessel wall to mechanical and hemodynamic stimuli and contributes to the progression of cardiovascular and cerebrovascular diseases. Tensile stress (TS) is one of the mechanical properties of the artery wall. The purpose of this study was to investigate the tensile stress change (TS) of carotid artery with varying viscoelasticity in healthy subjects within two groups of different ages. Methods Forty-five subjects were recruited and randomly assigned into the group at the age above 50 years and below 50 years. The carotid arteries were examined by ultrasonography, using the techniques of shear wave elastography (SWE), shear wave dispersion (SWD) and radiofrequency (RF) -based ultrasound. The following values, including elastic modulus (SWER) and viscous index (SWDR), as well as the peak and mean TS of the left and right carotid arteries (L-PTS, R-PTS, L-MTS and R-MTS) were measured. The correlations between SWER, SWDR and tensile stress were evaluated. Results The SWER and SWDR of carotid arteries are lower in the subjects ≥50 years old than the subjects younger than 50 years (SWER, 10.29 ± 9.57 kPa VS 17.24 ± 14.07 kPa; SWDR, 11.99 ± 3.51 (m/s)/kHz VS 13.97 ± 3.71 (m/s)/kHz, P < 0.05). The R-PTS was lower in the group with younger age (P < 0.05). Pearson correlation analysis showed that SWER of carotid artery was positively correlated with the parameters of tensile stress, R-PTS, R-MTS, L-PTS and L-MTS(r = 0.218, r = 0.359, r = 0.209 and r = 0.369, respectively, P < 0.05). However, SWDR of carotid arteries was not significantly associated with TS. Conclusion Ultrasonic shear wave imaging could be used to quantitatively assess carotid viscoelasticity. The carotid TS was related to its elasticity while little related to its viscosity, suggesting that mechanical properties of the arterial wall might be better revealed. Trial registration Date of our trial registration: 2018-06-11. Registered with the official website of China Clinical Trial Registration Center (ChiCTR1800016590)
Collapse
Affiliation(s)
- Xianghong Luo
- Department of Echocardiography, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
17
|
Ramaswamy AK, Sides RE, Cunnane EM, Lorentz KL, Reines LM, Vorp DA, Weinbaum JS. Adipose-derived stromal cell secreted factors induce the elastogenesis cascade within 3D aortic smooth muscle cell constructs. Matrix Biol Plus 2019; 4:100014. [PMID: 33543011 PMCID: PMC7852215 DOI: 10.1016/j.mbplus.2019.100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Elastogenesis within the medial layer of the aortic wall involves a cascade of events orchestrated primarily by smooth muscle cells, including transcription of elastin and a cadre of elastin chaperone matricellular proteins, deposition and cross-linking of tropoelastin coacervates, and maturation of extracellular matrix fiber structures to form mechanically competent vascular tissue. Elastic fiber disruption is associated with aortic aneurysm; in aneurysmal disease a thin and weakened wall leads to a high risk of rupture if left untreated, and non-surgical treatments for small aortic aneurysms are currently limited. This study analyzed the effect of adipose-derived stromal cell secreted factors on each step of the smooth muscle cell elastogenesis cascade within a three-dimensional fibrin gel culture platform. Approach and results We demonstrate that adipose-derived stromal cell secreted factors induce an increase in smooth muscle cell transcription of tropoelastin, fibrillin-1, and chaperone proteins fibulin-5, lysyl oxidase, and lysyl oxidase-like 1, formation of extracellular elastic fibers, insoluble elastin and collagen protein fractions in dynamically-active 30-day constructs, and a mechanically competent matrix after 30 days in culture. Conclusion Our results reveal a potential avenue for an elastin-targeted small aortic aneurysm therapeutic, acting as a supplement to the currently employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow explored here could guide future mechanistic studies of elastin formation, which in turn could lead to new non-surgical treatment strategies. Stromal cells stimulate smooth muscle cells (SMC) using paracrine signals. Stimulated SMC make RNA for both elastin and associated proteins. After protein synthesis, new elastic fibers form that contain insoluble elastin. Stromal cell products could promote elastin production in vivo.
Collapse
Key Words
- AA, aortic aneurysm
- ACA, epsilon-amino caproic acid
- ASC, adipose-derived stromal cell
- ASC-SF, ASC secreted factors
- Aneurysm
- Aorta
- ECM, extracellular matrix
- Elastin
- Extracellular matrix
- FBS, fetal bovine serum
- LOX, lysyl oxidase
- LOXL-1, LOX-like 1
- LTBP, latent TGF-β binding protein
- NCM, non-conditioned media
- NT, no treatment
- PBS, phosphate buffered saline
- RT, reverse transcriptase
- SMC, smooth muscle cell
- TGF-β, transforming growth factor-β
- Vascular regeneration
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rachel E. Sides
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eoghan M. Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L. Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Leila M. Reines
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Corresponding author at: Department of Bioengineering, University of Pittsburgh, Center for Bioengineering, Suite 300, 300 Technology Drive, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
18
|
Barrett HE, Van der Heiden K, Farrell E, Gijsen FJH, Akyildiz AC. Calcifications in atherosclerotic plaques and impact on plaque biomechanics. J Biomech 2019; 87:1-12. [PMID: 30904335 DOI: 10.1016/j.jbiomech.2019.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/09/2019] [Indexed: 12/13/2022]
Abstract
The catastrophic mechanical rupture of an atherosclerotic plaque is the underlying cause of the majority of cardiovascular events. The infestation of vascular calcification in the plaques creates a mechanically complex tissue composite. Local stress concentrations and plaque tissue strength properties are the governing parameters required to predict plaque ruptures. Advanced imaging techniques have permitted insight into fundamental mechanisms driving the initiating inflammatory-driven vascular calcification of the diseased intima at the (sub-) micron scale and up to the macroscale. Clinical studies have potentiated the biomechanical relevance of calcification through the derivation of links between local plaque rupture and specific macrocalcification geometrical features. The clinical implications of the data presented in this review indicate that the combination of imaging, experimental testing, and computational modelling efforts are crucial to predict the rupture risk for atherosclerotic plaques. Specialised experimental tests and modelling efforts have further enhanced the knowledge base for calcified plaque tissue mechanical properties. However, capturing the temporal instability and rupture causality in the plaque fibrous caps remains elusive. Is it necessary to move our experimental efforts down in scale towards the fundamental (sub-) micron scales in order to interpret the true mechanical behaviour of calcified plaque tissue interactions that is presented on a macroscale in the clinic and to further optimally assess calcified plaques in the context of biomechanical modelling.
Collapse
Affiliation(s)
- Hilary E Barrett
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Schroeder F, Polzer S, Slažanský M, Man V, Skácel P. Predictive capabilities of various constitutive models for arterial tissue. J Mech Behav Biomed Mater 2018; 78:369-380. [DOI: 10.1016/j.jmbbm.2017.11.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
|
20
|
|
21
|
Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Ann Biomed Eng 2017; 45:1420-1433. [PMID: 28150055 DOI: 10.1007/s10439-017-1803-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|