1
|
Jiang T, Chen J, Ouyang N, Tang G. Stretched Vascular Endothelial Cells Polarized Neutrophils to N2 Type via TRPC1-IL13-STAT3 Axis. Oral Dis 2024. [PMID: 39462789 DOI: 10.1111/odi.15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE VECs play a crucial role in regulating the function of neutrophils, which is essential for immune responses and inflammation. As stretch-sensitive cells, VECs sense mechanical stretch through surface mechanoreceptors, converting external mechanical stimuli into biochemical signals. This study aimed to explore the molecular mechanisms underlying the regulation of neutrophil behavior by stretched VECs. MATERIALS AND METHODS The key cytokine-inducing neutrophil N2 polarization in the conditioned medium from stretched vascular endothelial cells (CM-stretch) was validated through multifactorial matrix and flow cytometry. Additionally, the molecular mechanism underlying the response of vascular endothelial cells to stretch was systematically verified through layer-by-layer analysis using WB. RESULTS IL13, not IL4, was ultimately identified as a key cytokine-inducing neutrophil N2 polarization in CM-stretch. Inhibition of the transient receptor potential channel (TRPC1) and siRNA-mediated knockdown of TRPC1 both significantly decreased IL13 production. Furthermore, neutralizing IL13 in the CM-stretch or inhibiting STAT3 phosphorylation inhibited neutrophil N2 polarization, as evidenced by reduced CD206 and VEGFA expression. CONCLUSIONS These results demonstrate that stretched VECs initiate a signaling cascade that induces neutrophil N2 polarization through the TRPC1-IL13-STAT3 axis, suggesting that mechanical stretching of VECs could shift neutrophil function from a pro-inflammatory to a more regulatory and healing role.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jiayi Chen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ningjuan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guohua Tang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Yao Y, Zheng M, Borkar NA, Thompson MA, Zhang EY, Koloko Ngassie ML, Wang S, Pabelick CM, Vogel ER, Prakash YS. Role of STIM1 in stretch-induced signaling in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 327:L150-L159. [PMID: 38771147 DOI: 10.1152/ajplung.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital, Guiyang, People's Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Maunick Lefin Koloko Ngassie
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Lin LQ, Zeng HK, Luo YL, Chen DF, Ma XQ, Chen HJ, Song XY, Wu HK, Li SY. Mechanical stretch promotes apoptosis and impedes ciliogenesis of primary human airway basal stem cells. Respir Res 2023; 24:237. [PMID: 37773064 PMCID: PMC10540374 DOI: 10.1186/s12931-023-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Airway basal stem cells (ABSCs) have self-renewal and differentiation abilities. Although an abnormal mechanical environment related to chronic airway disease (CAD) can cause ABSC dysfunction, it remains unclear how mechanical stretch regulates the behavior and structure of ABSCs. Here, we explored the effect of mechanical stretch on primary human ABSCs. METHODS Primary human ABSCs were isolated from healthy volunteers. A Flexcell FX-5000 Tension system was used to mimic the pathological airway mechanical stretch conditions of patients with CAD. ABSCs were stretched for 12, 24, or 48 h with 20% elongation. We first performed bulk RNA sequencing to identify the most predominantly changed genes and pathways. Next, apoptosis of stretched ABSCs was detected with Annexin V-FITC/PI staining and a caspase 3 activity assay. Proliferation of stretched ABSCs was assessed by measuring MKI67 mRNA expression and cell cycle dynamics. Immunofluorescence and hematoxylin-eosin staining were used to demonstrate the differentiation state of ABSCs at the air-liquid interface. RESULTS Compared with unstretched control cells, apoptosis and caspase 3 activation of ABSCs stretched for 48 h were significantly increased (p < 0.0001; p < 0.0001, respectively), and MKI67 mRNA levels were decreased (p < 0.0001). In addition, a significant increase in the G0/G1 population (20.2%, p < 0.001) and a significant decrease in S-phase cells (21.1%, p < 0.0001) were observed. The ratio of Krt5+ ABSCs was significantly higher (32.38% vs. 48.71%, p = 0.0037) following stretching, while the ratio of Ac-tub+ cells was significantly lower (37.64% vs. 21.29%, p < 0.001). Moreover, compared with the control, the expression of NKX2-1 was upregulated significantly after stretching (14.06% vs. 39.51%, p < 0.0001). RNA sequencing showed 285 differentially expressed genes, among which 140 were upregulated and 145 were downregulated, revealing that DDIAS, BIRC5, TGFBI, and NKX2-1 may be involved in the function of primary human ABSCs during mechanical stretch. There was no apparent difference between stretching ABSCs for 24 and 48 h compared with the control. CONCLUSIONS Pathological stretching induces apoptosis of ABSCs, inhibits their proliferation, and disrupts cilia cell differentiation. These features may be related to abnormal regeneration and repair observed after airway epithelium injury in patients with CAD.
Collapse
Affiliation(s)
- Li-Qin Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Hai-Kang Zeng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Yu-Long Luo
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, Guangdong, China
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou, 510799, Guangdong, China
- Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou, 510799, Guangdong, China
- Innovation Centre for Advanced Interdisciplinary Medicine, Guangzhou, 510799, Guangdong, China
| | - Di-Fei Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Xiao-Qian Ma
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Huan-Jie Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Xin-Yu Song
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Hong-Kai Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Shi-Yue Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China.
| |
Collapse
|
4
|
Wu X, Jia B, Luo X, Wang J, Li M. Glucocorticoid Alleviates Mechanical Stress-Induced Airway Inflammation and Remodeling in COPD via Transient Receptor Potential Canonical 1 Channel. Int J Chron Obstruct Pulmon Dis 2023; 18:1837-1851. [PMID: 37654522 PMCID: PMC10466112 DOI: 10.2147/copd.s419828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Background Increased airway resistance and hyperinflation in chronic obstructive pulmonary disease (COPD) are associated with increased mechanical stress that modulate many essential pathophysiological functions including airway remodeling and inflammation. Our present study aimed to investigate the role of transient receptor potential canonical 1 (TRPC1), a mechanosensitive cation channel in airway remodeling and inflammation in COPD and the effect of glucocorticoid on this process. Methods In patients, we investigated the effect of pathological high mechanical stress on the expression of airway remodeling-related cytokines transforming growth factor β1 (TGF-β1), matrix metalloproteinase-9 (MMP9) and the count of inflammatory cells in endotracheal aspirates (ETAs) by means of different levels of peak inspiratory pressure (PIP) under mechanical ventilation, and analyzed their correlation with TRPC1. Based on whether patients regularly used inhaled corticosteroid (ICS), COPD patients were further divided into ICS group (n = 12) and non-ICS group (n=15). The ICS effect on the expression of TRPC1 was detected by Western blot. In vitro, we imitated the mechanical stress using cyclic stretch and examined the levels of TGF-β1 and MMP-9. The role of TRPC1 was further explored by siRNA transfection and dexamethasone administration. Results Our results revealed that the TRPC1 level and the inflammatory cells counts were significantly higher in COPD group. After mechanical ventilation, the expression of TGF-β1 and MMP-9 in all COPD subgroups was significantly increased, while in the control group, only high PIP subgroup increased. Meanwhile, TRPC1 expression was positively correlated with the counts of inflammatory cells and the levels of TGF-β1 and MMP-9. In vitro, mechanical stretch significantly increased TGF-β1 and MMP-9 levels and such increase was greatly attenuated by TRPC1 siRNA transfection and dexamethasone administration. Conclusion Our results suggest that the increased TRPC1 may play a role in the airway inflammation and airway remodeling in COPD under high airway pressure. Glucocorticoid could in some degree alleviate airway remodeling via inhibition of TRPC1.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Baolin Jia
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Xiaobin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Minchao Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
5
|
Balázs G, Balajthy A, Seri I, Hegyi T, Ertl T, Szabó T, Röszer T, Papp Á, Balla J, Gáll T, Balla G. Prevention of Chronic Morbidities in Extremely Premature Newborns with LISA-nCPAP Respiratory Therapy and Adjuvant Perinatal Strategies. Antioxidants (Basel) 2023; 12:1149. [PMID: 37371878 DOI: 10.3390/antiox12061149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Less invasive surfactant administration techniques, together with nasal continuous airway pressure (LISA-nCPAP) ventilation, an emerging noninvasive ventilation (NIV) technique in neonatology, are gaining more significance, even in extremely premature newborns (ELBW), under 27 weeks of gestational age. In this review, studies on LISA-nCPAP are compiled with an emphasis on short- and long-term morbidities associated with prematurity. Several perinatal preventative and therapeutic investigations are also discussed in order to start integrated therapies as numerous organ-saving techniques in addition to lung-protective ventilations. Two thirds of immature newborns can start their lives on NIV, and one third of them never need mechanical ventilation. With adjuvant intervention, these ratios are expected to be increased, resulting in better outcomes. Optimized cardiopulmonary transition, especially physiologic cord clamping, could have an additively beneficial effect on patient outcomes gained from NIV. Organ development and angiogenesis are strictly linked not only in the immature lung and retina, but also possibly in the kidney, and optimized interventions using angiogenic growth factors could lead to better morbidity-free survival. Corticosteroids, caffeine, insulin, thyroid hormones, antioxidants, N-acetylcysteine, and, moreover, the immunomodulatory components of mother's milk are also discussed as adjuvant treatments, since immature newborns deserve more complex neonatal interventions.
Collapse
Affiliation(s)
- Gergely Balázs
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - András Balajthy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - István Seri
- First Department of Pediatrics, School of Medicine, Semmelweis University, 1083 Budapest, Hungary
- Keck School of Medicine of USC, Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Thomas Hegyi
- Department of Pediatrics, Division of Neonatology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tibor Ertl
- Departments of Neonatology and Obstetrics & Gynecology, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Papp
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Balla
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Gáll
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Streiff ME, Corbin AC, Ahmad AA, Hunter C, Sachse FB. TRPC1 channels underlie stretch-modulated sarcoplasmic reticulum calcium leak in cardiomyocytes. Front Physiol 2022; 13:1056657. [PMID: 36620209 PMCID: PMC9817106 DOI: 10.3389/fphys.2022.1056657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential canonical 1 (TRPC1) channels are Ca2+-permeable ion channels expressed in cardiomyocytes. An involvement of TRPC1 channels in cardiac diseases is widely established. However, the physiological role of TRPC1 channels and the mechanisms through which they contribute to disease development are still under investigation. Our prior work suggested that TRPC1 forms Ca2+ leak channels located in the sarcoplasmic reticulum (SR) membrane. Prior studies suggested that TRPC1 channels in the cell membrane are mechanosensitive, but this was not yet investigated in cardiomyocytes or for SR localized TRPC1 channels. We applied adenoviral transfection to overexpress or suppress TRPC1 expression in neonatal rat ventricular myocytes (NRVMs). Transfections were evaluated with RT-qPCR, western blot, and fluorescent imaging. Single-molecule localization microscopy revealed high colocalization of exogenously expressed TRPC1 and the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2). To test our hypothesis that TRPC1 channels contribute to mechanosensitive Ca2+ SR leak, we directly measured SR Ca2+ concentration ([Ca2+]SR) using adenoviral transfection with a novel ratiometric genetically encoded SR-targeting Ca2+ sensor. We performed fluorescence imaging to quantitatively assess [Ca2+]SR and leak through TRPC1 channels of NRVMs cultured on stretchable silicone membranes. [Ca2+]SR was increased in cells with suppressed TRPC1 expression vs. control and Transient receptor potential canonical 1-overexpressing cells. We also detected a significant reduction in [Ca2+]SR in cells with Transient receptor potential canonical 1 overexpression when 10% uniaxial stretch was applied. These findings indicate that TRPC1 channels underlie the mechanosensitive modulation of [Ca2+]SR. Our findings are critical for understanding the physiological role of TRPC1 channels and support the development of pharmacological therapies for cardiac diseases.
Collapse
Affiliation(s)
- Molly E. Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Andrea C. Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Azmi A. Ahmad
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Chris Hunter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Frank B. Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Wang J, He Y, Yang G, Li N, Li M, Zhang M. Transient receptor potential canonical 1 channel mediates the mechanical stress‑induced epithelial‑mesenchymal transition of human bronchial epithelial (16HBE) cells. Int J Mol Med 2020; 46:320-330. [PMID: 32319532 PMCID: PMC7255483 DOI: 10.3892/ijmm.2020.4568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/17/2020] [Indexed: 01/16/2023] Open
Abstract
Airway remodeling is a central event in the pathology of chronic obstructive pulmonary disease (COPD) that leads to airway narrowing and subsequently, to increased mechanical pressure. High mechanical pressure can exacerbate airway remodeling. Thus, a treatment regimen aimed at disrupting this high‑pressure airway remodeling vicious cycle may improve the prognosis of patients with COPD. Recent studies have demonstrated that mechanical stress induces lung epithelial‑mesenchymal transition (EMT), which is commonly present in airway epithelial cells of patients with COPD. As TRPC1 functions as a mechanosensitive channel that mediates non‑selective cation entry in response to increased membrane stretch, the present study investigated the role of TRPC1 in the occurrence of EMT induced by mechanical stress. In the present study, the expression of TRPC1 in the bronchial epithelium was examined in vivo by immunohistochemistry. In vitro, human bronchial epithelial (16HBE) cells were subjected to mechanical stretching for up to 48 h, and TRPC1 expression was then examined by RT‑qPCR and western blot analysis. In addition, TRPC1 receptor function was assessed by Ca2+ imaging and siRNA transfection. EMT was identified using immunofluorescence, western blot analysis and RT‑qPCR. It was found that TRPC1 expression was upregulated in patients with COPD and in 16HBE cells subjected to mechanical stretch. The mechanical stress‑induced activation of TRPC1 in 16HBE cells increased the intracellular calcium concentration and subsequently decreased the expression of cytokeratin 8 and E‑cadherin, and increased the expression of α‑smooth muscle actin, indicating the occurrence of EMT. On the whole, the findings of the present study demonstrate that TRPC1 plays a key role in the occurrence of EMT in human lung epithelial cells in response to mechanical stretch; thus, this protein may serve as a novel therapeutic target for progressive airway remodeling in COPD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, The Second Clinical Hospital of Chongqing Medical University, Chongqing 400010
| | - Ye He
- Department of Geriatrics, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610072
| | - Gang Yang
- Department of Neurosurgery, The First Clinical Hospital of Chongqing Medical University, Chongqing 400016
| | - Na Li
- Division of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Minchao Li
- Department of Respiratory Medicine, The Second Clinical Hospital of Chongqing Medical University, Chongqing 400010
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610072
| |
Collapse
|
8
|
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020; 10:7227. [PMID: 32350291 PMCID: PMC7190874 DOI: 10.1038/s41598-020-61177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.
Collapse
Affiliation(s)
- Karina Formoso
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Sebastian Susperreguy
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Marc Freichel
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
9
|
Li N, He Y, Yang G, Yu Q, Li M. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 2019; 20:91. [PMID: 31092255 PMCID: PMC6518742 DOI: 10.1186/s12931-019-1050-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bronchoconstriction and cough, a characteristic of the asthmatic response, leads to development of compressive stresses in the airway wall. We hypothesized that progressively pathological high mechanical stress could act on mechanosensitive cation channels, such as transient receptor potential channel 1 (TRPC1) and then contributes to airway remodeling. METHODS We imitate the pathological airway pressure in vitro using cyclic stretch at 10 and 15% elongation. Ca2+ imaging was applied to measure the activity of TRPC1 after bronchial epithelial cells exposed to cyclic stretch for 0, 0.5, 1, 1.5, 2, 2.5 h. To further clarify the function of channnel TRPC1 in the process of mechano-transduction in airway remodeling, the experiment in vivo was implemented. The TRPC1 siRNA and budesonide were applied separately to asthmatic models. The morphological changes were measured by HE and Massion method. The expression levels of TRPC1 were evaluated by real-time PCR, western blot and immunohistochemistry. The protein expression level of IL-13, TGF-β1 and MMP-9 in BALF were measured by ELISA. RESULTS The result showed that cyclic stretch for 15% elongation at 1.5 h could maximize the activity of TRPC1 channel. This influx in Ca2+ was blocked by TRPC1 siRNA. Higher TRPC1 expression was observed in the bronchial epithelial layer of ovalbumin induced asthmatic models. The knockdown of TRPC1 with TRPC1 siRNA was associated with a hampered airway remodeling process, such as decreased bronchial wall thickness and smooth muscle hypertrophy/hyperplasia, a decreased ECM deposition area and inflammation infiltration around airway wall. Meantime, expression of IL-13, TGF-β1 and MMP-9 in OVA+TRPC1 siRNA also showed reduced level. TRPC1 intervention treatment showed similar anti-remodeling therapeutic effect with budesonide. CONCLUSIONS These results demonstrate that most TRPC1 channels expressed in bronchial epithelial cells mediate the mechanotransduction mechanism. TRPC1 inducing abnormal Ca2+ signal mediates receptor-stimulated and mechanical stimulus-induced airway remodeling. The inhibition of TRPC1 channel could produce similar therapeutic effect as glucocortisteroid to curb the development of asthmatic airway remodeling.
Collapse
Affiliation(s)
- Na Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Ye He
- Department of Geriatrics, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan Province 610072 People’s Republic of China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Qian Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Minchao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| |
Collapse
|
10
|
Wang J, Yang G, Li M, Zhou X. Transient Receptor Potential Melastatin 8 (TRPM8)-Based Mechanisms Underlie Both the Cold Temperature-Induced Inflammatory Reactions and the Synergistic Effect of Cigarette Smoke in Human Bronchial Epithelial (16HBE) Cells. Front Physiol 2019; 10:285. [PMID: 31001124 PMCID: PMC6455074 DOI: 10.3389/fphys.2019.00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a major receptor of cold environment. Recently, we found that cigarette smoke extract (CSE) upregulated TRPM8 mRNA and protein expression in bronchial tissues that made them more sensitive to cold stimuli. In our present study, we found that cold temperature (18°C)-induced activation of TRPM8 in 16HBE (human bronchial epithelial) cells facilitated Ca2+ influx and subsequently led to the increased expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α via the upregulation of p-extracellular signal-regulated kinase (ERK) and the activation of NF-κB. In addition, 16HBE cells that co-stimulated with 18°C and CSE were used to explore the synergistic effect of CSE on cold temperature-induced inflammatory cytokine production as well as the possible involved signaling pathway. RT-PCR and western blot analysis revealed that CSE upregulated TRPM8 mRNA and protein level in 16HBE cells. Ca2+ imaging, western blot, and luciferase assay showed more robust increase in intracellular Ca2+ and promoted phosphorylated ERK, P38, and NF-κB activity, respectively, in 16HBE cells co-stimulated with CSE and cold temperature, and such alteration was attenuated by TRPM8 short hairpin RNA (shRNA) transfection and BCTC pretreatment. Furthermore, enhanced levels of IL-6, IL-8, and TNF-α showed by enzyme-linked immunosorbent assay (ELISA) were reduced by specific inhibitors of ERK and NF-κB. Collectively, our results suggest that mitogen-activated protein kinase (MAPK)/NF-κB signaling is involved in TRPM8-mediated cold temperature-induced inflammatory cytokine expression. In addition, CSE synergistically amplifies cold temperature-induced inflammatory factors release via upregulating TRPM8 expression and enhancing MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, The Second Clinical Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Yang
- Department of Neurosurgery, The First Clinical Hospital of Chongqing Medical University, Chongqing, China
| | - Minchao Li
- Department of Respiratory Medicine, The Second Clinical Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|