1
|
Kemper PPN, Mahmoudi S, Apostolakis IZ, Konofagou EE. Feasibility of Bilinear Mechanical Characterization of the Abdominal Aorta in a Hypertensive Mouse Model. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3480-3490. [PMID: 34507874 PMCID: PMC8693438 DOI: 10.1016/j.ultrasmedbio.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 05/19/2023]
Abstract
A change in elastin and collagen content is indicative of damage caused by hypertension, which changes the non-linear behavior of the vessel wall. This study was aimed at investigating the feasibility of monitoring the non-linear material behavior in an angiotensin II hypertensive mice model. Aortas from 13 hypertensive mice were imaged with pulse wave imaging (PWI) over 4 wk using a 40-MHz linear array. The pulse wave velocity was estimated using two wave features: (i) the maximum axial acceleration of the foot (PWVdia) and (ii) the maximum axial acceleration of the dicrotic notch (PWVend-sys). The Bramwell-Hill equation was used to derive the compliance at diastolic and end-systolic pressure. This study determined the potential of PWI in a hypertensive mouse model to image and quantify the non-linear material behavior in vivo. End-systolic compliance could differentiate between the sham and angiotensin II groups, whereas diastolic compliance could not, indicating that PWI can detect early collagen-dominated remodeling.
Collapse
Affiliation(s)
- Paul P N Kemper
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA.
| | - Salah Mahmoudi
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Iason Zacharias Apostolakis
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
McGarry MDJ, Campo A, Payen T, Han Y, Konofagou EE. An analytical model of full-field displacement and strain induced by amplitude-modulated focused ultrasound in harmonic motion imaging. Phys Med Biol 2021; 66. [PMID: 33472178 DOI: 10.1088/1361-6560/abddd1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/20/2021] [Indexed: 11/12/2022]
Abstract
The majority of disease processes involves changes in the micro-structure of the affected tissue, which can translate to changes in the mechanical properties of the corresponding tissue. Harmonic motion imaging (HMI) is an elasticity imaging technique that allows the study of the mechanical parameters of tissue by detecting the tissue response by a harmonic motion field, which is generated by oscillatory acoustic radiation force (ARF). HMI has been demonstrated in tumor detection and characterization as well as monitoring of ablation procedures. In this study, an analytical HMI model is demonstrated and compared with a finite element model (FEM), allowing rapid and accurate computation of the displacement, strain, and shear wave velocity (SWV) at any location in a homogeneous linear elastic material. Average absolute differences between the analytical model and the FEM were respectively 1.2 % for the displacements and 0.5 % for the strains for 41940 force voxels at 0.22 seconds per displacement evaluation. A convergence study showed that the average difference could be further decreased to 1.0 % and 0.15 % for the displacements and strains, respectively, if force resolution is increased. SWV fields, as calculated with the FEM and the analytical model, have regional differences in velocities up to 0.57 m/s with an average absolute difference of 0.11±0.07 m/s, primarily due to imperfections in the non-reflecting FEM boundary conditions. The apparent SWV differed from the commonly used plane-wave approximation by up to 1.2 m/s due to near and intermediate field effects. Maximum displacement amplitudes for a model with an inclusion stabilize within 10 % of the homogeneous model at an inclusion radius of 10 mm while the maximum strain reacts faster, stabilizing at an inclusion radius of 3 mm. In conclusion, an analytical model for HMI stiffness estimation is presented in this paper. The analytical model has advantages over FEM as the full-field displacements do not need to be calculated to evaluate the model at a single measurement point. This advantage, together with the computational speed, makes the analytical model useful for real-time imaging applications. However, the analytical model was found to have restrictive assumptions on tissue homogeneity and infinite dimensions, while the FEM approaches were shown adaptable to variable geometry and non-homogeneous properties.
Collapse
Affiliation(s)
- Matthew D J McGarry
- Biomedical Engineering, Columbia University, New York, New York, 10027-6902, UNITED STATES
| | - Adriaan Campo
- Faculty of Science, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, antwerpen, BELGIUM
| | - Thomas Payen
- Biomedical engineering, Columbia University, 630 w 168th street, New York, New York, 10032, UNITED STATES
| | - Yang Han
- Biomedical Engineering, Columbia Univerisity, 630 West 168th Street Physicians & Surgeons 19-418, New York, New York, 10032, UNITED STATES
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, MC 8904, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA, New York, New York, UNITED STATES
| |
Collapse
|
3
|
Jeong Y, Yao Y, Yim EKF. Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts. Biomater Sci 2020; 8:4383-4395. [PMID: 32643723 PMCID: PMC7452756 DOI: 10.1039/d0bm00226g] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite much effort, synthetic small diameter vascular grafts still face limited success due to vascular wall thickening known as intimal hyperplasia (IH). Compliance mismatch between graft and native vessels has been proposed to be one of a key mechanical factors of synthetic vascular grafts that could contribute to the formation of IH. While many methods have been developed to determine compliance both in vivo and in vitro, the effects of compliance mismatch still remain uncertain. This review aims to explain the biomechanical factors that are responsible for the formation and development of IH and their relationship with compliance mismatch. Furthermore, this review will address the current methods used to measure compliance both in vitro and in vivo. Lastly, current limitations in understanding the connection between the compliance of vascular grafts and the role it plays in the development and progression of IH will be discussed.
Collapse
Affiliation(s)
- YeJin Jeong
- Department of Chemical engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
4
|
Campo A, McGarry MD, Panis T, Dirckx J, Konofagou E. Effect of Local Neck Anatomy on Localized One-Dimensional Measurements of Arterial Stiffness: A Finite-Element Model Study. J Biomech Eng 2019; 141:2720656. [PMID: 30702744 DOI: 10.1115/1.4042435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVD) are the most prevalent cause of death in the Western World, and their prevalence is only expected to rise. Several screening modalities aim at detecting CVD at the early stages. A common target for early screening is common carotid artery (CCA) stiffness, as reflected in the pulse wave velocity (PWV). For assessing the CCA stiffness using ultrasound (US), one-dimensional (1D) measurements along the CCA axis are typically used, ignoring possible boundary conditions of neck anatomy and the US probe itself. In this study, the effect of stresses and deformations induced by the US probe, and the effect of anatomy surrounding CCA on a simulated 1D stiffness measurement (PWVus) is compared with the ground truth stiffness (PWVgt) in 60 finite-element models (FEM) derived from anatomical computed tomography (CT) scans of ten healthy male volunteers. Based on prior knowledge from the literature, and from results in this study, we conclude that it is safe to approximate arterial stiffness using 1D measurements of compliance or pulse wave velocity, regardless of boundary conditions emerging from the anatomy or from the measurement procedure.
Collapse
Affiliation(s)
- Adriaan Campo
- Ultrasound Elasticity Imaging Laboratory, Columbia University, Columbia University Medical Campus, 630 West 168th Street, Physicians & Surgeons 19-418, New York, NY 10032.,Laboratory of Biomedical Physics, Antwerp University, Campus Groenenborger, Groenenborgerlaan 171 G.U.339, Antwerp 2020, Belgium e-mail:
| | - Matthew D McGarry
- Thayer School of Engineering Dartmouth, 14 Engineering Drive, Hanover, NH 03755 e-mail:
| | - Thomas Panis
- Radiology Department, University Hospital of Brussels, UZ Brussel, Campus Jette, Laarbeeklaan 101, Brussels B-1090, Belgium e-mail:
| | - Joris Dirckx
- Laboratory of Biomedical Physics, Antwerp University, Campus Groenenborger, Groenenborgerlaan 171 G.U.342, Antwerp 2020, Belgium e-mail:
| | - Elisa Konofagou
- Ultrasound Elasticity Imaging Laboratory, Columbia University, Columbia University Medical Campus, 630 West 168th Street, Physicians & Surgeons 19-418, New York, NY 10032 e-mail:
| |
Collapse
|
5
|
Li RX, Apostolakis IZ, Kemper P, McGarry MDJ, Ip A, Connolly ES, McKinsey JF, Konofagou EE. Pulse Wave Imaging in Carotid Artery Stenosis Human Patients in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:353-366. [PMID: 30442386 PMCID: PMC6375685 DOI: 10.1016/j.ultrasmedbio.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 05/03/2023]
Abstract
Carotid stenosis involves narrowing of the lumen in the carotid artery potentially leading to a stroke, which is the third leading cause of death in the United States. Several recent investigations have found that plaque structure and composition may represent a more direct biomarker of plaque rupture risk compared with the degree of stenosis. In this study, pulse wave imaging was applied in 111 (n = 11, N = 13 plaques) patients diagnosed with moderate (>50%) to severe (>80%) carotid artery stenosis to investigate the feasibility of characterizing plaque properties based on the pulse wave-induced arterial wall dynamics captured by pulse wave imaging. Five (n = 5 patients, N = 20 measurements) healthy volunteers were also imaged as a control group. Both conventional and high-frame-rate plane wave radiofrequency imaging sequences were used to generate piecewise maps of the pulse wave velocity (PWV) at a single depth along stenotic carotid segments, as well as intra-plaque PWV mapping at multiple depths. Intra-plaque cumulative displacement and strain maps were also calculated for each plaque region. The Bramwell-Hill equation was used to estimate the compliance of the plaque regions based on the PWV and diameter. Qualitatively, wave convergence, elevated PWV and decreased cumulative displacement around and/or within regions of atherosclerotic plaque were observed and may serve as biomarkers for plaque characterization. Intra-plaque mapping revealed the potential to capture wave reflections between calcified inclusions and differentiate stable (i.e., calcified) from vulnerable (i.e., lipid) plaque components based on the intra-plaque PWV and cumulative strain. Quantitatively, one-way analysis of variance indicated that the pulse wave-induced cumulative strain was significantly lower (p < 0.01) in the moderately and severely calcified plaques compared with the normal controls. As expected, compliance was also significantly lower in the severely calcified plaques regions compared with the normal controls (p < 0.01). The results from this pilot study indicated the potential of pulse wave imaging coupled with strain imaging to differentiate plaques of varying stiffness, location and composition. Such findings may serve as valuable information to compensate for the limitations of currently used methods for the assessment of stroke risk.
Collapse
Affiliation(s)
- Ronny X Li
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Iason Z Apostolakis
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Paul Kemper
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Matthew D J McGarry
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Ada Ip
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Edward S Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - James F McKinsey
- Division of Vascular Surgery and Endovascular Interventions, New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
6
|
Pan FS, Xu M, Yu L, Luo J, Li MY, Liang JY, Zheng YL, Xie XY. Relationship between carotid intima-media thickness and carotid artery stiffness assessed by ultrafast ultrasound imaging in patients with type 2 diabetes. Eur J Radiol 2018; 111:34-40. [PMID: 30691662 DOI: 10.1016/j.ejrad.2018.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate the relationship between carotid stiffness and carotid intima-media thickness (CIMT) in patients with type 2 diabetes (T2DM). MATERIALS AND METHODS Carotid properties were evaluated in 317 consecutive subjects (98 volunteers for controls, 105 patients with normal CIMT for T2DM group 1, and 114 patients with thickened CIMT for T2DM group 2). The CIMT and carotid pulse wave velocity at the beginning (PWV-BS) and at the end of systole (PWV-ES) were measured. RESULTS Apart from PWV-BS in T2DM group 1, CIMT and PWV-ES were significant higher in patients groups than those of in controls. In multiple regression analysis, diabetes was independently associated with PWV-ES and not with PWV-BS. Moreover, when adjusting for baseline covariates, only PWV-ES (odds ratio = 4.27, P < 0.001) distinguished carotid in T2DM group 1 from that of controls. Concerning the relationship between log(CIMT) and PWV-ES, when adjusting for baseline covariates, the association were still significant in controls and T2DM group 1, whereas it was no longer present in T2DM group 2 (P = 0.091). Additionally, the slope (β) after adjustment for the PWV-ES to log(CIMT) was significantly steeper in T2DM group 1 than that of in controls (β= 8.35 vs. 3.31, P < 0.01). CONCLUSIONS The PWV-ES seem to be a better biomarker candidate than PWV-BS to assess the carotid stiffness in diabetic patients. Compared with controls, diabetic patients showed more advanced functional changes than morphological changes despite normal CIMT, whereas the relationship trend was not present when thickened CIMT emerged.
Collapse
Affiliation(s)
- Fu-Shun Pan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Liang Yu
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Jia Luo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Man-Ying Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Jin-Yu Liang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Yan-Ling Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, PR China.
| |
Collapse
|