1
|
Paukner D, Jennings IR, Cyron CJ, Humphrey JD. Dynamic biaxial loading of vascular smooth muscle cell seeded tissue equivalents. J Mech Behav Biomed Mater 2024; 157:106639. [PMID: 38970943 DOI: 10.1016/j.jmbbm.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
An intricate reciprocal relationship exists between adherent synthetic cells and their extracellular matrix (ECM). These cells deposit, organize, and degrade the ECM, which in turn influences cell phenotype via responses that include sensitivity to changes in the mechanical state that arises from changes in external loading. Collagen-based tissue equivalents are commonly used as simple but revealing model systems to study cell-matrix interactions. Nevertheless, few quantitative studies report changes in the forces that the cells establish and maintain in such gels under dynamic loading. Moreover, most prior studies have been limited to uniaxial experiments despite many soft tissues, including arteries, experiencing multiaxial loading in vivo. To begin to close this gap, we use a custom biaxial bioreactor to subject collagen gels seeded with primary aortic smooth muscle cells to different biaxial loading conditions. These conditions include cyclic loading with different amplitudes as well as different mechanical constraints at the boundaries of a cruciform sample. Irrespective of loading amplitude and boundary condition, similar mean steady-state biaxial forces emerged across all tests. Additionally, stiffness-force relationships assessed via intermittent equibiaxial force-extension tests showed remarkable similarity for ranges of forces to which the cells adapted during periods of cyclic loading. Taken together, these findings are consistent with a load-mediated homeostatic response by vascular smooth muscle cells.
Collapse
Affiliation(s)
- Daniel Paukner
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany; Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | | | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany; Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Shou Y, Le Z, Cheng HS, Liu Q, Ng YZ, Becker DL, Li X, Liu L, Xue C, Yeo NJY, Tan R, Low J, Kumar ARK, Wu KZ, Li H, Cheung C, Lim CT, Tan NS, Chen Y, Liu Z, Tay A. Mechano-Activated Cell Therapy for Accelerated Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304638. [PMID: 37681325 DOI: 10.1002/adma.202304638] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Chronic diabetic wounds are a significant global healthcare challenge. Current strategies, such as biomaterials, cell therapies, and medical devices, however, only target a few pathological features and have limited efficacy. A powerful platform technology combining magneto-responsive hydrogel, cells, and wireless magneto-induced dynamic mechanical stimulation (MDMS) is developed to accelerate diabetic wound healing. The hydrogel encapsulates U.S. Food and Drug Administration (FDA)-approved fibroblasts and keratinocytes to achieve ∼3-fold better wound closure in a diabetic mouse model. MDMS acts as a nongenetic mechano-rheostat to activate fibroblasts, resulting in ∼240% better proliferation, ∼220% more collagen deposition, and improved keratinocyte paracrine profiles via the Ras/MEK/ERK pathway to boost angiogenesis. The magneto-responsive property also enables on-demand insulin release for spatiotemporal glucose regulation through increasing network deformation and interstitial flow. By mining scRNAseq data, a mechanosensitive fibroblast subpopulation is identified that can be mechanically tuned for enhanced proliferation and collagen production, maximizing therapeutic impact. The "all-in-one" system addresses major pathological factors associated with diabetic wounds in a single platform, with potential applications for other challenging wound types.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Qimin Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - David Laurence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Natalie Jia Ying Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Runcheng Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Arun R K Kumar
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119288, Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
3
|
Shang Y, Liu R, Gan J, Yang Y, Sun L. Construction of cardiac fibrosis for biomedical research. SMART MEDICINE 2023; 2:e20230020. [PMID: 39188350 PMCID: PMC11235890 DOI: 10.1002/smmd.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2024]
Abstract
Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yuzhi Yang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
4
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
5
|
Culturing of Cardiac Fibroblasts in Engineered Heart Matrix Reduces Myofibroblast Differentiation but Maintains Their Response to Cyclic Stretch and Transforming Growth Factor β1. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100551. [PMID: 36290519 PMCID: PMC9598692 DOI: 10.3390/bioengineering9100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Isolation and culturing of cardiac fibroblasts (CF) induces rapid differentiation toward a myofibroblast phenotype, which is partly mediated by the high substrate stiffness of the culture plates. In the present study, a 3D model of Engineered Heart Matrix (EHM) of physiological stiffness (Youngs modulus ~15 kPa) was developed using primary adult rat CF and a natural hydrogel collagen type 1 matrix. CF were equally distributed, viable and quiescent for at least 13 days in EHM and the baseline gene expression of myofibroblast-markers alfa-smooth muscle actin (Acta2), and connective tissue growth factor (Ctgf) was significantly lower, compared to CF cultured in 2D monolayers. CF baseline gene expression of transforming growth factor-beta1 (Tgfβ1) and brain natriuretic peptide (Nppb) was higher in EHM-fibers compared to the monolayers. EHM stimulation by 10% cyclic stretch (1 Hz) increased the gene expression of Nppb (3.0-fold), Ctgf (2.1-fold) and Tgfβ1 (2.3-fold) after 24 h. Stimulation of EHM with TGFβ1 (1 ng/mL, 24 h) induced Tgfβ1 (1.6-fold) and Ctgf (1.6-fold). In conclusion, culturing CF in EHM of physiological stiffness reduced myofibroblast marker gene expression, while the CF response to stretch or TGFβ1 was maintained, indicating that our novel EHM structure provides a good physiological model to study CF function and myofibroblast differentiation.
Collapse
|
6
|
Dalbosco M, Carniel TA, Fancello EA, Holzapfel GA. Multiscale simulations suggest a protective role of neo-adventitia in abdominal aortic aneurysms. Acta Biomater 2022; 146:248-258. [PMID: 35526737 DOI: 10.1016/j.actbio.2022.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are a dangerous cardiovascular disease, the pathogenesis of which is not yet fully understood. In the present work a recent mechanopathological theory, which correlates AAA progression with microstructural and mechanical alterations in the tissue, is investigated using multiscale models. The goal is to combine these changes, within the framework of mechanobiology, with possible mechanical cues that are sensed by vascular cells along the AAA pathogenesis. Particular attention is paid to the formation of a 'neo-adventitia' on the abluminal side of the aortic wall, which is characterized by a highly random (isotropic) distribution of collagen fibers. Macro- and micro-scale results suggest that the formation of an AAA, as expected, perturbs the micromechanical state of the aortic tissue and triggers a growth and remodeling (G&R) reaction by mechanosensing cells such as fibroblasts. This G&R then leads to the formation of a thick neo-adventitia that appears to bring the micromechanical state of the tissue closer to the original homeostatic level. In this context, this new layer could act like a protective sheath, similar to the tunica adventitia in healthy aortas. This potential 'attempt at healing' by vascular cells would have important implications on the stability of the AAA wall and thus on the risk of rupture. STATEMENT OF SIGNIFICANCE: Current clinical criteria for risk assessment in AAAs are still empirical, as the causes and mechanisms of the disease are not yet fully understood. The strength of the arterial tissue is closely related to its microstructure, which in turn is remodeled by mechanosensing cells in the course of the disease. In this study, multiscale simulations show a possible connection between mechanical cues at the microscopic level and collagen G&R in AAA tissue. It should be emphasized that these micromechanical cues cannot be visualized in vivo. Therefore, the results presented here will help to advance our current understanding of the disease and motivate future experimental studies, with important implications for AAA risk assessment.
Collapse
|
7
|
Chakraborty S, DePalma TJ, Skardal A. Increasing Accuracy of In Vitro Cancer Models: Engineering Stromal Complexity into Tumor Organoid Platforms. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Srija Chakraborty
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
| | - Thomas J. DePalma
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
| | - Aleksander Skardal
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
- Center for Cancer Engineering The Ohio State University and Arthur G. James Comprehensive Cancer Center Columbus OH 43210 USA
| |
Collapse
|
8
|
Leslie MN, Chou J, Young PM, Traini D, Bradbury P, Ong HX. How Do Mechanics Guide Fibroblast Activity? Complex Disruptions during Emphysema Shape Cellular Responses and Limit Research. Bioengineering (Basel) 2021; 8:110. [PMID: 34436113 PMCID: PMC8389228 DOI: 10.3390/bioengineering8080110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
The emphysema death toll has steadily risen over recent decades, causing the disease to become the third most common cause of death worldwide in 2019. Emphysema is currently incurable and could be due to a genetic condition (Alpha-1 antitrypsin deficiency) or exposure to pollutants/irritants, such as cigarette smoke or poorly ventilated cooking fires. Despite the growing burden of emphysema, the mechanisms behind emphysematous pathogenesis and progression are not fully understood by the scientific literature. A key aspect of emphysematous progression is the destruction of the lung parenchyma extracellular matrix (ECM), causing a drastic shift in the mechanical properties of the lung (known as mechanobiology). The mechanical properties of the lung such as the stiffness of the parenchyma (measured as the elastic modulus) and the stretch forces required for inhalation and exhalation are both reduced in emphysema. Fibroblasts function to maintain the structural and mechanical integrity of the lung parenchyma, yet, in the context of emphysema, these fibroblasts appear incapable of repairing the ECM, allowing emphysema to progress. This relationship between the disturbances in the mechanical cues experienced by an emphysematous lung and fibroblast behaviour is constantly overlooked and consequently understudied, thus warranting further research. Interestingly, the failure of current research models to integrate the altered mechanical environment of an emphysematous lung may be limiting our understanding of emphysematous pathogenesis and progression, potentially disrupting the development of novel treatments. This review will focus on the significance of emphysematous lung mechanobiology to fibroblast activity and current research limitations by examining: (1) the impact of mechanical cues on fibroblast activity and the cell cycle, (2) the potential role of mechanical cues in the diminished activity of emphysematous fibroblasts and, finally, (3) the limitations of current emphysematous lung research models and treatments as a result of the overlooked emphysematous mechanical environment.
Collapse
Affiliation(s)
- Mathew N. Leslie
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Joshua Chou
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peta Bradbury
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168—Laboratoire Physico-Chimie Curie, Institut Curie, 75248 Paris, France
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. Int J Mol Sci 2021; 22:ijms22158204. [PMID: 34360970 PMCID: PMC8348491 DOI: 10.3390/ijms22158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk. Control scaffolds and those functionalized by gas phase fluorination and cross-linked collagen foam were either pre-cultured with a suspension or with spheroids of LACL cells before being subjected to cyclic stretch (4%, 0.11 Hz, 3 days). Stretch increased significantly the scaffold area colonized with cells but impaired sGAGs and decorin gene expression (functionalized scaffolds seeded with cell suspension). Stretching increased tenascin C, connexin 43 and Mohawk but decreased decorin gene expression (control scaffolds seeded with cell suspension). Pre-cultivation of functionalized scaffolds with spheroids might be the more suitable method for maintaining ligamentogenesis in 3D scaffolds compared to using a cell suspension due to a significantly higher sGAG content in response to stretching and type I collagen gene expression in functionalized scaffolds.
Collapse
|
10
|
Eichinger JF, Haeusel LJ, Paukner D, Aydin RC, Humphrey JD, Cyron CJ. Mechanical homeostasis in tissue equivalents: a review. Biomech Model Mechanobiol 2021; 20:833-850. [PMID: 33683513 PMCID: PMC8154823 DOI: 10.1007/s10237-021-01433-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
There is substantial evidence that growth and remodeling of load bearing soft biological tissues is to a large extent controlled by mechanical factors. Mechanical homeostasis, which describes the natural tendency of such tissues to establish, maintain, or restore a preferred mechanical state, is thought to be one mechanism by which such control is achieved across multiple scales. Yet, many questions remain regarding what promotes or prevents homeostasis. Tissue equivalents, such as collagen gels seeded with living cells, have become an important tool to address these open questions under well-defined, though limited, conditions. This article briefly reviews the current state of research in this area. It summarizes, categorizes, and compares experimental observations from the literature that focus on the development of tension in tissue equivalents. It focuses primarily on uniaxial and biaxial experimental studies, which are well-suited for quantifying interactions between mechanics and biology. The article concludes with a brief discussion of key questions for future research in this field.
Collapse
Affiliation(s)
- Jonas F Eichinger
- Institute for Computational Mechanics, Technical University of Munich, 85748, Munich, Germany
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Lea J Haeusel
- Institute for Computational Mechanics, Technical University of Munich, 85748, Munich, Germany
| | - Daniel Paukner
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Roland C Aydin
- Institute of Material Systems Modeling, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Christian J Cyron
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany.
- Institute of Material Systems Modeling, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany.
| |
Collapse
|
11
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. Processes (Basel) 2020. [DOI: 10.3390/pr9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.
Collapse
|
12
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020. Processes (Basel) 2020. [DOI: 10.3390/pr8121656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell–matrix-contact, cell–cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the studies published from 2000 to 2020.
Collapse
|
13
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
14
|
Eichinger JF, Paukner D, Szafron JM, Aydin RC, Humphrey JD, Cyron CJ. Computer-Controlled Biaxial Bioreactor for Investigating Cell-Mediated Homeostasis in Tissue Equivalents. J Biomech Eng 2020; 142:071011. [PMID: 32005993 PMCID: PMC7172870 DOI: 10.1115/1.4046201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/11/2020] [Indexed: 12/24/2022]
Abstract
Soft biological tissues consist of cells and extracellular matrix (ECM), a network of diverse proteins, glycoproteins, and glycosaminoglycans that surround the cells. The cells actively sense the surrounding ECM and regulate its mechanical state. Cell-seeded collagen or fibrin gels, so-called tissue equivalents, are simple but powerful model systems to study this phenomenon. Nevertheless, few quantitative studies document the stresses that cells establish and maintain in such gels; moreover, most prior data were collected via uniaxial experiments whereas soft tissues are mainly subject to multiaxial loading in vivo. To begin to close this gap between existing experimental data and in vivo conditions, we describe here a computer-controlled bioreactor that enables accurate measurements of the evolution of mechanical tension and deformation of tissue equivalents under well-controlled biaxial loads. This device allows diverse studies, including how cells establish a homeostatic state of biaxial stress and if they maintain it in response to mechanical perturbations. It similarly allows, for example, studies of the impact of cell and matrix density, exogenous growth factors and cytokines, and different types of loading conditions (uniaxial, strip-biaxial, and biaxial) on these processes. As illustrative results, we show that NIH/3T3 fibroblasts establish a homeostatic mechanical state that depends on cell density and collagen concentration. Following perturbations from this homeostatic state, the cells were able to recover biaxial loading similar to homeostatic. Depending on the precise loads, however, they were not always able to fully maintain that state.
Collapse
Affiliation(s)
- J. F. Eichinger
- Department of Mechanical Engineering, Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, Garching 85748, Germany; Department of Mechanical Engineering, Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Eissendorfer Strasse 42, Hamburg 21073, Germany
| | - D. Paukner
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511
| | - J. M. Szafron
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511
| | - R. C. Aydin
- Department for Simulation of Solids and Structures, Materials Mechanics, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - J. D. Humphrey
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511
| | - C. J. Cyron
- Department of Mechanical Engineering, Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Eissendorfer Strasse 42, Hamburg 21073, Germany; Department for Simulation of Solids and Structures, Materials Mechanics, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| |
Collapse
|
15
|
van Haaften EE, Wissing TB, Kurniawan NA, Smits AIPM, Bouten CVC. Human In Vitro Model Mimicking Material-Driven Vascular Regeneration Reveals How Cyclic Stretch and Shear Stress Differentially Modulate Inflammation and Matrix Deposition. ACTA ACUST UNITED AC 2020; 4:e1900249. [PMID: 32390338 DOI: 10.1002/adbi.201900249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Resorbable synthetic scaffolds designed to regenerate living tissues and organs inside the body have emerged as a clinically attractive technology to replace diseased blood vessels. However, mismatches between scaffold design and in vivo hemodynamic loading (i.e., cyclic stretch and shear stress) can result in aberrant inflammation and adverse tissue remodeling, leading to premature graft failure. Yet, the underlying mechanisms remain elusive. Here, a human in vitro model is presented that mimics the transient local inflammatory and biomechanical environments that drive scaffold-guided tissue regeneration. The model is based on the coculture of human (myo)fibroblasts and macrophages in a bioreactor platform that decouples cyclic stretch and shear stress. Using a resorbable supramolecular elastomer as the scaffold material, it is revealed that cyclic stretch initially reduces proinflammatory cytokine secretion and, especially when combined with shear stress, stimulates IL-10 secretion. Moreover, cyclic stretch stimulates downstream (myo)fibroblast proliferation and matrix deposition. In turn, shear stress attenuates cyclic-stretch-induced matrix growth by enhancing MMP-1/TIMP-1-mediated collagen remodeling, and synergistically alters (myo)fibroblast phenotype when combined with cyclic stretch. The findings suggest that shear stress acts as a stabilizing factor in cyclic stretch-induced tissue formation and highlight the distinct roles of hemodynamic loads in the design of resorbable vascular grafts.
Collapse
Affiliation(s)
- Eline E van Haaften
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Tamar B Wissing
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Nicholas A Kurniawan
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Anthal I P M Smits
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Carlijn V C Bouten
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| |
Collapse
|
16
|
Wissing TB, van Haaften EE, Koch SE, Ippel BD, Kurniawan NA, Bouten CVC, Smits AIPM. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering. Biomater Sci 2020; 8:132-147. [PMID: 31709425 DOI: 10.1039/c9bm01005j] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomaterials are increasingly used for in situ vascular tissue engineering, wherein resorbable fibrous scaffolds are implanted as temporary carriers to locally initiate vascular regeneration. Upon implantation, macrophages infiltrate and start degrading the scaffold, while simultaneously driving a healing cascade via the secretion of paracrine factors that direct the behavior of tissue-producing cells. This balance between neotissue formation and scaffold degradation must be maintained at all times to ensure graft functionality. However, the grafts are continuously exposed to hemodynamic loads, which can influence macrophage response in a hitherto unknown manner and thereby tilt this delicate balance. Here we aimed to unravel the effects of physiological levels of shear stress and cyclic stretch on biomaterial-activated macrophages, in terms of polarization, scaffold degradation and paracrine signaling to tissue-producing cells (i.e. (myo)fibroblasts). Human THP-1-derived macrophages were seeded in electrospun polycaprolactone bis-urea scaffolds and exposed to shear stress (∼1 Pa), cyclic stretch (∼1.04), or a combination thereof for 8 days. The results showed that macrophage polarization distinctly depended on the specific loading regime applied. In particular, hemodynamic loading decreased macrophage degradative activity, especially in conditions of cyclic stretch. Macrophage activation was enhanced upon exposure to shear stress, as evidenced from the upregulation of both pro- and anti-inflammatory cytokines. Exposure to the supernatant of these dynamically cultured macrophages was found to amplify the expression of tissue formation- and remodeling-related genes in (myo)fibroblasts statically cultured in comparable electrospun scaffolds. These results emphasize the importance of macrophage mechano-responsiveness in biomaterial-driven vascular regeneration.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bush J, Maruthamuthu V. In situ determination of exerted forces in magnetic pulling cytometry. AIP ADVANCES 2019; 9:035221. [PMID: 30915259 PMCID: PMC6417906 DOI: 10.1063/1.5084261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Localized application of exogenous forces on soft biomaterials and cells is often essential for the study of their response to external mechanical stimuli. Magnetic means of applying forces, particularly those based on permanent magnets and magnetic beads coupled to substrates or cells provide an accessible means of exerting forces of appropriate magnitude. The amount of force exerted, however, is often inferred from calibration performed ex situ, with typically similar but different magnetic beads. Here, we construct a simple magnetic tweezer by coupling a pencil-shaped stainless-steel probe to permanent neodymium magnets using a 3D printed adapter. We then demonstrate the in situ determination of magnetic bead pulling forces on a super-paramagnetic micro-bead coupled to a soft substrate using traction force microscopy. We determine the force exerted on the magnetic bead by the magnet probe - and thus exerted by the magnetic bead on the soft polyacrylamide substrate - as a function of the distance between the probe tip and the magnetic bead. We also show that we can determine the force exerted on a magnetic bead coupled to a cell by the changes in the traction force exerted by the cell on the soft substrate beneath. We thus demonstrate that forces of nanonewton magnitude can be locally exerted on soft substrates or cells and simultaneously determined using traction force microscopy. Application of this method for the in situ measurement of localized exogenous forces exerted on cells can also enable dissection of cellular force transmission pathways.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Kaufman 238e, 1 Old Dominion University, Norfolk, Virginia 23529, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Kaufman 238e, 1 Old Dominion University, Norfolk, Virginia 23529, USA
| |
Collapse
|