1
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
2
|
Deng J, Joshua Cohen D, Matias EB, Olson LO, McClure MJ, Boyan BD, Schwartz Z. Reduced osseointegration in disuse and denervation rat models results from impaired cellular responses to multiscale microstructured titanium surfaces. J Orthop Res 2024; 42:1984-1997. [PMID: 38644051 DOI: 10.1002/jor.25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
Immobilization-induced skeletal unloading results in muscle atrophy and rapid bone loss, thereby increasing the risk of falling and the need for implant therapy in patients with extended bed rest or neuromuscular injuries. Skeletal unloading causes bone loss by altering bone growth and resorption, suggesting that implant performance might be affected. To test this, we focused on early events in implant osseointegration. We used the rat sciatic neurectomy-induced disuse model under two different settings. In Study 1, 16 Sprague Dawley rats (SD) were separated into control, sham operated+cast immobilization, and sciatic neurectomy+casting groups; titanium implants with multiscale microtextured topography and hydrophilic chemistry (modSLA) were inserted in the distal femoral metaphysis. Neurectomy surgeries and casting were performed at the same surgical setting as implant placement; rats were euthanized 4 weeks post-implantation. In Study 2, we established the unloaded condition before implantation. A total of 12 SD rats were divided into control and sciatic+femoral neurectomy groups. A total of 24 days after sciatic and femoral neurectomy surgery, rats received implants. Study 2 rats were euthanized at 4 weeks post-implantation. MicroCT and histomorphometry showed that trabecular bone and osseointegration were reduced when disuse was established before implantation. Osteoblasts isolated from Study 1 sciatic neurectomy tibial bones exhibited impaired differentiation on modSLA culture disks, revealing a possible mechanism responsible for the decreased osseointegration observed in the Study 2 rats. This study addressed the importance of considering the mechanical unloading and muscle function history before implant insertion and suggests that implant performance was reduced due to poor cellular ability to regenerate.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Enrique B Matias
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lucas O Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. A comparison of bone microarchitectural and transcriptomic changes in murine long bones in response to hindlimb unloading and aging. Bone 2024; 179:116973. [PMID: 37996046 DOI: 10.1016/j.bone.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Age- and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces changes in the balance of bone formation and bone resorption like those seen with aging. There is a need to experimentally compare these two mechanisms at a structural and transcriptomic level to better understand how they may be similar or different. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6 J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes in young adult mice. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6-month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6 N mice unloaded for 7 days was included in ingenuity pathway analysis (IPA) with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3-month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading.
Collapse
Affiliation(s)
- Steven J Meas
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | | - Preetam Ghosh
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Joshua N Farr
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
4
|
Smotrova E, Li S, Silberschmidt VV. Trabecula-level mechanoadaptation: Numerical analysis of morphological changes. Comput Biol Med 2024; 168:107720. [PMID: 38006828 DOI: 10.1016/j.compbiomed.2023.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Bone is a living material that, unlike man-made ones, demonstrates continuous adaptation of its structure and mechanical properties to resist the imposed mechanical loading. Adaptation in trabecular bone is characterised by improvement of its stiffness in the loading direction and respective realignment of trabecular load-bearing architecture. Considerable experimental and simulation evidence of trabecular bone adaptation to its mechanical environment at the tissue- and organ-levels was obtained, while little attention was given to the trabecula-level of this process. This study aims to describe and classify load-driven morphological changes at the level of individual trabeculae and to propose their drivers. METHOD For this purpose, a well-established mechanoregulation-based numerical model of bone adaptation was implemented in a user-defined subroutine that changed the structural and mechanical properties of trabeculae based on the magnitude of a mechanical stimulus. This subroutine was used in conjunction with finite-element models of variously shaped structures representing trabeculae loaded in compression or shear. RESULTS In all analysed cases, trabeculae underwent morphological evolution under applied compressive or shear loading. Among twelve cases analysed, six main mechanisms of morphological evolution were established: reorientation, splitting, merging, full resorption, thinning, and thickening. Moreover, all simulated cases presented the ability to reduce the mean value of von Mises stress while increasing their ability to resist compressive/shear loading during adaptation. CONCLUSION This study evaluated morphological and mechanical changes in trabeculae of different shapes in response to compressive or shear loadings and compared them based on the analysis of von Mises stress distribution as well as profiles of normal and shear stresses in the trabeculae at different stages of their adaptation.
Collapse
Affiliation(s)
- Ekaterina Smotrova
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK; Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, 614000, Russia.
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Friedman MA, Buettmann EG, Zeineddine Y, Abraham LB, Hoppock GA, Meas SJ, Zhang Y, Farber CR, Donahue HJ. Genetic variation influences the skeletal response to hindlimb unloading in the eight founder strains of the diversity outbred mouse population. J Orthop Res 2024; 42:134-140. [PMID: 37321985 PMCID: PMC10721729 DOI: 10.1002/jor.25646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
During disuse, mechanical unloading causes extensive bone loss, decreasing bone volume and strength. Variations in bone mass and risk of osteoporosis are influenced by genetics; however, it remains unclear how genetic variation affects the skeletal response to unloading. We previously found that genetic variation affects the musculoskeletal response to 3 weeks of immobilization in the 8 Jackson Laboratory J:DO founder strains: C57Bl/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ. Hindlimb unloading (HLU) is the best model for simulating local and systemic contributors of disuse and therefore may have a greater impact on bones than immobilization. We hypothesized that genetic variation would affect the response to HLU across the eight founder strains. Mice of each founder strain were placed in HLU for 3 weeks, and the femurs and tibias were analyzed. There were significant HLU and mouse strain interactions on body weight, femur trabecular BV/TV, and femur ultimate force. This indicates that unloading only caused significant catabolic effects in some mouse strains. C57BL/6 J mice were most affected by unloading while other strains were more protected. There were significant HLU and mouse strain interactions on gene expression of genes encoding bone metabolism genes in the tibia. This indicates that unloading only caused significant effects on bone metabolism genes in some mouse strains. Different mouse strains respond to HLU differently, and this can be explained by genetic differences. These results suggest the outbred J:DO mice will be a powerful model for examining the effects of genetics on the skeletal response to HLU.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue Zhang
- Virginia Commonwealth University, Richmond VA
| | | | | |
Collapse
|
6
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. Hindlimb Unloading Induces Bone Microarchitectural and Transcriptomic Changes in Murine Long Bones in an Age-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561510. [PMID: 37873408 PMCID: PMC10592678 DOI: 10.1101/2023.10.09.561510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Age and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces physiological changes in bone like those seen with aging. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6- month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6N mice unloaded for 7 days was included in ingenuity pathway analysis with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3- month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading. Highlights Epiphyseal trabecular bone is most susceptible to hindlimb unloading.Hindlimb unloaded limbs resemble an intermediate phenotype between age-matched and aged controls.Hindlimb unloading induces gene expression changes that are age dependent and may lead to inflammation and/or mitochondrial dysfunction depending on context.Younger mice (3-4 months) activate the senescence pathway upon hindlimb unloading, whereas skeletally mature (6 months) mice inhibit it.
Collapse
|
7
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
8
|
Xu H, Zhu Y, Hsiao AWT, Xu J, Tong W, Chang L, Zhang X, Chen YF, Li J, Chen W, Zhang Y, Chan HF, Lee CW. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials 2023; 294:121998. [PMID: 36641814 DOI: 10.1016/j.biomaterials.2023.121998] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Effective countermeasures for tendon injury remains unsatisfactory. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)-based therapy via regulation of Mφ-mediated angiogenesis has emerged as a promising strategy for tissue regeneration. Still, approaches to tailor the functions of EVs to treat tendon injuries have been limited. We reported a novel strategy by applying MSC-EVs boosted with bioactive glasses (BG). BG-elicited EVs (EVB) showed up-regulation of medicinal miRNAs, including miR-199b-3p and miR-125a-5p, which play a pivotal role in M2 Mφ-mediated angiogenesis. EVB accelerated angiogenesis via the reprogrammed anti-inflammatory M2 Mφs compared with naïve MSC-EVs (EVN). In rodent Achilles tendon rupture model, EVB local administration activated anti-inflammatory responses via M2 polarization and led to a spatial correlation between M2 Mφs and newly formed blood vessels. Our results showed that EVB outperformed EVN in promoting tenogenesis and in reducing detrimental morphological changes without causing heterotopic ossification. Biomechanical test revealed that EVB significantly improved ultimate load, stiffness, and tensile modulus of the repaired tendon, along with a positive correlation between M2/M1 ratio and biomechanical properties. On the basis of the boosted nature to reprogram regenerative microenvironment, EVB holds considerable potential to be developed as a next-generation therapeutic modality for enhancing functional regeneration to achieve satisfying tendon regeneration.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xuerao Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, China.
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
DeNapoli RC, Buettmann EG, Friedman MA, Lichtman AH, Donahue HJ. Global cannabinoid receptor 1 deficiency affects disuse-induced bone loss in a site-specific and sex-dependent manner. J Biomech 2023; 146:111414. [PMID: 36542906 DOI: 10.1016/j.jbiomech.2022.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Bone loss during mechanical unloading increases fracture risk and is a major concern for the general population and astronauts during spaceflight. The endocannabinoid system (ECS) plays an important role in bone metabolism. One of the main ECS receptors, cannabinoid receptor 1 (CB1), has been studied in regards to basic bone metabolism; however, little is known as to how CB1 and the ECS affect bone in different mechanical environments. In this study, we analyzed the influence of global CB1 deficiency and sex on mice during disuse caused by single limb immobilization. Female mice were more sensitive to disuse-induced BV/TV loss than males in both the femoral metaphysis and tibial epiphysis. Genotype also affected bone loss in a sex-dependent manner, with male mice deficient in CB1 receptors (CB1KO) and female wildtype (WT) mice experiencing increased bone loss in both the tibial metaphysis and femoral epiphysis. Genotype affected the response to disuse as CB1KO mice displayed greater changes in femoral ultimate force, along with lower tibial ultimate stress, compared to WT mice. Female mice had a significantly higher femoral, and lower tibial ultimate force compared to male mice. These results reveal that disuse-induced bone loss due to CB1 deficiency is sex-dependent. CB1 deficiency in male mice exacerbated bone loss, while in females CB1 deficiency appeared to protect against disuse-induced bone loss. Regardless of genotype, female mice were more sensitive than males to disuse. These results suggest that CB1 receptors may represent a potential therapeutic target for mitigation of disuse-induced bone loss.
Collapse
Affiliation(s)
- Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Engineering Research Building, 401 West Main Street Room 4322B, Richmond, VA 23284, United States.
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Engineering Research Building, 401 West Main Street Room 4322B, Richmond, VA 23284, United States.
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Engineering Research Building, 401 West Main Street Room 4322B, Richmond, VA 23284, United States.
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth Universit, Molecular Medicine Research Building, Room 3042, 1220 East Broad Street, Box 980613, Richmond, VA, United States.
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Engineering Research Building, 401 West Main Street Room 4322B, Richmond, VA 23284, United States.
| |
Collapse
|
10
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as an Exercise-Induced Gene: Towards Novel Molecular Therapies for Immobilization-Related Muscle Atrophy in Elderly Patients. Genes (Basel) 2022; 13:1014. [PMID: 35741776 PMCID: PMC9223229 DOI: 10.3390/genes13061014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Long periods of immobilization, among other etiologies, would result is muscle atrophy. Exercise is the best approach to reverse this atrophy. However, the limited or the non-ability to perform the required physical activity for such patients and the limited pharmacological options make developing novel therapeutic approaches a necessity. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced gene. Whereas the knock-out of this gene leads to a phenotype that mimics number of the ageing-induced and sarcopenia-related changes including muscle atrophy, overexpressing SPARC in mice or adding it to muscular cell culture produces similar effects as exercise including enhanced muscle mass, strength and metabolism. Therefore, this piece of writing aims to provide evidence supporting the potential use of SPARC/SPARC as a molecular therapy for muscle atrophy in the context of immobilization especially for elderly patients.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
12
|
Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23105593. [PMID: 35628403 PMCID: PMC9146119 DOI: 10.3390/ijms23105593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/β-catenin pathway. However, the mechanism by which SMG alters the Wnt/β-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/β-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/β-catenin and Wnt/β-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/β-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.
Collapse
|
13
|
Genetic variability affects the skeletal response to immobilization in founder strains of the diversity outbred mouse population. Bone Rep 2021; 15:101140. [PMID: 34761080 PMCID: PMC8566767 DOI: 10.1016/j.bonr.2021.101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanical unloading decreases bone volume and strength. In humans and mice, bone mineral density is highly heritable, and in mice the response to changes in loading varies with genetic background. Thus, genetic variability may affect the response of bone to unloading. As a first step to identify genes involved in bones' response to unloading, we evaluated the effects of unloading in eight inbred mouse strains: C57BL/6J, PWK/PhJ, WSB/EiJ, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, and CAST/EiJ. C57BL/6J and NOD/ShiLtJ mice had the greatest unloading-induced loss of diaphyseal cortical bone volume and strength. NZO/HlLtJ mice had the greatest metaphyseal trabecular bone loss, and C57BL/6J, WSB/EiJ, NOD/ShiLtJ, and CAST/EiJ mice had the greatest epiphyseal trabecular bone loss. Bone loss in the epiphyses displayed the highest heritability. With immobilization, mineral:matrix was reduced, and carbonate:phosphate and crystallinity were increased. A/J mice displayed the greatest unloading-induced loss of mineral:matrix. Changes in gene expression in response to unloading were greatest in NOD/ShiLtJ and CAST/EiJ mice. The most upregulated genes in response to unloading were associated with increased collagen synthesis and extracellular matrix formation. Our results demonstrate a strong differential response to unloading as a function of strain. Diversity outbred (DO) mice are a high-resolution mapping population derived from these eight inbred founder strains. These results suggest DO mice will be highly suited for examining the genetic basis of the skeletal response to unloading. Mouse strain affects bone's response to immobilization. Magnitude of bone loss from immobilization is heritable. Bone transcriptomic response to immobilization is influenced by genetic variation.
Collapse
|
14
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
15
|
Watanabe M, Campbell TM, Reilly K, Uhthoff HK, Laneuville O, Trudel G. Bone replaces unloaded articular cartilage during knee immobilization. A longitudinal study in the rat. Bone 2021; 142:115694. [PMID: 33069921 DOI: 10.1016/j.bone.2020.115694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Joint immobility results in deleterious changes such as capsule shortening, bone loss and articular cartilage damage. Immobilization of rat knees in flexion for 32 weeks resulted in the distinctive feature of well-established replacement of articular cartilage by bone. Determining the time of onset of bone replacement is critical for the prevention of this likely irreversible complication of joint immobilization. OBJECTIVES To determine the onset and progression of bone replacement in the anterior tibial articular cartilage following knee immobilization in flexion. METHODS One hundred forty-nine adult male Sprague-Dawley rats were used. The experimental groups had one knee immobilized at 135°of flexion for durations of 2, 4, 8, 16 or 32 weeks and were compared to age-matched controls. The knees were evaluated histologically for the presence and cross-sectional area of bone within the articular cartilage of the tibia. Distance between the anterior aspect of the tibia and intact articular cartilage and cross-sectional bone area of the tibial epiphysis were also measured. RESULT Bone replacement in the articular cartilage was observed in 14%, 75%, 95%, 100% and 100% of knees after 2, 4, 8, 16 and 32 weeks of immobilization, respectively. No bone replacement was seen in the control knees. The mean area of bone replacement increased from 0.004 ± 0.007 mm2 after 2 weeks to 0.041 ± 0.036 mm2; 0.085 ± 0.077 mm2; 0.092 ± 0.056 mm2 and 0.107 ± 0.051 mm2 after 4, 8, 16 and 32 weeks of immobilization, respectively, (p < 0.001) largely restricted to the anterior tibial articular cartilage. Mean distance to intact articular cartilage increased from 0.89 ± 0.69 mm at 2 weeks to 1.10 ± 0.35 mm; 1.65 ± 0.77 mm; 1.48 ± 0.63 mm; and 1.78 ± 0.58 mm after 4, 8, 16 and 32 weeks of immobilization, respectively (p = 0.001). Epiphyseal bone cross-sectional area was significantly reduced following 4, 8, and 16 weeks of immobilization compare to controls (all 3 p < 0.05). CONCLUSION Knee immobilization in flexion resulted in bone replacement in the anterior tibial articular cartilage that began after 2 weeks and was prevalent after 4 weeks of immobilization. The bone replacement progressed in an anterior-to-posterior direction and stopped at the area of contact between tibia and femur. These findings stress the importance of mobility to maintain joint health.
Collapse
Affiliation(s)
- Masanori Watanabe
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Faculty of Rehabilitation Science, Nagoya Gakuin University, 3-1-17 Taiho, Atsuta-ku, Nagoya, Aichi 456-0062, Japan.
| | - T Mark Campbell
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital, 43 Bruyere St. Room, 240D, Ottawa, ON K1N 5C8, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Katherine Reilly
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Hans K Uhthoff
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Odette Laneuville
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N6N5, Canada.
| | - Guy Trudel
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|