1
|
Li G, Li H, Ndour PA, Franco M, Li X, MacDonald I, Dao M, Buffet PA, Karniadakis GE. Red blood cell passage through deformable interendothelial slits in the spleen: Insights into splenic filtration and hemodynamics. Comput Biol Med 2024; 182:109198. [PMID: 39341110 PMCID: PMC11560667 DOI: 10.1016/j.compbiomed.2024.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
The spleen constantly clears altered red blood cells (RBCs) from the circulation, tuning the balance between RBC formation (erythropoiesis) and removal. The retention and elimination of RBCs occur predominantly in the open circulation of the spleen, where RBCs must cross submicron-wide inter-endothelial slits (IES). Several experimental and computational studies have illustrated the role of IES in filtrating the biomechanically and morphologically altered RBCs based on a rigid wall assumption. However, these studies also reported that when the size of IES is close to the lower end of clinically observed sizes (less than 0.5 μm), an unphysiologically large pressure difference across the IES is required to drive the passage of normal RBCs, sparking debates on the feasibility of the rigid wall assumption. In this work, We propose two deformable IES models, namely the passive model and the active model, aiming to explore the impact of the deformability of IES on the filtration function of the spleen. In the passive model, we implement the worm-like string model to depict the IES's deformation as it interacts with blood plasma and allows RBC to traverse. In contrast, the active model involved regulating the IES deformation based on the local pressure surrounding the slit. To demonstrate the validity of the deformable model, we simulate the filtration of RBCs with varied size and stiffness by IES under three scenarios: (1) a single RBC traversing a single slit; (2) a suspension of RBCs traversing an array of slits, mimicking in vitro spleen-on-a-chip experiments; (3) RBC suspension passing through the 3D spleen filtration unit known as'the splenon'. Our simulation results of RBC passing through a single slit show that the deformable IES model offers more accurate predictions of the critical cell surface area to volume ratio that dictate the removal of aged RBCs from circulation compared to prior rigid-wall models. Our biophysical models of the spleen-on-a-chip indicate a hierarchy of filtration function stringency: rigid model > passive model > active model, providing a possible explanation of the filtration function of IES. We also illustrate that the biophysical model of 'the splenon' enables us to replicate the ex vivo experiments involving spleen filtration of malaria-infected RBCs. Taken together, our simulation findings indicate that the deformable IES model could serve as a mesoscopic representation of spleen filtration function closer to physiological reality, addressing questions beyond the scope of current experimental and computational models and enhancing our understanding of the fundamental flow dynamics and mechanical clearance processes within in the human spleen.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, RI, 02906, United States of America.
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, United States of America
| | - Papa Alioune Ndour
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France; Laboratoire d'Excellence du Globule Rouge, 75015, Paris, France
| | - Mélanie Franco
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France; Laboratoire d'Excellence du Globule Rouge, 75015, Paris, France
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
| | - Pierre A Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France; Laboratoire d'Excellence du Globule Rouge, 75015, Paris, France
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI, 02906, United States of America.
| |
Collapse
|
2
|
Carvalho V, Gonçalves IM, Rodrigues N, Sousa P, Pinto V, Minas G, Kaji H, Shin SR, Rodrigues RO, Teixeira SFCF, Lima RA. Numerical evaluation and experimental validation of fluid flow behavior within an organ-on-a-chip model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107883. [PMID: 37944399 DOI: 10.1016/j.cmpb.2023.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVE By combining biomaterials, cell culture, and microfluidic technology, organ-on-a-chip (OoC) platforms have the ability to reproduce the physiological microenvironment of human organs. For this reason, these advanced microfluidic devices have been used to resemble various diseases and investigate novel treatments. In addition to the experimental assessment, numerical studies of biodevices have been performed aiming at their improvement and optimization. Despite considerable progress in numerical modeling of biodevices, the validation of these computational models through comparison with experimental assays remains a significant gap in the current literature. This step is critical to ensure the accuracy and reliability of numerical models, and consequently enhance confidence in their predictive results. The aim of the present work is to develop a numerical model capable of reproducing the fluid flow behavior within an OoC, for future investigations, encompassing the geometry optimization. METHODS In this study, the validation of a numerical model for an OoC microfluidic device was undertaken. This comprised both quantitative and qualitative assessments of trace microparticles flowing through a physical OoC model. High-speed microscopy images of the flow, using a blood analog fluid, were analyzed and compared with the numerical simulations run using the Ansys Fluent software. For a qualitative analysis, the particles' paths through the inlet and bifurcations were observed whereas, for a quantitative analysis, the particle velocities were measured. Furthermore, oxygen transport was simulated and evaluated for different Reynolds numbers. RESULTS In both qualitative and quantitative analyses, the results predicted by the numerical model and the ones outputted by the experimental model were in good agreement. These findings underscore the capability and potential of the developed numerical model. The examination of oxygen transport at various vertical positions within the organoid has revealed that for lower positions, oxygen transport predominantly occurs through diffusion, leading to a symmetric distribution of oxygen. Contrastingly, the convection phenomenon becomes more evident in the upper region of the organoid. CONCLUSIONS The successful validation of the numerical model against experimental data shows its accuracy and reliability in simulating the fluid flow within the OoC, which consequently can expedite the OoC design process by reducing the need for prototypes' fabrication and costly laboratory experiments.
Collapse
Affiliation(s)
- Violeta Carvalho
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal.
| | - Inês M Gonçalves
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nelson Rodrigues
- ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Paulo Sousa
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Vânia Pinto
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Hirokazu Kaji
- Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Rui A Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; CEFT - Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Ren J, Liu Y, Huang W, Lam RHW. A Narrow Straight Microchannel Array for Analysis of Transiting Speed of Floating Cancer Cells. MICROMACHINES 2022; 13:183. [PMID: 35208307 PMCID: PMC8877651 DOI: 10.3390/mi13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Investigating floating cells along a narrow microchannel (e.g., a blood vessel) for their transiting speeds and the corresponding roles of cell physical properties can deepen our understanding of circulating tumor cells (CTCs) metastasis via blood vessels. Many existing studies focus on the cell transiting process in blood vessel-like microchannels; further analytical studies are desired to summarize behaviors of the floating cell movement under different conditions. In this work, we perform a theoretical analysis to establish a relation between the transiting speed and key cell physical properties. We also conduct computational fluid dynamics simulation and microfluidic experiments to verify the theoretical model. This work reveals key cell physical properties and the channel configurations determining the transiting speed. The reported model can be applied to other works with various dimensions of microchannels as a more general way to evaluate the cancer cell metastasis ability with microfluidics.
Collapse
Affiliation(s)
- Jifeng Ren
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Wei Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Carvalho V, Rodrigues RO, Lima RA, Teixeira S. Computational Simulations in Advanced Microfluidic Devices: A Review. MICROMACHINES 2021; 12:mi12101149. [PMID: 34683199 PMCID: PMC8539624 DOI: 10.3390/mi12101149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Numerical simulations have revolutionized research in several engineering areas by contributing to the understanding and improvement of several processes, being biomedical engineering one of them. Due to their potential, computational tools have gained visibility and have been increasingly used by several research groups as a supporting tool for the development of preclinical platforms as they allow studying, in a more detailed and faster way, phenomena that are difficult to study experimentally due to the complexity of biological processes present in these models—namely, heat transfer, shear stresses, diffusion processes, velocity fields, etc. There are several contributions already in the literature, and significant advances have been made in this field of research. This review provides the most recent progress in numerical studies on advanced microfluidic devices, such as organ-on-a-chip (OoC) devices, and how these studies can be helpful in enhancing our insight into the physical processes involved and in developing more effective OoC platforms. In general, it has been noticed that in some cases, the numerical studies performed have limitations that need to be improved, and in the majority of the studies, it is extremely difficult to replicate the data due to the lack of detail around the simulations carried out.
Collapse
Affiliation(s)
- Violeta Carvalho
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- ALGORITMI, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Correspondence:
| | - Raquel O. Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Rui A. Lima
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- CEFT, R. Dr. Roberto Frias, Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal
| | - Senhorinha Teixeira
- ALGORITMI, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
5
|
Wei M, Zhang F, Zhang R, Lin JM, Yang N. High-Throughput Characterization of Cell Adhesion Strength Using Long-Channel Constriction-Based Microfluidics. ACS Sens 2021; 6:2838-2844. [PMID: 34279900 DOI: 10.1021/acssensors.1c01037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adhesion strength of a cancer cell is a valuable biophysical marker of its metastatic potential, tightly associated with various metastatic processes; for example, cancer cells escape from a primary tumor, and circulating tumor cells (CTCs) are anchored to the vessel wall. Although constriction-based microfluidics can realize the high-throughput characterization of single-cell deformability, due to the influence of cell size heterogeneity, accurately evaluating the adhesion strength of a cancer cell at high throughputs in constriction remains difficult. In this paper, we first proposed an approach for the assessment of adhesion strength of BGC-823 and SGC-7901 cell lines at high throughputs based on a friction coefficient using the constant velocity stage of cell transit in a long-channel constriction. Cell size was proven to be independent of adhesion strength by cell detachment assay; however, it has large effects on cell transit velocity in constriction. Therefore, the linear elasticity of a completely deformed cell in constriction is simplified as a compressed spring model, effectively reducing the influence of cell size heterogeneity. Theoretically, our proposed model can well offset the influence of cell size by cell transit velocity, while our experimental results indicate that the friction coefficient has a good linear relationship with the logarithm of the adhesion strength too. Therefore, our proposed approach can realize accurate characterization of cell adhesion strength at high throughputs using long-channel constriction-based microfluidics. Hence, this work might enrich the functions of constriction-based microfluidics and bring new insights into the characterization of mechanical phenotypes.
Collapse
Affiliation(s)
- Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Ye T, Zhang X, Li G, Wang S. Biomechanics in thrombus formation from direct cellular simulations. Phys Rev E 2021; 102:042410. [PMID: 33212741 DOI: 10.1103/physreve.102.042410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/02/2020] [Indexed: 11/07/2022]
Abstract
Numerically reproducing the process of thrombus formation is highly desired for understanding its mechanism but still remains challenging due to the polydisperse feature of blood components and their multiple biochemical or biomechanical behaviors involved. We numerically implemented a simplified version of the process from the perspective of biomechanics, using a mesoscale particle-based method, smoothed dissipative particle dynamics-immersed boundary method. This version covers the adhesion and aggregation of platelets (PLTs), the deformation and aggregation of red blood cells (RBCs), and the interaction between PLTs and RBCs, as well as the blockage of microvessels. Four critical factors that can affect thrombus formation were investigated: the velocity of blood flow, the adhesive ability of PLTs, the interaction strength between PLTs and RBCs, and the deformability of RBCs. Increasing the velocity of blood flow was found to be the most effective way to reduce the microvessel blockage, and reducing the adhesive ability of PLTs is also a direct and efficient way. However, decreasing the interaction strength between PLTs and RBCs sometimes does not alleviate thrombus formation, and similarly, increasing the deformability of RBCs does not have a significant improvement for the severely blocked microvessel. These results imply that maintaining high-rate blood flow plays a crucial role in the prevention and treatment of thrombosis, which is even more effective than antiplatelet or anticoagulant drugs. The drugs or treatments concentrating on reducing the PLT-RBC interaction or softening the RBCs may not have a significant effect on the thrombosis.
Collapse
Affiliation(s)
- Ting Ye
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, 130012, China
| | - Xuejiao Zhang
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, 130012, China
| | - Guansheng Li
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, 130012, China
| | - Sitong Wang
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
8
|
Jani VP, Lucas A, Jani VP, Munoz C, Williams AT, Ortiz D, Yalcin O, Cabrales P. Numerical Model for the Determination of Erythrocyte Mechanical Properties and Wall Shear Stress in vivo From Intravital Microscopy. Front Physiol 2020; 10:1562. [PMID: 32038273 PMCID: PMC6989587 DOI: 10.3389/fphys.2019.01562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
The mechanical properties and deformability of Red Blood Cells (RBCs) are important determinants of blood rheology and microvascular hemodynamics. The objective of this study is to quantify the mechanical properties and wall shear stress experienced by the RBC membrane during capillary plug flow in vivo utilizing high speed video recording from intravital microscopy, biomechanical modeling, and computational methods. Capillaries were imaged in the rat cremaster muscle pre- and post-RBC transfusion of stored RBCs for 2-weeks. RBC membrane contours were extracted utilizing image processing and parametrized. RBC parameterizations were used to determine updated deformation gradient and Lagrangian Green strain tensors for each point along the parametrization and for each frame during plug flow. The updated Lagrangian Green strain and Displacement Gradient tensors were numerically fit to the Navier-Lame equations along the parameterized boundary to determined Lame's constants. Mechanical properties and wall shear stress were determined before and transfusion, were grouped in three populations of erythrocytes: native cells (NC) or circulating cells before transfusion, and two distinct population of cells after transfusion with stored cells (SC1 and SC2). The distinction, between the heterogeneous populations of cells present after the transfusion, SC1 and SC2, was obtained through principle component analysis (PCA) of the mechanical properties along the membrane. Cells with the first two principle components within 3 standard deviations of the mean, were labeled as SC1, and those with the first two principle components greater than 3 standard deviations from the mean were labeled as SC2. The calculated shear modulus average was 1.1±0.2, 0.90±0.15, and 12 ± 8 MPa for NC, SC1, and SC2, respectively. The calculated young's modulus average was 3.3±0.6, 2.6±0.4, and 32±20 MPa for NC, SC1, and SC2, respectively. o our knowledge, the methods presented here are the first estimation of the erythrocyte mechanical properties and shear stress in vivo during capillary plug flow. In summary, the methods introduced in this study may provide a new avenue of investigation of erythrocyte mechanics in the context of hematologic conditions that adversely affect erythrocyte mechanical properties.
Collapse
Affiliation(s)
- Vivek P Jani
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Lucas
- Functional Cardiovascular Engineering, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Vinay P Jani
- Functional Cardiovascular Engineering, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Carlos Munoz
- Functional Cardiovascular Engineering, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Alexander T Williams
- Functional Cardiovascular Engineering, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Daniel Ortiz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota, Colombia
| | - Ozlem Yalcin
- Koc University School of Medicine, Istanbul, Turkey
| | - Pedro Cabrales
- Functional Cardiovascular Engineering, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
9
|
Ye T, Shi H, Phan-Thien N, Lim CT. The key events of thrombus formation: platelet adhesion and aggregation. Biomech Model Mechanobiol 2019; 19:943-955. [PMID: 31754949 DOI: 10.1007/s10237-019-01262-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
Abstract
Thrombus formation is a complex, dynamic and multistep process, involving biochemical reactions, mechanical stimulation, hemodynamics, and so on. In this study, we concentrate on its two crucial steps: (i) platelets adhered to a vessel wall, or simply platelet adhesion, and (ii) platelets clumping and arrested to the adherent platelets, named platelet aggregation. We report the first direct simulation of three modes of platelet adhesion, detachment, rolling adhesion and firm adhesion, as well as the formation, disintegration, arrestment and consolidation of platelet plugs. The results show that the bond dissociation in the detachment mode is mainly attributed to a high probability of rupturing bonds, such that any existing bond can be quickly ruptured and all bonds would be completely broken. In the rolling adhesion, however, it is mainly attributed to the strong traction from the shear flow or erythrocytes, causing that the bonds are ruptured at the trailing edge of the platelet. The erythrocytes play an important role in platelet activities, such as the formation, disintegration, arrestment and consolidation of platelet plugs. They exert an aggregate force on platelets, a repulsion at a near distance but an attraction at a far distance to the platelets. This aggregate force can promote platelets to form a plug and/or bring along a part of a platelet plug causing its disintegration. It also greatly influences the arrestment and consolidation of platelet plugs, together with the adhesive force from the thrombus.
Collapse
Affiliation(s)
- Ting Ye
- School of Mathematics, Jilin University, Qianjin Ave. 2699, Changchun, 130012, China.
| | - Huixin Shi
- School of Mathematics, Jilin University, Qianjin Ave. 2699, Changchun, 130012, China
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chwee Teck Lim
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|