1
|
Xin JW, Chai ZX, Jiang H, Cao HW, Chen XY, Zhang CF, Zhu Y, Zhang Q, Ji QM. Genome-wide comparison of DNA methylation patterns between yak and three cattle strains and their potential association with mRNA transcription. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:316-328. [PMID: 36148637 DOI: 10.1002/jez.b.23174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 05/11/2023]
Abstract
Yak has evolved specific adaptative mechanisms to high-altitude environment. Up to date, only a few studies reported the DNA methylation in yak. In the present study, genome-wide DNA methylome and transcriptome profiles in lung, mammary, and biceps brachii muscle tissues were compared between yak and three cattle breeds (Tibetan cattle, Sanjiang cattle, and Holstein cattle). The association between differentially expressed genes (DEGs) and differentially methylated regions (DMRs) was analyzed, and the biological functions of DEGs potentially driven by DMRs were explored by KEGG enrichment analysis. Finally, we found that yak-specific DMRs-driven DEGs were mainly involved in neuromodulation, respiration, lung development, blood pressure regulation, cardiovascular protection, energy metabolism, DNA repair, and immune functions. The higher levels of the key genes associated with these functions were observed in yak than in cattle, suggesting that DNA methylation might regulate these genes. Overall, the present study contributes basic data at the DNA methylation level to further understand the physiological metabolism in yak.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiu-Mei Ji
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| |
Collapse
|
2
|
Gelemanović A, Ćatipović Ardalić T, Pribisalić A, Hayward C, Kolčić I, Polašek O. Genome-Wide Meta-Analysis Identifies Multiple Novel Rare Variants to Predict Common Human Infectious Diseases Risk. Int J Mol Sci 2023; 24:7006. [PMID: 37108169 PMCID: PMC10138356 DOI: 10.3390/ijms24087006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Infectious diseases still threaten global human health, and host genetic factors have been indicated as determining risk factors for observed variations in disease susceptibility, severity, and outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the immune response. Expanding our knowledge on rare variants could contribute to the development of genetic panels that could assist in predicting an individual's life-long susceptibility to major infectious diseases. In addition, longitudinal biobanks are an interesting source of information for identifying the host genetic variants involved in infectious disease susceptibility and severity. Since infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for a large consortium of biobanks with access to genetic and environmental data to further elucidate the complex mechanisms behind host-pathogen interactions and infectious disease susceptibility.
Collapse
Affiliation(s)
- Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Ajka Pribisalić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Kasmani MY, Ciecko AE, Brown AK, Petrova G, Gorski J, Chen YG, Cui W. Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Sci Alliance 2022; 5:5/10/e202201503. [PMID: 35667687 PMCID: PMC9170949 DOI: 10.26508/lsa.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Paired scRNA-seq and scTCR-seq reveals that diabetogenic CD8 T cells in the islets and spleens of NOD mice exhibit phenotypic and clonal heterogeneity despite restricted TCR gene usage. Expression of certain TCR genes correlates with clonal proliferation and effector phenotype. Type 1 diabetes (T1D) is an autoimmune disorder defined by CD8 T cell–mediated destruction of pancreatic β cells. We have previously shown that diabetogenic CD8 T cells in the islets of non-obese diabetic mice are phenotypically heterogeneous, but clonal heterogeneity remains relatively unexplored. Here, we use paired single-cell RNA and T-cell receptor sequencing (scRNA-seq and scTCR-seq) to characterize autoreactive CD8 T cells from the islets and spleens of non-obese diabetic mice. scTCR-seq demonstrates that CD8 T cells targeting the immunodominant β-cell epitope IGRP206-214 exhibit restricted TCR gene usage. scRNA-seq identifies six clusters of autoreactive CD8 T cells in the islets and six in the spleen, including memory and exhausted cells. Clonal overlap between IGRP206-214–reactive CD8 T cells in the islets and spleen suggests these cells may circulate between the islets and periphery. Finally, we identify correlations between TCR genes and T-cell clonal expansion and effector fate. Collectively, our work demonstrates that IGRP206-214–specific CD8 T cells are phenotypically heterogeneous but clonally restricted, raising the possibility of selectively targeting these TCR structures for therapeutic benefit.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack Gorski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Orrock JL, Abueg L, Gammie S, Munshi‐South J. Exome sequencing of deer mice on two California Channel Islands identifies potential adaptation to strongly contrasting ecological conditions. Ecol Evol 2021; 11:17191-17201. [PMID: 34938502 PMCID: PMC8668806 DOI: 10.1002/ece3.8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands: Peromyscus maniculatus elusus from Santa Barbara Island and P. m. santacruzae from Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein-coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein-coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy, Tlr2, Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28, Eif2ak4, Il12a, Syne1), aggression (Cyp19a, Lama2), and body size (Bc16, Syne1) exhibited non-synonymous mutations predicted to have moderate to large effects. Variation in olfaction-related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator-recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein-coding genes underlying phenotypes that promote success in those environments.
Collapse
Affiliation(s)
- John L. Orrock
- Department of Integrative BiologyUniversity of WisconsinMadisonWisconsinUSA
| | - Linelle Abueg
- Louis Calder Center – Biological Field StationFordham UniversityArmonkNew YorkUSA
| | - Stephen Gammie
- Department of Integrative BiologyUniversity of WisconsinMadisonWisconsinUSA
| | - Jason Munshi‐South
- Louis Calder Center – Biological Field StationFordham UniversityArmonkNew YorkUSA
| |
Collapse
|
6
|
The Parkinson's disease-associated gene ITPKB protects against α-synuclein aggregation by regulating ER-to-mitochondria calcium release. Proc Natl Acad Sci U S A 2021; 118:2006476118. [PMID: 33443159 PMCID: PMC7817155 DOI: 10.1073/pnas.2006476118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease of aging, affecting approximately 10 million patients worldwide with no approved therapies to modify progression of disease. Further understanding of the cellular mechanisms contributing to the development of PD is necessary to discover therapies. Here, we characterize the role of a recently identified GWAS hit for sporadic PD, ITPKB, in the aggregation of α-synuclein, the primary pathological feature of disease. These results identify inhibition of inositol-1,4,5,-triphosphate (IP3)-mediated ER-to-mitochondria calcium release as a potential therapeutic approach for reducing neuropathology in PD. Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) is a ubiquitously expressed lipid kinase that inactivates IP3, a secondary messenger that stimulates calcium release from the endoplasmic reticulum (ER). Genome-wide association studies have identified common variants in the ITPKB gene locus associated with reduced risk of sporadic Parkinson’s disease (PD). Here, we investigate whether ITPKB activity or expression level impacts PD phenotypes in cellular and animal models. In primary neurons, knockdown or pharmacological inhibition of ITPKB increased levels of phosphorylated, insoluble α-synuclein pathology following treatment with α-synuclein preformed fibrils (PFFs). Conversely, ITPKB overexpression reduced PFF-induced α-synuclein aggregation. We also demonstrate that ITPKB inhibition or knockdown increases intracellular calcium levels in neurons, leading to an accumulation of calcium in mitochondria that increases respiration and inhibits the initiation of autophagy, suggesting that ITPKB regulates α-synuclein pathology by inhibiting ER-to-mitochondria calcium transport. Furthermore, the effects of ITPKB on mitochondrial calcium and respiration were prevented by pretreatment with pharmacological inhibitors of the mitochondrial calcium uniporter complex, which was also sufficient to reduce α-synuclein pathology in PFF-treated neurons. Taken together, these results identify ITPKB as a negative regulator of α-synuclein aggregation and highlight modulation of ER-to-mitochondria calcium flux as a therapeutic strategy for the treatment of sporadic PD.
Collapse
|
7
|
Marongiu L, Mingozzi F, Cigni C, Marzi R, Di Gioia M, Garrè M, Parazzoli D, Sironi L, Collini M, Sakaguchi R, Morii T, Crosti M, Moro M, Schurmans S, Catelani T, Rotem R, Colombo M, Shears S, Prosperi D, Zanoni I, Granucci F. Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca 2+ mobilization and the inflammatory activity of dendritic cells. Sci Signal 2021; 14:14/676/eaaz2120. [PMID: 33785611 DOI: 10.1126/scisignal.aaz2120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immune responses to Gram-negative bacteria depend on the recognition of lipopolysaccharide (LPS) by a receptor complex that includes CD14 and TLR4. In dendritic cells (DCs), CD14 enhances the activation not only of TLR4 but also that of the NFAT family of transcription factors, which suppresses cell survival and promotes the production of inflammatory mediators. NFAT activation requires Ca2+ mobilization. In DCs, Ca2+ mobilization in response to LPS depends on phospholipase C γ2 (PLCγ2), which produces inositol 1,4,5-trisphosphate (IP3). Here, we showed that the IP3 receptor 3 (IP3R3) and ITPKB, a kinase that converts IP3 to inositol 1,3,4,5-tetrakisphosphate (IP4), were both necessary for Ca2+ mobilization and NFAT activation in mouse and human DCs. A pool of IP3R3 was located on the plasma membrane of DCs, where it colocalized with CD14 and ITPKB. Upon LPS binding to CD14, ITPKB was required for Ca2+ mobilization through plasma membrane-localized IP3R3 and for NFAT nuclear translocation. Pharmacological inhibition of ITPKB in mice reduced both LPS-induced tissue swelling and the severity of inflammatory arthritis to a similar extent as that induced by the inhibition of NFAT using nanoparticles that delivered an NFAT-inhibiting peptide specifically to phagocytic cells. Our results suggest that ITPKB may represent a promising target for anti-inflammatory therapies that aim to inhibit specific DC functions.
Collapse
Affiliation(s)
- Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesca Mingozzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Clara Cigni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Roberta Marzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marco Di Gioia
- Harvard Medical School and Division of Immunology, Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Laura Sironi
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Maddalena Collini
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mariacristina Crosti
- INGM, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
| | - Monica Moro
- INGM, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-B34, University of Liège, 4000 Liège, Belgium
| | - Tiziano Catelani
- Piattaforma Interdipartimentale di Microscopia, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Rany Rotem
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stephen Shears
- Signal Transduction Laboratory, NIEHS/NIH, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy. .,INGM, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
| |
Collapse
|
8
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Clinical, Immunological, and Functional Characterization of Six Patients with Very High IgM Levels. J Clin Med 2020; 9:jcm9030818. [PMID: 32192142 PMCID: PMC7141334 DOI: 10.3390/jcm9030818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
Very high IgM levels represent the hallmark of hyper IgM (HIGM) syndromes, a group of primary immunodeficiencies (PIDs) characterized by susceptibility to infections and malignancies. Other PIDs not fulfilling the diagnostic criteria for HIGM syndromes can also be characterized by high IgM levels and susceptibility to malignancies. The aim of this study is to characterize clinical phenotype, immune impairment, and pathogenic mechanism in six patients with very high IgM levels in whom classical HIGM syndromes were ruled out. The immunological analysis included extended B-cell immunophenotyping, evaluation of class switch recombination and somatic hypermutation, and next generation sequencing (NGS). Recurrent or severe infections and chronic lung changes at the diagnosis were reported in five out of six and two out of six patients, respectively. Five out of six patients showed signs of lymphoproliferation and four patients developed malignancies. Four patients showed impaired B-cell homeostasis. Class switch recombination was functional in vivo in all patients. NGS revealed, in one case, a pathogenic mutation in PIK3R1. In a second case, the ITPKB gene, implicated in B- and T-cell development, survival, and activity was identified as a potential candidate gene. Independent of the genetic basis, very high IgM levels represent a risk factor for the development of recurrent infections leading to chronic lung changes, lymphoproliferation, and high risk of malignancies.
Collapse
|
10
|
Thangavelu G, Du J, Paz KG, Loschi M, Zaiken MC, Flynn R, Taylor PA, Kirchmeier AK, Panoskaltsis-Mortari A, Luznik L, MacDonald KP, Hill GR, Maillard I, Munn DH, Serody JS, Murphy WJ, Miklos D, Cutler CS, Koreth J, Antin JH, Soiffer RJ, Ritz J, Dahlberg C, Miller AT, Blazar BR. Inhibition of inositol kinase B controls acute and chronic graft-versus-host disease. Blood 2020; 135:28-40. [PMID: 31697815 PMCID: PMC6940197 DOI: 10.1182/blood.2019000032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
T-cell activation releases inositol 1,4,5-trisphosphate (IP3), inducing cytoplasmic calcium (Ca2+) influx. In turn, inositol 1,4,5-trisphosphate 3-kinase B (Itpkb) phosphorylates IP3 to negatively regulate and thereby tightly control Ca2+ fluxes that are essential for mature T-cell activation and differentiation and protection from cell death. Itpkb pathway inhibition increases intracellular Ca2+, induces apoptosis of activated T cells, and can control T-cell-mediated autoimmunity. In this study, we employed genetic and pharmacological approaches to inhibit Itpkb signaling as a means of controlling graft-versus-host disease (GVHD). Murine-induced, Itpkb-deleted (Itpkb-/-) T cells attenuated acute GVHD in 2 models without eliminating A20-luciferase B-cell lymphoma graft-versus-leukemia (GVL). A highly potent, selective inhibitor, GNF362, ameliorated acute GVHD without impairing GVL against 2 acute myeloid leukemia lines (MLL-AF9-eGFP and C1498-luciferase). Compared with FK506, GNF362 more selectively deleted donor alloreactive vs nominal antigen-responsive T cells. Consistent with these data and as compared with FK506, GNF362 had favorable acute GVHD and GVL properties against MLL-AF9-eGFP cells. In chronic GVHD preclinical models that have a pathophysiology distinct from acute GVHD, Itpkb-/- donor T cells reduced active chronic GVHD in a multiorgan system model of bronchiolitis obliterans (BO), driven by germinal center reactions and resulting in target organ fibrosis. GNF362 treatment reduced active chronic GVHD in both BO and scleroderma models. Thus, intact Itpkb signaling is essential to drive acute GVHD pathogenesis and sustain active chronic GVHD, pointing toward a novel clinical application to prevent acute or treat chronic GVHD.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jing Du
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Katelyn G Paz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Michael C Zaiken
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Patricia A Taylor
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Andrew Kemal Kirchmeier
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kelli P MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Geoffrey R Hill
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David H Munn
- Georgia Cancer Center and
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - William J Murphy
- Department of Dermatology and
- Department of Internal Medicine, Laboratory of Cancer Immunology, University of California Davis Medical Center, Sacramento, CA
| | - David Miklos
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA
| | - Corey S Cutler
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
| | - John Koreth
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
| | - Joseph H Antin
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
| | - Robert J Soiffer
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
| | - Jerome Ritz
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
| | - Carol Dahlberg
- The Genomics Institute, Novartis Research Foundation (GNF), San Diego, CA
| | - Andrew T Miller
- The Genomics Institute, Novartis Research Foundation (GNF), San Diego, CA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
11
|
Fallahi P, Ferrari SM, Elia G, Ragusa F, Paparo SR, Caruso C, Guglielmi G, Antonelli A. Myo-inositol in autoimmune thyroiditis, and hypothyroidism. Rev Endocr Metab Disord 2018; 19:349-354. [PMID: 30506520 DOI: 10.1007/s11154-018-9477-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myo-inositol (Myo-Ins) plays an important role in thyroid function and autoimmunity. Myo-Ins is the precursor for the synthesis of phosphoinositides, which takes part in the phosphatidylinositol (PtdIns) signal transduction pathway, and plays a decisive role in several cellular processes. In the thyroid cells, PtdIns is involved in the intracellular thyroid-stimulating hormone (TSH) signaling, via Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) (PIP-3). Moreover, the phosphatidyl inositol 3 kinases (PI3K) family of lipid kinases regulates diverse aspects of T, B, and Tregs lymphocyte behaviour. Different mouse models deficient for the molecules involved in the PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, sometimes, autoimmunity. Studies have shown that cytokines modulate Myo-Ins in thyroid cells. Moreover, clinical studies have shown that after treatment with Myo-inositol plus seleniomethionine (Myo-Ins + Se), TSH levels significantly declined in patients with subclinical hypothyroidism due to autoimmune thyroiditis. The treatment was accompanied by a decline of antithyroid autoantibodies. After treatment serum CXCL10 levels declined, confirming the immune-modulatory effect of Myo-Ins. Additional research is necessary in larger population to evaluate the effect on the quality of life, and to study the mechanism of the effect on chemokines.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Claudia Caruso
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Giovanni Guglielmi
- U.O. Medicina Preventiva del Lavoro, Azienda Ospedaliero-Universitaria Pisana, I-56124, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy.
| |
Collapse
|
12
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
13
|
Abstract
Myo-inositol and phosphatidylinositol(s) play a pivotal function in many metabolic pathways that, if impaired, impact unfavorably on human health. This review analyzes several experimental and clinical investigations regarding the involvement of this class of molecules in physiological and pathological situations, with a major focus on thyroid. Central issues are the relationship between phosphatidylinositol and thyrotropin (TSH) signaling on one hand, and phosphatydylinositol and autoimmunity on the other hand. Other issues are the consequences of malfunction of some receptors, such as those ones for TSH (TSHR), insulin (IR) and insulin-like growth factor-1 (IGF-1R), or the connection between serum TSH concentrations and insulin resistance. Also covered are insulin resistance, metabolic syndrome and their allied disorders (diabetes, polycystic ovary syndrome [PCOS]), autoimmunity and certain malignancies, with their reciprocal links. Myoinositol has promising therapeutic potential. Appreciation of the inositol pathways involved in certain disorders, as mentioned in this review, may stimulate researchers to envisage additional therapeutic applications.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina School of Medicine, via Consolare Valeria, 1, 98125, Messina, Italy.
- Master Program of Childhood, Adolescence and Women's Endocrine Health, University of Messina School of Medicine, via Consolare Valeria, 1, 98125, Messina, Italy.
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University hospital, Padiglione H, 4 piano, Policlinico G. Martino, 98125, Messina, Italy.
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| |
Collapse
|
14
|
Scoumanne A, Molina-Ortiz P, Monteyne D, Perez-Morga D, Erneux C, Schurmans S. Specific expression and function of inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) in wild type and knock-out mice. Adv Biol Regul 2016; 62:1-10. [PMID: 27036498 DOI: 10.1016/j.jbior.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
Abstract
Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is the last identified member of the inositol 1,4,5-trisphosphate 3-kinases family which phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate. Although expression and function of the two other family members ITPKA and ITPKB are rather well characterized, similar information is lacking for ITPKC. Here, we first defined the expression of Itpkc mRNA and protein in mouse tissues and cells using in situ hybridization and new antibodies. Surprisingly, we found that cells positive for ITPKC in the studied tissues express either a multicilium (tracheal and bronchial epithelia, brain ependymal cells), microvilli forming a brush border (small and large intestine, and kidney proximal tubule cells) or a flagellum (spermatozoa), suggesting a role for ITPKC either in the development or the function of these specialized cellular structures. Given this surprising expression, we then analyzed ITPKC function in multiciliated tracheal epithelial cells and sperm cells using our Itpkc knock-out mouse model. Unfortunately, no significant difference was observed between control and mutant mice for any of the parameters tested, leaving the exact in vivo function of this third Ins(1,4,5)P3 3-kinase still open.
Collapse
Affiliation(s)
- Ariane Scoumanne
- Laboratoire de Génétique Fonctionnelle, GIGA-B34, Université de Liège, avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratoire de Génétique Fonctionnelle, GIGA-B34, Université de Liège, avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 8 rue Adrienne Bolland, B-6041 Gosselies, Belgium
| | - Christophe Erneux
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme, Université Libre de Bruxelles, route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Stéphane Schurmans
- Laboratoire de Génétique Fonctionnelle, GIGA-B34, Université de Liège, avenue de l'Hôpital 11, 4000 Liège, Belgium.
| |
Collapse
|
15
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
16
|
Miller AT, Dahlberg C, Sandberg ML, Wen BG, Beisner DR, Hoerter JAH, Parker A, Schmedt C, Stinson M, Avis J, Cienfuegos C, McPate M, Tranter P, Gosling M, Groot-Kormelink PJ, Dawson J, Pan S, Tian SS, Seidel HM, Cooke MP. Inhibition of the Inositol Kinase Itpkb Augments Calcium Signaling in Lymphocytes and Reveals a Novel Strategy to Treat Autoimmune Disease. PLoS One 2015; 10:e0131071. [PMID: 26121493 PMCID: PMC4488288 DOI: 10.1371/journal.pone.0131071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 02/02/2023] Open
Abstract
Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease.
Collapse
Affiliation(s)
- Andrew T. Miller
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
- * E-mail:
| | - Carol Dahlberg
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Mark L. Sandberg
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Ben G. Wen
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Daniel R. Beisner
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - John A. H. Hoerter
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Albert Parker
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Christian Schmedt
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Monique Stinson
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Jacqueline Avis
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Cynthia Cienfuegos
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Mark McPate
- Novartis Pharmaceuticals UK Limited, Respiratory Disease Area, Horsham, West Sussex, United Kingdom
| | - Pamela Tranter
- Novartis Pharmaceuticals UK Limited, Respiratory Disease Area, Horsham, West Sussex, United Kingdom
| | - Martin Gosling
- Novartis Pharmaceuticals UK Limited, Respiratory Disease Area, Horsham, West Sussex, United Kingdom
| | - Paul J. Groot-Kormelink
- Novartis Institutes for Biomedical Research, Musculoskeletal Disease Area, Basel, Switzerland
| | - Janet Dawson
- Novartis Pharma AG, Novartis Institutes for Biomed. Research, Basel, Switzerland
| | - Shifeng Pan
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Shin-Shay Tian
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - H. Martin Seidel
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Michael P. Cooke
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| |
Collapse
|
17
|
Koenig S, Moreau C, Dupont G, Scoumanne A, Erneux C. Regulation of NGF-driven neurite outgrowth by Ins(1,4,5)P3 kinase is specifically associated with the two isoenzymes Itpka and Itpkb in a model of PC12 cells. FEBS J 2015; 282:2553-69. [PMID: 25892505 DOI: 10.1111/febs.13300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/26/2022]
Abstract
Four inositol phosphate kinases catalyze phosphorylation of the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4 ]: these enzymes comprise three isoenzymes of inositol 1,4,5-trisphosphate 3-kinase (Itpk), referred to as Itpka, Itpkb and Itpkc, and the inositol polyphosphate multikinase (IPMK). The four enzymes that act on Ins(1,4,5)P3 are all expressed in rat pheochromocytoma PC12 cells, a model that is used to study neurite outgrowth induced by nerve growth factor (NGF). We compared the effect of over-expression of the four GFP-tagged kinases on NGF-induced neurite outgrowth. Our data show that over-expression of the Itpka and Itpkb isoforms inhibits NGF-induced neurite outgrowth, but over-expression of Itpkc and IPMK does not. Surprisingly, over-expression of the N-terminal F-actin binding domain of Itpka, which lacks catalytic activity, was as effective at inhibiting neurite outgrowth as the full-length enzyme. Neurite length was also significantly decreased in cells over-expressing Itpka and Itpkb but not Itpkc or IPMK. This result did not depend on the over-expression level of any of the kinases. PC12 cells over-expressing GFP-tagged kinase-dead mutants Itpka/b have shorter neurites than GFP control cells. The decrease in neurite length was never as pronounced as observed with wild-type GFP-tagged Itpka/b. Finally, the percentage of neurite-bearing cells was increased in cells over-expressing the membranous type I Ins(1,4,5)P3 5-phosphatase. We conclude that Itpka and Itpkb inhibit neurite outgrowth through both F-actin binding and localized Ins(1,4,5)P3 3-kinase activity. Itpkc and IPMK do not influence neurite outgrowth or neurite length in this model.
Collapse
Affiliation(s)
- Sandra Koenig
- Interdisciplinary Research Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Colette Moreau
- Interdisciplinary Research Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Ariane Scoumanne
- Laboratory of Functional Genetics, GIGA Signal Transduction, Université de Liège, Liège, Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
19
|
Follo MY, Manzoli L, Poli A, McCubrey JA, Cocco L. PLC and PI3K/Akt/mTOR signalling in disease and cancer. Adv Biol Regul 2014; 57:10-6. [PMID: 25482988 DOI: 10.1016/j.jbior.2014.10.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Cancer cell metabolism is deregulated, and signalling pathways can be involved. For instance, PI3K/Akt/mTOR is associated with normal proliferation and differentiation, and its alteration is detectable in cancer cells, that exploit the normal mechanisms to overcome apoptosis. On the other hand, also the family of Phospholipase C (PLC) enzymes play a critical role in cell growth, and any change concerning these enzymes or their downstream targets can be associated with neoplastic transformation. Here, we review the role of PLC and PI3K/Akt/mTOR signal transduction pathways in pathophysiology.
Collapse
Affiliation(s)
- Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandro Poli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation. Biochem J 2014; 463:319-28. [DOI: 10.1042/bj20140757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inositol 1,4,5-trisphosphate 3-kinase regulation by Ca2+/calmodulin involves multiple protein–protein interactions, which form a highly hydrophobic interface and defines a new calmodulin-binding motif. The structural data support that calmodulin binds to an autoinhibitory segment facilitating the kinase activity.
Collapse
|
21
|
McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M, Steelman LS. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 2014; 57:75-101. [PMID: 25453219 DOI: 10.1016/j.jbior.2014.09.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/28/2022]
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway has been associated with CICs and in some cases resistance to therapeutics. We will review the effects of activation of the EGFR/PI3K/PTEN/Akt/mTORC pathway primarily in breast cancer and development of drug resistance. The targeting of this pathway and other interacting pathways will be discussed as well as clinical trials with novel small molecule inhibitors as well as established drugs that are used to treat other diseases. In this manuscript, we will discuss an inducible EGFR model (v-ERB-B:ER) and its effects on cell growth, cell cycle progression, activation of signal transduction pathways, prevention of apoptosis in hematopoietic, breast and prostate cancer models.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Anatomical Sciences, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
22
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM, Steelman LS. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2013; 54:176-96. [PMID: 24169510 DOI: 10.1016/j.jbior.2013.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Jorg Basecke
- Department of Medicine, University of Göttingen, Göttingen, Germany; Sanct-Josef-Hospital Cloppenburg, Department of Hematology and Oncology, Cloppenburg, Germany
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|