1
|
Park WH. Propyl gallate induces human pulmonary fibroblast cell death through the regulation of Bax and caspase-3. Ann Med 2024; 56:2319853. [PMID: 38373208 PMCID: PMC10878342 DOI: 10.1080/07853890.2024.2319853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
Propyl gallate (PG) has been found to exert an inhibitory effect on the growth of different cell types, including lung cancer cells. However, little is known about the cytotoxicological effects of PG specifically on normal primary lung cells. The current study examined the cellular effects and cell death resulting from PG treatment in human pulmonary fibroblast (HPF) cells. DNA flow cytometry results demonstrated that PG (100-1,600 μM) had a significant impact on the cell cycle, leading to G1 phase arrest. Notably, 1,600 μM PG slightly increased the number of sub-G1 cells. Additionally, PG (400-1,600 μM) resulted in the initiation of cell death, a process that coincided with a loss of mitochondrial membrane potential (MMP; ΔΨm). This loss of MMP (ΔΨm) was evaluated using a FACS cytometer. In PG-treated HPF cells, inhibitors targeting pan-caspase, caspase-3, caspase-8, and caspase-9 showed no significant impact on the quantity of annexin V-positive and MMP (ΔΨm) loss cells. The administration of siRNA targeting Bax or caspase-3 demonstrated a significant attenuation of PG-induced cell death in HPF cells. However, the use of siRNAs targeting p53, Bcl-2, or caspase-8 did not exhibit any notable effect on cell death. Furthermore, none of the tested MAPK inhibitors, including MEK, c-Jun N-terminal kinase (JNK), and p38, showed any impact on PG-induced cell death or the loss of MMP (ΔΨm) in HPF cells. In conclusion, PG induces G1 phase arrest of the cell cycle and cell death in HPF cells through apoptosis and/or necrosis. The observed HPF cell death is mediated by the modulation of Bax and caspase-3. These findings offer insights into the cytotoxic and molecular effects of PG on normal HPF cells.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Jeonbuk National University, Jeonju, Jeollabuk, Republic of Korea
| |
Collapse
|
2
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
3
|
Wang N, Yuan Y, Jia Y, Han Y, Yu X, Fu Y, Li X. TFE3 and TP53 were novel diagnostic biomarkers related to mitochondrial autophagy in chronic rhinosinusitis with nasal polyps. Front Genet 2024; 15:1423778. [PMID: 39440241 PMCID: PMC11493635 DOI: 10.3389/fgene.2024.1423778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) belongs to a subtype of Chronic rhinosinusitis which is a heterogeneous inflammatory condition. It has been reported that mitophagy may provide a new therapeutic option for CRSwNP. Methods The GSE136825 (training dataset) and GSE179265 (validation dataset) were scoured from the Gene Expression Omnibus database. The candidate genes related to mitophagy were identified by differential expression analysis. Subsequently, the biomarkers were selected from the machine learning, Receiver Operating Characteristic curves, and expression level verification. A backpropagation (BP) neural network was generated to evaluate the diagnostic ability of biomarkers. In addition, the infiltration abundance of immune cells, potential drugs, and related ear-nose-throat (ENT) diseases were analyzed based on the biomarkers. Finally, qPCR analysis was performed to verify these biomarkers. Results A total of 8 candidate genes were identified by overlapping 3,400 differentially expressed genes (DEGs) and 72 mitophagy-related genes Subsequently, TFE3 and TP53 were identified as biomarkers of CRSwNP, and the area under the curves (AUC) of the BP neural network was 0.74, which indicated that the biomarkers had excellent abilities. TFE3 and TP53 were co-enriched in the cancer pathway, cell cycle, endocytosis, etc. What's more, Macrophage and Immature dendritic cells had significant correlations with biomarkers. The drugs (Doxorubicin, Tetrachlorodibenzodioxin, etc.) and the ear-nose-throat diseases (hearing loss, sensorineural, tinnitus, etc.) related to biomarkers were predicted. Ultimately, qPCR results showed that the expression levels of TFE3 and TP53 in polyp tissue of CRSwNP were increased. Conclusion Overall, TFE3 and TP53 could be used as biomarkers or potential therapeutic targets to diagnose and treat CRSwNP.
Collapse
Affiliation(s)
- Ning Wang
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Ying Yuan
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Yanjun Jia
- Department of Otolaryngology-Head and Neck Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yue Han
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Xuemin Yu
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Ying Fu
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Xiao Li
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
4
|
Engür-Öztürk S, Kaya-Tİlkİ E, Cantürk Z, Dİkmen M. Enhanced angiogenesis of human umbilical vein endothelial cells via THP-1-derived M2c-like macrophages and treatment with proteasome inhibitors 'bortezomib and ixazomib'. APMIS 2024; 132:594-607. [PMID: 38775107 DOI: 10.1111/apm.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/07/2024] [Indexed: 07/11/2024]
Abstract
The leading cause of cancer-related death is lung cancer, with metastasis being the most common cause of death. To elucidate the role of macrophages in lung cancer and angiogenesis processes, we established an in vitro co-culture model of A549 or HUVEC with THP-1 cells that polarized to M2c macrophages with hydrocortisone. The proteasome inhibitors bortezomib and ixazomib were investigated for their effects on proliferation, invasion, migration, metastasis, and angiogenesis pathways. The effects of bortezomib and ixazomib on gene expression in gene panels, including crucial genes related to angiogenesis and proteasomes, were investigated after the co-culture model to determine these effects at the molecular level. In conclusion, bortezomib and ixazomib showed antiproliferative effects in both cells, as well as in M2c macrophage co-culture. M2c macrophages also increased invasion in A549 cells and both invasion and migration in HUVEC. mRNA expression upregulation, specifically in the NFKB and VEGF genes, supported the metastatic and angiogenic effects found in A549 and HUVEC with M2c macrophage co-culture. Additionally, bortezomib inhibited the VEGFB pathway in HUVEC and NFKB1 in A549 cells. The significant findings obtained as a result of this study will provide information regarding angiogenesis induced by M2 macrophages.
Collapse
Affiliation(s)
- Selin Engür-Öztürk
- Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Elif Kaya-Tİlkİ
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Miriş Dİkmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
5
|
Hoang T, Sutera P, Nguyen T, Chang J, Jagtap S, Song Y, Shetty AC, Chowdhury DD, Chan A, Carrieri FA, Hathout L, Ennis R, Jabbour SK, Parikh R, Molitoris J, Song DY, DeWeese T, Marchionni L, Ren L, Sawant A, Simone N, Lafargue A, Van Der Eecken K, Bunz F, Ost P, Tran PT, Deek MP. TP53 structure-function relationships in metastatic castrate-sensitive prostate cancer and the impact of APR-246 treatment. Prostate 2024; 84:87-99. [PMID: 37812042 DOI: 10.1002/pros.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Triet Nguyen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Jinhee Chang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Shreya Jagtap
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Yang Song
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dipanwita D Chowdhury
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Aaron Chan
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Francesca A Carrieri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lara Hathout
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald Ennis
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Rahul Parikh
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason Molitoris
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Lei Ren
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Amit Sawant
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Kim Van Der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Elahi AH, Morales CS, Xu XL, Eliades A, Patsalis PC, Abramson DH, Jhanwar SC. `Targeted pharmacologic inhibition of S-phase kinase-associated protein 2 (SKP2) mediated cell cycle regulation in lung and other RB-Related cancers: A brief review of current status and future prospects. Adv Biol Regul 2023; 88:100964. [PMID: 37004354 DOI: 10.1016/j.jbior.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Small cell lung cancer (SCLC) often exhibits Rb deficiency, TRβ and p130 deletion, and SKP2 amplification, suggesting TRβ inactivation and SKP2 activation. It is reported that SKP2 targeted therapy is effective in some cancers in vitro and in vivo, but it is not reported for the treatment of SCLC and retinoblastoma. SKP2 is the synthetic lethal gene in SCLC and retinoblastoma, so SKP2 can be used for targeted therapy in SCLC and retinoblastoma. RB1 knockout mice develop several kinds of tumors, but Rb1 and SKP2 double knockout mice are healthy, suggesting that SKP2 targeted therapy may have significant effects on Rb deficient cancers with less side effects, and if successful in SCLC and retinoblastoma in vitro and in animal model, such compounds may be promising for the clinical treatment of SCLC, retinoblastoma, and variety of Rb deficient cancers. Previously our studies showed that retinoblastomas exhibit retinal cone precursor properties and depend on cone-specific thyroid hormone receptor β2 (TRβ2) and SKP2 signaling. In this study, we sought to suppress SCLC and retinoblastoma cell growth by SKP2 inhibitors as a prelude to targeted therapy in vitro and in vivo. We knocked down TRβ2 and SKP2 or over-expressed p27 in SCLC and retinoblastoma cell lines to investigate SKP2 and p27 signaling alterations. The SCLC cell lines H209 as well as retinoblastoma cell lines Y79, WERI, and RB177 were treated with SKP2 inhibitor C1 at different concentrations, following which Western blotting, Immunostaining, and cell cycle kinetics studies were performed to study SKP2 and p27 expression ubiquitination, to determine impact on cell cycle regulation and growth inhibition. TRβ2 knockdown in Y79, RB177 and H209 caused SKP2 downregulation and degradation, p27 up-regulation, and S phase arrest, whereas, SKP2 knockdown or p27 over-expression caused p27 accumulation and G1-S phase arrest. In the cell lines Y79, WERI, RB177, and H209 treatment with C1 caused SKP2 ubiquitination and degradation, p27 de-ubiquitination and accumulation, and cell growth arrest. SKP2 inhibitor C1 significantly suppressed retinoblastoma as well as SCLC cell growth by SKP2 degradation and p27 accumulation. In vivo study also showed inhibition of tumor growth with C1 treatment. Potential limitations of the success of such a therapeutic approach and its translational application in human primary tumors, and alternative approaches to overcome such limitations are briefly discussed for the treatment of retinoblastoma, SCLC and other RB-related cancers.
Collapse
|
7
|
Addiction of Merkel cell carcinoma to MUC1-C identifies a potential new target for treatment. Oncogene 2022; 41:3511-3523. [PMID: 35688945 PMCID: PMC9249628 DOI: 10.1038/s41388-022-02361-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive malignancy with neuroendocrine (NE) features, limited treatment options, and a lack of druggable targets. There is no reported involvement of the MUC1-C oncogenic protein in MCC progression. We show here that MUC1-C is broadly expressed in MCCs and at higher levels in Merkel cell polyomavirus (MCPyV)-positive (MCCP) relative to MCPyV-negative (MCCN) tumors. Our results further demonstrate that MUC1-C is expressed in MCCP, as well as MCCN, cell lines and regulates common sets of signaling pathways related to RNA synthesis, processing, and transport in both subtypes. Mechanistically, MUC1-C (i) interacts with MYCL, which drives MCC progression, (ii) is necessary for expression of the OCT4, SOX2, KLF4, MYC, and NANOG pluripotency factors, and (iii) induces the NEUROD1, BRN2 and ATOH1 NE lineage dictating transcription factors. We show that MUC1-C is also necessary for MCCP and MCCN cell survival by suppressing DNA replication stress, the p53 pathway, and apoptosis. In concert with these results, targeting MUC1-C genetically and pharmacologically inhibits MCC self-renewal capacity and tumorigenicity. These findings demonstrate that MCCP and MCCN cells are addicted to MUC1-C and identify MUC1-C as a potential target for MCC treatment.
Collapse
|
8
|
Yang Q, Zhai X, Lv Y. A Bibliometric Analysis of Triptolide and the Recent Advances in Treating Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:878726. [PMID: 35721205 PMCID: PMC9198653 DOI: 10.3389/fphar.2022.878726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, natural products derived from plants and their derivatives have attracted great interest in the field of disease treatment. Triptolide is a tricyclic diterpene extracted from Tripterygium wilfordii, a traditional Chinese medicine, which has shown excellent therapeutic potential in the fields of immune inflammation and cancer treatment. In this study, 1,106 Web-of-Science-indexed manuscripts and 1,160 Chinese-National-Knowledge-Infrastructure-indexed manuscripts regarding triptolide published between 2011 and 2021 were analyzed, mapping the co-occurrence networks of keywords and clusters using CiteSpace software. The research frontier and development trend were determined by keyword frequency and cluster analysis, which can be used to predict the future research development of triptolide. Non-small cell lung cancer (NSCLC) is most common in lung cancer patients, accounting for about 80% of all lung cancer patients. New evidence suggests that triptolide effectively inhibits the development and metastasis of NSCLC by the induction of apoptosis, reversion of EMT, and regulation of gene expression. Specifically, it acts on NF-κB, MAPKs, P53, Wnt/β-catenin, and microRNAs (miRNAs), signaling pathways and molecular mechanisms. Consequently, this article reviews the research progress of the anti-NSCLC effect of triptolide. In addition, attenuated studies on triptolide and the potential of tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
| | | | - Yi Lv
- *Correspondence: Xuejia Zhai, ; Yi Lv,
| |
Collapse
|
9
|
Wang C, Liao S, Wang Y, Hu X, Xu J. Computational Identification of Guillain-Barré Syndrome-Related Genes by an mRNA Gene Expression Profile and a Protein–Protein Interaction Network. Front Mol Neurosci 2022; 15:850209. [PMID: 35370550 PMCID: PMC8968047 DOI: 10.3389/fnmol.2022.850209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background In the present study, we used a computational method to identify Guillain–Barré syndrome (GBS) related genes based on (i) a gene expression profile, and (ii) the shortest path analysis in a protein–protein interaction (PPI) network. Materials and Methods mRNA Microarray analyses were performed on the peripheral blood mononuclear cells (PBMCs) of four GBS patients and four age- and gender-matched healthy controls. Results Totally 30 GBS-related genes were screened out, in which 20 were retrieved from PPI analysis of upregulated expressed genes and 23 were from downregulated expressed genes (13 overlap genes). Gene ontology (GO) enrichment and KEGG enrichment analysis were performed, respectively. Results showed that there were some overlap GO terms and KEGG pathway terms in both upregulated and downregulated analysis, including positive regulation of macromolecule metabolic process, intracellular signaling cascade, cell surface receptor linked signal transduction, intracellular non-membrane-bounded organelle, non-membrane-bounded organelle, plasma membrane, ErbB signaling pathway, focal adhesion, neurotrophin signaling pathway and Wnt signaling pathway, which indicated these terms may play a critical role during GBS process. Discussion These results provided basic information about the genetic and molecular pathogenesis of GBS disease, which may improve the development of effective genetic strategies for GBS treatment in the future.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiwei Liao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, China
| | - Yiyi Wang
- Department of Neurology, Tianjin Haihe Hospital, Tianjin, China
| | - Xiaowei Hu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Jing Xu,
| |
Collapse
|
10
|
Paired box 5 increases the chemosensitivity of esophageal squamous cell cancer cells by promoting p53 signaling activity. Chin Med J (Engl) 2022; 135:606-618. [PMID: 35191417 PMCID: PMC8920431 DOI: 10.1097/cm9.0000000000002018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gene promoter methylation is a major epigenetic change in cancers, which plays critical roles in carcinogenesis. As a crucial regulator in the early stages of B-cell differentiation and embryonic neurodevelopment, the paired box 5 (PAX5) gene is downregulated by methylation in several kinds of tumors and the role of this downregulation in esophageal squamous cell carcinoma (ESCC) pathogenesis remains unclear. METHODS To elucidate the role of PAX5 in ESCC, eight ESCC cell lines, 51 primary ESCC tissue samples, and eight normal esophageal mucosa samples were studied and The Cancer Genome Atlas (TCGA) was queried. PAX5 expression was examined by reverse transcription-polymerase chain reaction and western blotting. Cell apoptosis, proliferation, and chemosensitivity were detected by flow cytometry, colony formation assays, and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays in ESCC cell lines with PAX5 overexpression or silencing. Tumor xenograft models were established for in vivo verification. RESULTS PAX5 methylation was found in 37.3% (19/51) of primary ESCC samples, which was significantly associated with age (P = 0.007) and tumor-node-metastasis stage (P = 0.014). TCGA data analysis indicated that PAX5 expression was inversely correlated with promoter region methylation (r = -0.189, P = 0.011 for cg00464519 and r = -0.228, P = 0.002 for cg02538199). Restoration of PAX5 expression suppressed cell proliferation, promoted apoptosis, and inhibited tumor growth of ESCC cell lines, which was verified in xenografted mice. Ectopic PAX5 expression significantly increased p53 reporter luciferase activity and increased p53 messenger RNA and protein levels. A direct interaction of PAX5 with the p53 promoter region was confirmed by chromatin immunoprecipitation assays. Re-expression of PAX5 sensitized ESCC cell lines KYSE150 and KYSE30 to fluorouracil and docetaxel. Silencing of PAX5 induced resistance of KYSE450 cells to these drugs. CONCLUSIONS As a tumor suppressor gene regulated by promoter region methylation in human ESCC, PAX5 inhibits proliferation, promotes apoptosis, and induces activation of p53 signaling. PAX5 may serve as a chemosensitive marker of ESCC.
Collapse
|
11
|
Guo W, Zhang X, Lin L, Wang H, He E, Wang G, Zhao Q. The disulfiram/copper complex induces apoptosis and inhibits tumor growth in human osteosarcoma by activating the ROS/JNK signaling pathway. J Biochem 2021; 170:275-287. [PMID: 33792698 DOI: 10.1093/jb/mvab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Given the huge cost, long research and development (R&D) time and uncertain side effects of discovering new drugs, drug repositioning of those approved to treat diseases clinically as new drugs for other pathological conditions, especially cancers, is a potential alternative strategy. Disulfiram (DSF), an old drug used to treat alcoholism, has been found to exhibit anticancer activity and improve chemotherapeutic efficacy in cancers by an increasing number of studies. In addition, the combination of DSF and copper may be a more effective therapeutic strategy. In this study, we report the toxicity of the DSF/Cu complex to human osteosarcoma both in vitro and in vivo. DSF/Cu significantly inhibited the proliferation and clonogenicity of osteosarcoma cell lines. Furthermore, the generation of ROS was triggered by DSF/Cu, and cell arrest, autophagy and apoptosis were induced in a ROS-dependent manner. The underlying mechanism of this process was explored, and DSF/Cu may mainly inhibit osteosarcoma by inducing apoptosis by activating the ROS/JNK pathway. DSF/Cu also inhibited osteosarcoma growth in a xenograft model with low levels of organ-related toxicities. These results suggest that the DSF/Cu complex could be an efficient and safe option for the treatment of osteosarcoma in the clinic.
Collapse
Affiliation(s)
- Weihong Guo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoxing Zhang
- Department of Orthopedic Surgery, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Longshuai Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hongjie Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Enjun He
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
12
|
Integrated analysis of miRNA and mRNA transcriptomic reveals antler growth regulatory network. Mol Genet Genomics 2021; 296:689-703. [PMID: 33770271 DOI: 10.1007/s00438-021-01776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
The growth of antler is driven by endochondral ossification in the growth center of the apical region. Antler grows faster than cancer tissues, but it can be stably regulated and regenerated periodically. To elucidate the molecular mechanisms of how antler grows rapidly without carcinogenesis, in this study, we used RNA-seq technology to evaluate the changes of miRNA and mRNA profiles in antler at four different developmental stages, including 15, 60, 90, and 110 days. We identified a total of 55004 unigenes and 246 miRNAs of which, 10182, 13258, 10740 differentially expressed (DE) unigenes and 35, 53, 27 DE miRNAs were identified in 60-day vs. 15-day, 90-day vs. 60-day, and 110-day vs. 90-day. GO and KEGG pathway analysis indicated that DE unigenes and DE miRNA were mainly associated with chondrogenesis, osteogenesis and inhibition of oncogenesis, that were closely related to antler growth. The interaction networks of mRNA-mRNA and miRNA-mRNA related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler were constructed. The results indicated that mRNAs (COL2A1, SOX9, WWP2, FGFR1, SPARC, LOX, etc.) and miRNAs (miR-145, miR-199a-3p, miR-140, miR-199a-5p, etc.) might have key roles in chondrogenesis and osteogenesis of antler. As well as mRNA (TP53, Tpm3 and ATP1A1, etc.) and miRNA (miR-106a, miR-145, miR-1260b and miR-2898, etc.) might play important roles in inhibiting the carcinogenesis of antler. In summary, we constructed the mRNA-mRNA and miRNA-mRNA regulatory networks related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler, and identified key candidate mRNAs and miRNAs among them. Further developments and validations may provide a reference for in-depth analysis of the molecular mechanism of antler growth without carcinogenesis.
Collapse
|
13
|
Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, Miller M, Sherill-Rofe D, Arad Y, Gur-Wahnon D, Li X, Makriyannis A, Ben-Zvi D, Tabach Y, Ben-Dov IZ, Tam J. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab 2020; 42:101087. [PMID: 32987186 PMCID: PMC7563015 DOI: 10.1016/j.molmet.2020.101087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The endocannabinoid (eCB) system is increasingly recognized as being crucially important in obesity-related hepatic steatosis. By activating the hepatic cannabinoid-1 receptor (CB1R), eCBs modulate lipogenesis and fatty acid oxidation. However, the underlying molecular mechanisms are largely unknown. METHODS We combined unbiased bioinformatics techniques, mouse genetic manipulations, multiple pharmacological, molecular, and cellular biology approaches, and genomic sequencing to systematically decipher the role of the hepatic CB1R in modulating fat utilization in the liver and explored the downstream molecular mechanisms. RESULTS Using an unbiased normalized phylogenetic profiling analysis, we found that the CB1R evolutionarily coevolves with peroxisome proliferator-activated receptor-alpha (PPARα), a key regulator of hepatic lipid metabolism. In diet-induced obese (DIO) mice, peripheral CB1R blockade (using AM6545) induced the reversal of hepatic steatosis and improved liver injury in WT, but not in PPARα-/- mice. The antisteatotic effect mediated by AM6545 in WT DIO mice was accompanied by increased hepatic expression and activity of PPARα as well as elevated hepatic levels of the PPARα-activating eCB-like molecules oleoylethanolamide and palmitoylethanolamide. Moreover, AM6545 was unable to rescue hepatic steatosis in DIO mice lacking liver sirtuin 1 (SIRT1), an upstream regulator of PPARα. Both of these signaling molecules were modulated by the CB1R as measured in hepatocytes exposed to lipotoxic conditions or treated with CB1R agonists in the absence/presence of AM6545. Furthermore, using microRNA transcriptomic profiling, we found that the CB1R regulated the hepatic expression, acetylation, and transcriptional activity of p53, resulting in the enhanced expression of miR-22, which was found to specifically target SIRT1 and PPARα. CONCLUSIONS We provide strong evidence for a functional role of the p53/miR-22/SIRT1/PPARα signaling pathway in potentially mediating the antisteatotic effect of peripherally restricted CB1R blockade.
Collapse
Affiliation(s)
- Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kiran V Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Qu J, Lu W, Chen M, Gao W, Zhang C, Guo B, Yang J. Combined effect of recombinant human adenovirus p53 and curcumin in the treatment of liver cancer. Exp Ther Med 2020; 20:18. [PMID: 32934683 PMCID: PMC7471865 DOI: 10.3892/etm.2020.9145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 01/17/2020] [Indexed: 01/27/2023] Open
Abstract
The development of an effective therapeutic intervention for liver cancer is a worldwide challenge that remains to be adequately addressed. Of note, TP53, which encodes the p53 protein, is an important tumor suppressor gene, 61% of TP53 is functionally inactivated in liver cancer. Recombinant human adenovirus p53 (rAd-p53) is the first commercial product that has been used for gene therapy. In the present study, the combined mechanistic effects of rAd-p53 and curcumin, a naturally occurring compound with previously reported anti-inflammatory, antioxidant and anti-cancer properties, were assessed in liver cancer cells, using HepG2 cells as the model cell line. The administration of either curcumin or rAd-p53 promoted apoptosis, suppressed epithelial-mesenchymal transition (EMT) and blocked G2/M phase progression in HepG2 cells, which were potentiated further when both agents were applied together. Combined rAd-p53 and curcumin treatment resulted in higher p53 (P<0.01) and p21 (P<0.01) expression compared with rAd-p53 or curcumin were added alone, suggesting an additive effect on TP53 expression. Additionally, curcumin and rAd-p53 were demonstrated to regulate the activation of mitogen-activated protein kinases (MAPKs) ERK1/2, p38 MAPK and JNK. These results indicated that the combination of rAd-p53 with curcumin synergistically potentiates apoptosis and inhibit EMT compared with either rAd-p53 or curcumin treatment alone via the regulation of TP53 regulation. Mechanistically, this effect on TP53 expression may involve the ERK1/2, p38 MAPK and JNK signaling pathways. The current study provides new insights that can potentially advance the development of therapeutic strategies for liver cancer treatment.
Collapse
Affiliation(s)
- Juan Qu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Wei Lu
- Department of Gastroenterology, Tianjin Cancer Hospital, Tianjin 300060, P.R. China
| | - Ming Chen
- Department of Hepatopathy and Hepatic Oncology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Wei Gao
- Department of Hepatopathy and Hepatic Oncology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Cong Zhang
- Department of Hepatopathy and Hepatic Oncology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Bin Guo
- College of Acu-moxibustion and Massage, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jizhi Yang
- Department of Traditional Chinese Medicine, Chentangzhuang Street Health Service Center, Tianjin 300222, P.R. China
| |
Collapse
|
15
|
Tu Y, Xie L, Chen L, Yuan Y, Qin B, Wang K, Zhu Q, Ji N, Zhu M, Guan H. Long non-coding RNA MEG3 promotes cataractogenesis by upregulating TP53INP1 expression in age-related cataract. Exp Eye Res 2020; 199:108185. [PMID: 32841649 DOI: 10.1016/j.exer.2020.108185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/04/2020] [Accepted: 08/01/2020] [Indexed: 01/02/2023]
Abstract
Age-related cataract (ARC) is the leading cause of visual impairment or even blindness among the aged population globally. Long non-coding RNA (LncRNA) has been proven to be the potential regulator of ARC. The latest study reveals that maternally expressed gene 3 (MEG3) promotes the apoptosis and inhibits the proliferation of multiple cancer cells. However, the expression and role of MEG3 in ARC are unclear. In this study, we investigated the effects of MEG3 in ARC and explored the regulatory mechanisms underlying these effects. We observed that MEG3 expression was up-regulated in the age-related cortical cataract (ARCC) lens capsules and positively correlated with the histological degree of ARCC. The pro-apoptosis protein, active caspase-3 and Bax increased in the anterior lens capsules of ARCC tissue, while the anti-apoptotic protein Bcl-2 decreased compared to normal lens. Knockdown of MEG3 increased the viability and inhibited the apoptosis of LECs upon the oxidative stress induced by H2O2. MEG3 was localized in both nucleus and cytoplasm in LECs. MEG3 facilitated TP53INP1 expression via acting as miR-223 sponge and promoting P53 expression. Additionally, TP53INP1 knockdown alleviated H2O2-induced lens turbidity. In summary, MEG3 promoted ARC progression by up-regulating TP53INP1 expression through suppressing miR-223 and promoting P53 expression, which would provide a novel insight into the pathogenesis of ARC.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiujian Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Na Ji
- Department of Ophthalmology, The Affiliated Eye Hospital of Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
16
|
Wang H, Ma X, Liu J, Wan Y, Jiang Y, Xia Y, Cheng W. Prognostic value of an autophagy-related gene expression signature for endometrial cancer patients. Cancer Cell Int 2020; 20:306. [PMID: 32684843 PMCID: PMC7359499 DOI: 10.1186/s12935-020-01413-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Autophagy is associated with cancer development. Autophagy-related genes play significant roles in endometrial cancer (EC), a major gynecological malignancy worldwide, but little was known about their value as prognostic markers. Here we evaluated the value of a prognostic signature based on autophagy-related genes for EC. Methods First, various autophagy-related genes were obtained via the Human Autophagy Database and their expression profiles were downloaded from The Cancer Genome Atlas. Second, key prognostic autophagy-related genes were identified via univariate, LASSO and multivariate Cox regression analyses. Finally, a risk score to predict the prognosis of EC was calculated and validated by using the test and the entire data sets. Besides, the key genes mRNA expression were validated using quantitative real-time PCR in clinical tissue samples. Results A total of 40 differentially expressed autophagy-related genes in EC were screened and five of them were prognosis-related (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1). A prognostic signature was constructed based on these five genes using the train set, which stratified EC patients into high-risk and low-risk groups (p < 0.05). In terms of overall survival, the analyses of the test set and the entire set yielded consistent results (test set: p < 0.05; entire set: p < 0.05). Time-dependent ROC analysis suggested that the risk score predicted EC prognosis accurately and independently (0.674 at 1 year, 0.712 at 3 years and 0.659 at 5 years). A nomogram with clinical utility was built. Patients in the high-risk group displayed distinct mutation signatures compared with those in the low-risk group. For clinical sample validation, we found that EIF4EBP1and ERBB2 had higher level in EC than that in normal tissues while CDKN1B, DLC1 and GRID1 had lower level, which was consistent with the results predicted. Conclusions Based on five autophagy-related genes (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1), our model can independently predict the OS of EC patients by combining molecular signature and clinical characteristics.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People's Republic of China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 China.,State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166 China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People's Republic of China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 China.,State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166 China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People's Republic of China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People's Republic of China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People's Republic of China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 China.,State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166 China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 368 North Jiangdong Road, Nanjing, 210029 Jiangsu People's Republic of China
| |
Collapse
|
17
|
Fan Y, Wang K. miR‑205 suppresses cell migration, invasion and EMT of colon cancer by targeting mouse double minute 4. Mol Med Rep 2020; 22:633-642. [PMID: 32467998 PMCID: PMC7339668 DOI: 10.3892/mmr.2020.11150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the most frequent malignant tumors, and microRNA (miR)‑205 is involved in the tumor progression. The present study aimed to explore the effects of miR‑205 on human colon cancer and its targeting mechanism. The levels of miR‑205 and mouse double minute 4 (MDM4) were determined via reverse transcription‑quantitative (RT‑q)PCR and western blot analysis. A luciferase activity assay was performed to analyze the association between miR‑205 and MDM4. Cell viability, migration and invasion were determined via Cell Counting Kit‑8, wound healing and Transwell assays, respectively. The levels of epithelial‑mesenchymal transition (EMT)‑associated factors were determined by RT‑qPCR and western blot analysis. It was identified that MDM4 was overexpressed in colon cancer tissues and cells, and that there was a negative correlation between miR‑205 and MDM4 expression in colon cancer. Similarly, miR‑205 inhibited MDM4 expression by binding to its 3'untranslated region. in addition, miR‑205 directly targeted MDM4, accompanied by suppressed proliferation, migration and invasion of HCT116 cells. EMT processes were suppressed in miR‑205‑overexpressed cells; upregulation of E‑cadherin, and downregulation of N‑cadherin, vimentin, matrix metalloproteinase (MMP)2 and MMP9 were observed. Collectively, miR‑205 conspicuously depressed the viability, migration, invasion and EMT process of human colon cancer cells via targeting MDM4. miR‑205 could be potentially used in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100036, P.R. China
| | - Kuanyu Wang
- Department of The Second Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
18
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
19
|
Casciaro F, Beretti F, Zavatti M, McCubrey JA, Ratti S, Marmiroli S, Follo MY, Maraldi T. Nuclear Nox4 interaction with prelamin A is associated with nuclear redox control of stem cell aging. Aging (Albany NY) 2019; 10:2911-2934. [PMID: 30362963 PMCID: PMC6224265 DOI: 10.18632/aging.101599] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells in vitro prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during in vitro expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age. The analysis of 21 AFSC samples allowed to classify them in groups with different levels of stemness properties. In summary, the expression of pluripotency genes and the proliferation rate were inversely correlated with the content of reactive oxygen species (ROS), DNA damage signs and the onset premature aging markers, including accumulation of prelamin A, the lamin A immature form. Interestingly, a specific source of ROS, the NADPH oxidase isoform 4 (Nox4), can localize into PML nuclear bodies (PML-NB), where it associates to prelamin A. Besides, Nox4 post translational modification, involved in PML-NB localization, is linked to its degradation pathway, as it is also for prelamin A, thus possibly modulating the premature aging phenotype occurrence.
Collapse
Affiliation(s)
- Francesca Casciaro
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy.,Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - Manuela Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Sandra Marmiroli
- Cellular Signaling Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| |
Collapse
|
20
|
Liu Y, Zhi Y, Song H, Zong M, Yi J, Mao G, Chen L, Huang G. S1PR1 promotes proliferation and inhibits apoptosis of esophageal squamous cell carcinoma through activating STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:369. [PMID: 31438989 PMCID: PMC6706905 DOI: 10.1186/s13046-019-1369-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide, which lacks effective biomarkers for prognosis. Therefore, it is urgent to explore new potential molecular markers to discriminate patients with poorer survival in ESCC. Methods Bioinformatics analysis, qRT-PCR, and western blot were applied to investigate S1PR1 expression. CCK-8 assay, colony formation assay, flow cytometry dual staining assay, and immunofluorescence were performed to examine cell proliferation ability and apoptosis rate. Mouse xenograft model of TE-13 cells was established to confirm the roles of S1PR1 in vivo. Gene set enrichment analysis (GSEA) was used to investigate the downstream signaling pathways related to S1PR1 functions. Co-IP was performed to verify the direct binding of S1PR1 and STAT3. Western blot was applied to determine the phosphorylation level of STAT3. Immunohistochemistry was conducted to identify protein expression of S1PR1 and p- STAT3 in tumor tissues. Results In the present study, we found that S1PR1 expression was higher in ESCC patients and was a potential biomarker for poor prognosis. Silencing S1PR1 expression inhibited proliferation, and increased apoptosis of ESCC cells, while overexpression of S1PR1 had opposite effects. Mechanistically, S1PR1 played the roles of promoting proliferation and attenuating apoptosis through directly activating p-STAT3. Furthermore, in vivo experiments verified this mechanism. Conclusion Our findings indicated that S1PR1 enhanced proliferation and inhibited apoptosis of ESCC cells by activating STAT3 signaling pathway. S1PR1 may serve as a prognostic biomarker for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13046-019-1369-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Mingzhu Zong
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Yi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, Cassier PA, Soria JC, Chawla S, de Weger V, Wagner AJ, Siegel D, De Vos F, Rasmussen E, Henary HA. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. Invest New Drugs 2019; 38:831-843. [PMID: 31359240 PMCID: PMC7211202 DOI: 10.1007/s10637-019-00840-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Background This open-label, first-in-human, phase 1 study evaluated AMG 232, an oral selective MDM2 inhibitor in patients with TP53 wild-type (P53WT), advanced solid tumors or multiple myeloma (MM). Methods In the dose escalation (n = 39), patients with P53WT refractory solid tumors enrolled to receive once-daily AMG 232 (15, 30, 60, 120, 240, 480, and 960 mg) for seven days every 3 weeks (Q3W). In the dose expansion (n = 68), patients with MDM2-amplified (well-differentiated and de-differentiated liposarcomas [WDLPS and DDLPS], glioblastoma multiforme [GBM], or other solid tumors [OST]), MDM2-overexpressing ER+ breast cancer (BC), or MM received AMG 232 at the maximum tolerated dose (MTD). Safety, pharmacokinetics, pharmacodynamics, and efficacy were assessed. Results AMG 232 had acceptable safety up to up to 240 mg. Three patients had dose-limiting toxicities of thrombocytopenia (n = 2) and neutropenia (n = 1). Due to these and other delayed cytopenias, AMG 232 240 mg Q3W was determined as the highest tolerable dose assessed in the dose expansion. Adverse events were typically mild/moderate and included diarrhea, nausea, vomiting, fatigue, decreased appetite, and anemia. AMG 232 plasma concentrations increased dose proportionally. Increases in serum macrophage inhibitor cytokine-1 from baseline were generally dose dependent, indicating p53 pathway activation. Per local review, there were no responses. Stable disease (durability in months) was observed in patients with WDLPS (3.9), OST (3.3), DDLPS (2.0), GBM (1.8), and BC (1.4–2.0). Conclusions In patients with P53WT advanced solid tumors or MM, AMG 232 showed acceptable safety and dose-proportional pharmacokinetics, and stable disease was observed.
Collapse
Affiliation(s)
- W Larry Gluck
- Prisma Health - Upstate, Institute for Translational Oncology Research, 900 W. Faris Rd., 3rd Floor, Greenville, SC, 29605, USA.
| | - Mrinal M Gounder
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Ferry Eskens
- Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jean Yves Blay
- Department of Medicine, Centre Léon Bérard, Lyon, France
| | | | - Jean-Charles Soria
- Department of Medicine, The Institute Gustave-Roussy, Paris, France.,Université Paris Sud, Orsay, France
| | - Sant Chawla
- Sarcoma Oncology Center, Cancer Center of Southern California, Santa Monica, CA, USA
| | - Vincent de Weger
- Department of Internal Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Wagner
- Center for Sarcoma and Bone Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David Siegel
- Multiple Myeloma Division, John Theurer Cancer Center at the Hackensack University Medical Center, Hackensack, NJ, USA
| | - Filip De Vos
- Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Erik Rasmussen
- Oncology Early Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Haby A Henary
- Oncology Early Development, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
22
|
Kang SH, Choi JS. MicroRNA-661 upregulation in myelodysplastic syndromes induces apoptosis through p53 activation and associates with decreased overall survival. Leuk Lymphoma 2019; 60:2779-2786. [PMID: 31056984 DOI: 10.1080/10428194.2019.1608528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MicroRNA (miRNA) dysregulation contributes to myelodysplastic syndromes (MDS), and apoptosis is one of the pathogenic features of MDS. We investigated the dysregulation of miRNA expression and its biological significance in MDS. We compared the expression profiles of miRNAs encoded by chromosome 8 in 65 patients with MDS and 11 controls, and analyzed the in vitro effect of the upregulated miRNA expression. We found that compared to the controls, miR-661 was upregulated by 5.28-fold in patients with MDS. Patients with high miR-661 expression showed significantly decreased overall survival. In vitro study results demonstrated that transfection with a miR-661 mimic induced apoptosis through the activation of p53. These findings suggest that high miR-661 expression can be associated with decreased overall survival and recapitulates apoptosis, the characteristic feature of MDS.
Collapse
Affiliation(s)
- Seong-Ho Kang
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Ji-Seon Choi
- Department of Laboratory Medicine, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| |
Collapse
|
23
|
Abrams SL, Follo MY, Steelman LS, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Montalto G, Cervello M, Gizak A, Rakus D, Mao W, Lombardi P, McCubrey JA. Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 2019; 71:172-182. [PMID: 30361003 DOI: 10.1016/j.jbior.2018.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated with a poor prognosis. As our population ages, pancreatic cancer has an increasing incidence and will likely become the second leading cause of death from cancer. There are few truly-effective therapeutic options for pancreatic cancer. Surgery and certain chemotherapeutic drugs are used to treat pancreatic cancer patients. Novel approaches to treat pancreatic cancer patients are direly needed as they usually survive for less than a year after being diagnosed. In the following manuscript, we discuss the abilities of BBR and certain chemically-modified BBRs (NAX compounds) to suppress growth of pancreatic cancer cells.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, NY, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese, 20026, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
24
|
Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol 2018; 97:2025-2038. [DOI: 10.1007/s00277-018-3464-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
|
25
|
Chappell WH, Candido S, Abrams SL, Russo S, Ove R, Martelli AM, Cocco L, Ramazzotti G, Cervello M, Montalto G, Steelman LS, Leng X, Arlinghaus RB, Libra M, McCubrey JA. Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Adv Biol Regul 2018; 69:43-62. [PMID: 29861174 DOI: 10.1016/j.jbior.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL a.k.a lipocalin 2, lnc2) is a secreted protein which can form a complex with matrix metalloproteinase-9 (MMP9). This MMP9/NGAL complex has been associated with metastasis. MMP9 and NGAL are detected in the urine of patients afflicted with many different types of cancer, including prostate cancer. The effects of p53, NF-κB and the androgen receptor (AR) on the expression of NGAL was examined in four prostate cancer cell lines. Prostate cancer cell lines that are AR negative and expressed either mutant or no p53 (DU145 and PC3) displayed higher levels of NGAL expression compared to the prostate cancer cell lines (LNCaP and 22Rv-1) which are AR positive and express wild type (WT) p53. Introduction of WT-p53 into the PC3 prostate cancer cell line, resulted in reduction of the levels of NGAL expression. Conversely, introduction of dominant negative (DN) p53 or a retroviral construct expressing NF-κB into LNCaP cells increased NGAL expression. NGAL expression had functional effects on the ability of the cells to form colonies in soft agar. Whereas suppression of WT-53 in LNCaP cells increased NGAL expression, the introduction of WT-p53 suppressed NGAL transcription activity in PC3 prostate cells which normally express high level of NGAL. NF-κB and p53 were determined to regulate NGAL expression by positive and negative mechanisms, respectively. Our data indicate that prostate cancer growth, progression and sensitivity to chemotherapeutic drugs are regulated in part by NGAL and may involve complex interactions between NGAL, MMP9, NF-κB and p53.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Becton, Dickinson and Company (BD), BD Diagnostics, Franklin Lakes, NJ, USA
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Suzanne Russo
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Roger Ove
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Giuseppe Montalto
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
26
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
27
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
28
|
Vazanova A, Jurecekova J, Balharek T, Marcinek J, Stasko J, Dzian A, Plank L, Zubor P, Racay P, Hatok J. Differential mRNA expression of the main apoptotic proteins in normal and malignant cells and its relation to in vitro resistance. Cancer Cell Int 2018. [PMID: 29515335 PMCID: PMC5836377 DOI: 10.1186/s12935-018-0528-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Apoptosis plays an important role in the development and homeostasis of multicellular organisms and its deregulation may result in many serious diseases, including cancer. Now it is clear that some oncogenic mutations disrupt apoptosis, leading to tumour initiation, progression or metastasis. Here, expression of apoptotic genes in context of drug resistance was investigated. Methods We examined total of 102 samples from leukemic patients (n = 60) and patients with solid tumours (n = 42). We used RT-PCR to determine the levels of mRNA expression and the in vitro chemoresistance of leukemic cells was evaluated using the MTT assay. Results We found statistically significant increase in mRNA expression of all investigated proteins (p53, BAX, Bcl-2 and Bcl-XL) between the leukemia samples and leukocytes from healthy volunteers. We did not find any significant difference in mRNA levels among the solid tumour samples. Notably, we showed a significant positive correlation in both leukemic and solid tumour patient groups between p53 and BAX mRNA. We found that the highest values for the Bcl-2/BAX ratio were in solid tumours in comparison to leukemic cells or normal leukocytes. Moreover, we assessed the impact of p53 and BAX mRNA levels on the sensitivity of the leukemic cells to selected cytostatics. Conclusions Elevated levels of p53 and BAX mRNA may indicate cellular response to possible changes in genomic DNA integrity associated with malignant transformation. We suggest that the BAX gene is regulated by the p53 protein but the initiation of apoptosis through the transcription activation of BAX is blocked by the high levels of Bcl-2. Given that the apoptosis resistance mechanisms are different among oncological patients as well as stages of identical malignancy cases, personalized and specific combination therapy is proposed to be more effective in clinical application.
Collapse
Affiliation(s)
- Andrea Vazanova
- 1Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin (JFM), Comenius University in Bratislava (CU), Mala Hora 4D, 03601 Martin, Slovak Republic.,2Clinic of Haematology and Transfusiology, JFM CU and Martin University Hospital (MUH), Kollarova 2, Martin, Slovak Republic
| | - Jana Jurecekova
- 1Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin (JFM), Comenius University in Bratislava (CU), Mala Hora 4D, 03601 Martin, Slovak Republic.,Biomedical Center Martin, JFM CU, Mala Hora 4D, Martin, Slovak Republic
| | - Tomas Balharek
- Department of Pathologic Anatomy, JFM CU and MUH, Kollarova 2, Martin, Slovak Republic
| | - Juraj Marcinek
- Department of Pathologic Anatomy, JFM CU and MUH, Kollarova 2, Martin, Slovak Republic
| | - Jan Stasko
- 2Clinic of Haematology and Transfusiology, JFM CU and Martin University Hospital (MUH), Kollarova 2, Martin, Slovak Republic
| | - Anton Dzian
- Clinic of Thoracic Surgery, JFM CU and MUH, Kollarova 2, Martin, Slovak Republic
| | - Lukas Plank
- Department of Pathologic Anatomy, JFM CU and MUH, Kollarova 2, Martin, Slovak Republic
| | - Pavol Zubor
- Department of Obstetrics and Gynecology, CU JFM and MUH, Kollarova 2, Martin, Slovak Republic
| | - Peter Racay
- 1Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin (JFM), Comenius University in Bratislava (CU), Mala Hora 4D, 03601 Martin, Slovak Republic.,Biomedical Center Martin, JFM CU, Mala Hora 4D, Martin, Slovak Republic
| | - Jozef Hatok
- 1Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin (JFM), Comenius University in Bratislava (CU), Mala Hora 4D, 03601 Martin, Slovak Republic
| |
Collapse
|
29
|
Echizen K, Oshima H, Nakayama M, Oshima M. The inflammatory microenvironment that promotes gastrointestinal cancer development and invasion. Adv Biol Regul 2018; 68:39-45. [PMID: 29428221 DOI: 10.1016/j.jbior.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 12/13/2022]
Abstract
Accumulating evidence has indicated that the inflammatory response is important for tumor promotion. However, the mechanisms underlying the induction of the inflammatory response in cancer tissues and how it promotes tumorigenesis remain poorly understood. We constructed several mouse models that develop inflammation-associated gastric and intestinal tumors and examined the in vivo mechanisms of tumorigenesis. Of note, the activation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway and Toll-like receptor (TLR)/MyD88 signaling cooperatively induced the generation of an inflammatory microenvironment, which is required for early-stage tumorigenesis. The inflammatory response in the stroma induces TNF-α signaling in tumor cells, and the NOX1/ROS signaling pathway is activated downstream. In addition, the inflammatory pathway induces the expression of TLR2 in tumor epithelial cells. Both the NOX1/ROS and TLR2 pathways in tumor cells contribute to the acquisition and maintenance of stemness, which is an important tumor-promoting mechanism stimulated by inflammation. We also found that inflammation promotes malignant processes, like submucosal invasion, of TGF-β signaling-suppressed tumor cells through the activation of MMP2 protease. Moreover, we showed that mutant p53 induces innate immune and inflammatory signaling in the tumor stroma by a gain-of-function mechanism of mutant p53, which may explain the "cancer-induced inflammation" mechanism. These results indicate that the regulation of the inflammatory microenvironment via the inhibition of the COX-2/PGE2 and TLR/MyD88 pathways in combination will be an effective preventive or therapeutic strategy against gastrointestinal cancer development and malignant progression, especially those carrying p53 gain-of-function mutations.
Collapse
Affiliation(s)
- Kanae Echizen
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; Nano Life Science Institute (WPI Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; Nano Life Science Institute (WPI Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; Nano Life Science Institute (WPI Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
30
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
31
|
Li L, Yang D, Cui D, Li Y, Nie Z, Wang J, Liang L. Quantitative proteomics analysis of the role of tetraspanin-8 in the drug resistance of gastric cancer. Int J Oncol 2017; 52:473-484. [PMID: 29345284 DOI: 10.3892/ijo.2017.4231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/06/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer, due to its high incidence rate, is the second leading cause of cancer-related mortality worldwide. Chemotherapy is an important component of the multimodal treatment for gastric cancer; however, a significant impediment to successful treatment is multidrug resistance (MDR) in patients with gastric cancer. In the present study, the protein profiles of the MDR cell line, SGC7901/DDP, and its parental cell line, SGC7901, were comparatively analyzed through an iTRAQ-based quantitative proteomics technique. The protein tetraspanin-8 (TSPAN8) was found to be highly expressed in the SGC7901/DDP cells. To examine the role of TSPAN8 in the MDR of SGC7901/DDP cells, we increased cell sensitivity to drugs by increasing apoptosis. Additionally, the silencing of TSPAN8 downregulated Wnt pathway activity, β-catenin expression and β-catenin transfer to the nucleus. TSPAN8 was found to bind to NOTCH2, facilitating its mediation of the Wnt/β-catenin pathway by regulating β-catenin expression. Overall, the suppression of TSPAN8 expression may prove to be a promising strategy which may aid in the development of novel gastric cancer therapeutic drugs.
Collapse
Affiliation(s)
- Lan Li
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Daping Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Yu Li
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Zhao Nie
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Jinglin Wang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Li Liang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
32
|
Ryuno H, Naguro I, Kamiyama M. ASK family and cancer. Adv Biol Regul 2017; 66:72-84. [PMID: 28552579 DOI: 10.1016/j.jbior.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Cancer is a major problem in public health and is one of the leading causes of mortality worldwide. Many types of cancer cells exhibit aberrant cellular signal transduction in response to stress, which often leads to oncogenesis. Mitogen-activated protein kinase (MAPK) signal cascades are one of the important intracellular stress signaling pathways closely related to cancer. The key molecules in MAPK signal cascades that respond to various types of stressors are apoptosis signal-regulating kinase (ASK) family members; ASK1, ASK2 and ASK3. ASK family members are activated by a wide variety of stressors, and they regulate various cellular responses, such as cell proliferation, inflammation and apoptosis. In this review, we will discuss both the oncogenic and anti-oncogenic roles of the ASK family members in various contexts of cancer development with deeper insights into the involvement of ASK family members in cancer pathology.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Kamiyama
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
33
|
Gomez-Lopez N, Romero R, Plazyo O, Schwenkel G, Garcia-Flores V, Unkel R, Xu Y, Leng Y, Hassan SS, Panaitescu B, Cha J, Dey SK. Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. Am J Obstet Gynecol 2017; 217:592.e1-592.e17. [PMID: 28847437 DOI: 10.1016/j.ajog.2017.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Decidual senescence has been considered a mechanism of disease for spontaneous preterm labor in the absence of severe acute inflammation. Yet, signs of cellular senescence have also been observed in the chorioamniotic membranes from women who underwent the physiological process of labor at term. OBJECTIVE We aimed to investigate whether, in the absence of acute histologic chorioamnionitis, the chorioamniotic membranes from women who underwent spontaneous preterm labor or labor at term exhibit signs of cellular senescence. STUDY DESIGN Chorioamniotic membrane samples were collected from women who underwent spontaneous preterm labor or labor at term. Gestational age-matched nonlabor controls were also included. Senescence-associated genes/proteins were determined using reverse transcription quantitative polymerase chain reaction analysis (n = 7-9 each for array; n = 26-28 each for validation), enzyme-linked immunosorbent assays (n = 7-9 each), immunoblotting (n = 6-7 each), and immunohistochemistry (n = 7-8 each). Senescence-associated β-galactosidase activity (n = 7-11 each) and telomere length (n = 15-22 each) were also evaluated. RESULTS In the chorioamniotic membranes without acute histologic chorioamnionitis: (1) the expression profile of senescence-associated genes was different between the labor groups (term in labor and preterm in labor) and the nonlabor groups (term no labor and preterm no labor), yet there were differences between the term in labor and preterm in labor groups; (2) most of the differentially expressed genes among the groups were closely related to the tumor suppressor protein (TP53) pathway; (3) the expression of TP53 was down-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (4) the expression of CDKN1A (gene coding for p21) was up-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (5) the expression of the cyclin kinase CDK2 and cyclins CCNA2, CCNB1, and CCNE1 was down-regulated in the preterm in labor group compared to the preterm no labor group; (6) the concentration of TP53 was lower in the preterm in labor group than in the preterm no labor and term in labor groups; (7) the senescence-associated β-galactosidase activity was greater in the preterm in labor group than in the preterm no labor and term in labor groups; (8) the concentration of phospho-S6 ribosomal protein was reduced in the term in labor group compared to its nonlabor counterpart, but no differences were observed between the preterm in labor and preterm no labor groups; and (9) no significant differences were observed in relative telomere length among the study groups (term no labor, term in labor, preterm no labor, and preterm in labor). CONCLUSION In the absence of acute histologic chorioamnionitis, signs of cellular senescence are present in the chorioamniotic membranes from women who underwent spontaneous preterm labor compared to those who delivered preterm in the absence of labor. However, the chorioamniotic membranes from women who underwent spontaneous labor at term did not show consistent signs of cellular senescence in the absence of histologic chorioamnionitis. These results suggest that different pathways are implicated in the pathological and physiological processes of labor.
Collapse
|
34
|
Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, Jeleń M, Akim AM, Ang KP, Ooi KK. 10 H-3,6-Diazaphenothiazine induces G 2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3045-3063. [PMID: 29123378 PMCID: PMC5661483 DOI: 10.2147/dddt.s144415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing
| | - Chen Ming
- Department of Gynecologic Oncology, Taizhou People's Hospital, Jiangsu, People's Republic of China
| | | | | | - Beata Morak-Młodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
| | | | - Kah Kooi Ooi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang.,Research Centre for Crystaline Materials, School of Science and Technology, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
35
|
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Irnerio, 48 I-40126 Bologna, Italy.
| |
Collapse
|
36
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Montalto G, Cervello M, Gizak A, Rakus D. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Adv Biol Regul 2017; 65:77-88. [PMID: 28579298 DOI: 10.1016/j.jbior.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Natural products or nutraceuticals promote anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. This review will focus on the effects of curcumin (CUR), berberine (BBR) and resveratrol (RES), on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway, with a special focus on GSK-3. These natural products may regulate the pathway by multiple mechanisms including: reactive oxygen species (ROS), cytokine receptors, mirco-RNAs (miRs) and many others. CUR is present the root of turmeric (Curcuma longa). CUR is used in the treatment of many disorders, especially in those involving inflammatory processes which may contribute to abnormal proliferation and promote cancer growth. BBR is also isolated from various plants (Berberis coptis and others) and is used in traditional medicine to treat multiple diseases/conditions including: diabetes, hyperlipidemia, cancer and bacterial infections. RES is present in red grapes, other fruits and berries such as blueberries and raspberries. RES may have some anti-diabetic and anti-cancer effects. Understanding the effects of these natural products on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway may enhance their usage as anti-proliferative agent which may be beneficial for many health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|