1
|
Chen PY, Wen SH. Integrating Genome-Wide Polygenic Risk Scores With Nongenetic Models to Predict Surgical Site Infection After Total Knee Arthroplasty Using United Kingdom Biobank Data. J Arthroplasty 2024; 39:2471-2477.e1. [PMID: 38735551 DOI: 10.1016/j.arth.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Prediction of the risk of developing surgical site infection (SSI) in patients following total knee arthroplasty (TKA) is of clinical importance. Genetic susceptibility is involved in developing TKA-related SSI. Previously reported models for predicting SSI were constructed using nongenetic risk factors without incorporating genetic risk factors. To address this issue, we performed a genome-wide association study (GWAS) using the UK Biobank database. METHODS Adult patients who underwent primary TKA (n = 19,767) were analyzed and divided into SSI (n = 269) and non-SSI (n = 19,498) cohorts. Nongenetic covariates, including demographic data and preoperative comorbidities, were recorded. Genetic variants associated with SSI were identified by GWAS and included to obtain standardized polygenic risk scores (zPRS, an estimate of genetic risk). Prediction models were established through analyses of multivariable logistic regression and the receiver operating characteristic curve. RESULTS There were 4 variants (rs117896641, rs111686424, rs8101598, and rs74648298) achieving genome-wide significance that were identified. The logistic regression analysis revealed 7 significant risk factors: increasing zPRS, decreasing age, men, chronic obstructive pulmonary disease, diabetes mellitus, rheumatoid arthritis, and peripheral vascular disease. The areas under the receiver operating characteristic curve were 0.628 and 0.708 when zPRS (model 1) and nongenetic covariates (model 2) were used as predictors, respectively. The areas under the receiver operating characteristic curve increased to 0.76 when both zPRS and nongenetic covariates (model 3) were used as predictors. A risk-prediction nomogram was constructed based on model 3 to visualize the relative effect of statistically significant covariates on the risk of SSI and predict the probability of developing SSI. Age and zPRS were the top 2 covariates that contributed to the risk, with younger age and higher zPRS associated with higher risks. CONCLUSIONS Our GWAS identified 4 novel variants that were significantly associated with susceptibility to SSI following TKA. Integrating genome-wide zPRS with nongenetic risk factors improved the performance of the model in predicting SSI.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Tzu Chi University Center for Health and Welfare Data Science, Ministry of Health and Welfare, Hualien City, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Shu-Hui Wen
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan; Department of Public Health, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
2
|
Casalin I, Ceneri E, Ratti S, Manzoli L, Cocco L, Follo MY. Nuclear Phospholipids and Signaling: An Update of the Story. Cells 2024; 13:713. [PMID: 38667329 PMCID: PMC11048846 DOI: 10.3390/cells13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.C.); (E.C.); (S.R.); (L.M.); (M.Y.F.)
| | | |
Collapse
|
3
|
Casalin I, De Stefano A, Ceneri E, Cappellini A, Finelli C, Curti A, Paolini S, Parisi S, Zannoni L, Boultwood J, McCubrey JA, Suh PG, Ramazzotti G, Fiume R, Ratti S, Manzoli L, Cocco L, Follo MY. Deciphering signaling pathways in hematopoietic stem cells: the molecular complexity of Myelodysplastic Syndromes (MDS) and leukemic progression. Adv Biol Regul 2024; 91:101014. [PMID: 38242820 DOI: 10.1016/j.jbior.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.
Collapse
Affiliation(s)
- Irene Casalin
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Alessia De Stefano
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Eleonora Ceneri
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Letizia Zannoni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Mongiorgi S, De Stefano A, Ratti S, Indio V, Astolfi A, Casalin I, Pellagatti A, Paolini S, Parisi S, Cavo M, Pession A, McCubrey JA, Suh PG, Manzoli L, Boultwood J, Finelli C, Cocco L, Follo MY. A miRNA screening identifies miR-192-5p as associated with response to azacitidine and lenalidomide therapy in myelodysplastic syndromes. Clin Epigenetics 2023; 15:27. [PMID: 36803590 PMCID: PMC9940408 DOI: 10.1186/s13148-023-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND miRNAs are small non-coding RNAs that regulate gene expression and are linked to cancer development and progression. miRNA profiles are currently studied as new prognostic factors or therapeutic perspectives. Among hematological cancers, myelodysplastic syndromes at higher risk of evolution into acute myeloid leukemia are treated with hypomethylating agents, like azacitidine, alone or in combination with other drugs, such as lenalidomide. Recent data showed that, during azacitidine and lenalidomide therapy, the concurrent acquisition of specific point mutations affecting inositide signalling pathways is associated with lack or loss of response to therapy. As these molecules are implicated in epigenetic processes, possibly involving miRNA regulation, and in leukemic progression, through the regulation of proliferation, differentiation and apoptosis, here we performed a new miRNA expression analysis of 26 high-risk patients with myelodysplastic syndromes treated with azacitidine and lenalidomide at baseline and during therapy. miRNA array data were processed, and bioinformatic results were correlated with clinical outcome to investigate the translational relevance of selected miRNAs, while the relationship between selected miRNAs and specific molecules was experimentally tested and proven. RESULTS Patients' overall response rate was 76.9% (20/26 cases): complete remission (5/26, 19.2%), partial remission (1/26, 3.8%), marrow complete remission (2/26, 7.7%), hematologic improvement (6/26, 23.1%), hematologic improvement with marrow complete remission (6/26, 23.1%), whereas 6/26 patients (23.1%) had a stable disease. miRNA paired analysis showed a statistically significant up-regulation of miR-192-5p after 4 cycles of therapy (vs baseline), that was confirmed by real-time PCR analyses, along with an involvement of BCL2, that was proven to be a miR-192-5p target in hematopoietic cells by luciferase assays. Furthermore, Kaplan-Meier analyses showed a significant correlation between high levels of miR-192-5p after 4 cycles of therapy and overall survival or leukemia-free survival, that was stronger in responders, as compared with patients early losing response and non-responders. CONCLUSIONS This study shows that high levels of miR-192-5p are associated with higher overall survival and leukemia-free survival in myelodysplastic syndromes responding to azacitidine and lenalidomide. Moreover, miR-192-5p specifically targets and inhibits BCL2, possibly regulating proliferation and apoptosis and leading to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Irene Casalin
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, OX3 9DU, UK
| | - Stefania Paolini
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Sarah Parisi
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Michele Cavo
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Pession
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Division of Pediatrics, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, OX3 9DU, UK
| | - Carlo Finelli
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
5
|
De Stefano A, Marvi MV, Fazio A, McCubrey JA, Suh PG, Ratti S, Ramazzotti G, Manzoli L, Cocco L, Follo MY. Advances in MDS/AML and inositide signalling. Adv Biol Regul 2023; 87:100955. [PMID: 36706610 DOI: 10.1016/j.jbior.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Aberrant signaling pathways regulating proliferation and differentiation of hematopoietic stem cells (HSCs) can contribute to disease pathogenesis and neoplastic growth. Phosphoinositides (PIs) are inositol phospholipids that are implicated in the regulation of critical signaling pathways: aberrant regulation of Phospholipase C (PLC) beta1, PLCgamma1 and the PI3K/Akt/mTOR pathway play essential roles in the pathogenesis of Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).
Collapse
Affiliation(s)
- Alessia De Stefano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| |
Collapse
|
6
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
7
|
Wei X, Zhu Y, Zhao X, Zhao Y, Jing Y, Liu G, Wang S, Li H, Ma Y. Transcriptome profiling of mRNAs in muscle tissue of Pinan cattle and Nanyang cattle. Gene 2022; 825:146435. [PMID: 35301069 DOI: 10.1016/j.gene.2022.146435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Mammalian muscle development is regulated by complex gene networks at the molecular level. The revelation of gene regulatory mechanisms is an important basis for the study of muscle development and molecular breeding. To analyze the excellent meat performance of Pinan cattle at the molecular level, we performed high-throughput RNA sequencing to analyze the key regulatory genes that determine the muscle quality traits in Pinan cattle (n = 3) and Nanyang cattle (n = 3). We identified 57 differentially expressed genes in muscle tissue of Pinan cattle compared to that of Nanyang cattle, including 32 upregulated and 25 downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in 'molecular function', including voltage-gated ion channel activity, calcium channel activity and calcium ion binding, and KEGG pathway analysis results revealed that adrenergic signaling in cardio myocytes, cell adhesion molecules and inositol phosphate metabolism pathway were significantly enriched. We identified the reliability of RNA-Seq data through RT-qPCR. Meanwhile, we found that GSTA3, PLCB1 and ISYNA1 genes are highly expressed in muscle tissue of Pinan cattle, and these genes play important roles in PI3K/Akt, MEK1/2-ERK and p53-ISYNA1 signaling pathway. In summary, our results suggested that these differentially expressed genes may play important roles in muscle development in Pinan cattle. However, the functions and mechanism of these significantly differential expressed genes should be investigated in future studies.
Collapse
Affiliation(s)
- Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yadi Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yujia Jing
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gege Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China; School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
8
|
Zhen H, Zheng M, Song Q, Liu H, Yuan Z, Cao Z, Zhao B. U73122 and m-3M3FBS Regulate the GABAergic Neuron Regeneration via PLCβ in Planarian Dugesia japonica. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Qifti A, Jackson L, Singla A, Garwain O, Scarlata S. Stimulation of phospholipase Cβ1 by Gα q promotes the assembly of stress granule proteins. Sci Signal 2021; 14:eaav1012. [PMID: 34665639 DOI: 10.1126/scisignal.aav1012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Androniqi Qifti
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Lela Jackson
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Ashima Singla
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Osama Garwain
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
10
|
Pharmic Activation of PKG2 Alleviates Diabetes-Induced Osteoblast Dysfunction by Suppressing PLC β1-Ca 2+-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552530. [PMID: 34221234 PMCID: PMC8225424 DOI: 10.1155/2021/5552530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
As reported in our previous study, cinaciguat can improve implant osseointegration in type 2 diabetes mellitus (T2DM) rats by reactivating type 2 cGMP-dependent protein kinase (PKG2), but the downstream mechanisms remain unclear. In the present study, we investigated the favorable effect of cinaciguat on primary rat osteoblast, which was cultivated on titanium disc under vitro T2DM conditions (25 mM glucose and 200 μM palmitate), and clarified the therapeutic mechanism by proteomic analysis. The results demonstrated that T2DM medium caused significant downregulation of PKG2 and induced obvious osteoblast dysfunction. And overexpression of PKG2 by lentivirus and cinaciguat could promote cell proliferation, adhesion, and differentiation, leading to decreased osteoblasts injury. Besides, proteomic analysis revealed the interaction between PKG2 and phospholipase Cβ1 (PLCβ1) in the cinaciguat addition group, and we further verified that upregulated PKG2 by cinaciguat could inhibit the activation of PLCβ1, then relieve intracellular calcium overload, and suppress endoplasmic reticulum (ER) stress to ameliorate osteoblast functions under T2DM condition. Collectively, these findings provided the first detailed mechanisms responsible for cinaciguat provided a favorable effect on promoting osseointegration in T2DM and demonstrated a new insight that diabetes mellitus-induced the aberrations in PKG2-PLCβ1-Ca2+-ER stress pathway was one underlying mechanism for poor osseointegration.
Collapse
|
11
|
Ratti S, Evangelisti C, Mongiorgi S, De Stefano A, Fazio A, Bonomini F, Follo MY, Faenza I, Manzoli L, Sheth B, Vidalle MC, Kimber ST, Divecha N, Cocco L, Fiume R. "Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia". Front Oncol 2021; 11:678824. [PMID: 34109125 PMCID: PMC8181149 DOI: 10.3389/fonc.2021.678824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Scott T Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Rusciano I, Marvi MV, Owusu Obeng E, Mongiorgi S, Ramazzotti G, Follo MY, Zoli M, Morandi L, Asioli S, Fabbri VP, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Location-dependent role of phospholipase C signaling in the brain: Physiology and pathology. Adv Biol Regul 2020; 79:100771. [PMID: 33303387 DOI: 10.1016/j.jbior.2020.100771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are a class of enzymes involved in the phosphatidylinositol metabolism, which is implicated in the activation of several signaling pathways and which controls several cellular processes. The scientific community has long accepted the existence of a nuclear phosphoinositide (PI) metabolism, independent from the cytoplasmic one, critical in nuclear function control. Indeed, nuclear PIs are involved in many activities, such as cell cycle regulation, cell proliferation, cell differentiation, membrane transport, gene expression and cytoskeletal dynamics. There are several types of PIs and enzymes implicated in brain activities and among these enzymes, PI-PLCs contribute to a specific and complex network in the developing nervous system. Moreover, considering the abundant presence of PI-PLCβ1, PI-PLCγ1 and PI-PLCβ4 in the brain, a specific role for each PLC subtype has been suggested in the control of neuronal activity, which is important for synapse function, development and other mechanisms. The focus of this review is to describe the latest research about the involvement of PI-PLC signaling in the nervous system, both physiologically and in pathological conditions. Indeed, PI-PLC signaling imbalance seems to be also linked to several brain disorders including epilepsy, movement and behavior disorders, neurodegenerative diseases and, in addition, some PI-PLC subtypes could become potential novel signature genes for high-grade gliomas.
Collapse
Affiliation(s)
- Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases - Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna (Institute of Neurological Sciences of Bologna), Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Luca Morandi
- Functional MR Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139, Bologna, Italy
| | - Sofia Asioli
- Dipartimento di Scienze Biomediche e Neuromotorie, U.O.C. Anatomia Patologica, AUSL, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
13
|
Phosphoinositide-specific phospholipase C isoforms are conveyed by osteosarcoma-derived extracellular vesicles. J Cell Commun Signal 2020; 14:417-426. [PMID: 32583269 DOI: 10.1007/s12079-020-00571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022] Open
Abstract
Cancer cells are able to release high amounts of extracellular vesicles, thereby conditioning the normal cells in the surrounding tissue and/or in distant target organs. In the context of bone cancers, previous studies suggested that osteosarcoma cancer cells produce transforming extracellular vesicles able to induce a tumour-like phenotype in normal recipient cells. Indeed, phosphoinositide-specific phospholipase C (PI-PLC) enzymes are differentially expressed in osteosarcoma cell lines with increasing aggressiveness, thus providing helpful insights to better define their role and functions in this bone tumour. By confocal microscopy analysis, we demonstrated that osteosarcoma-derived extracellular vesicles convey all the assessed PI-PLC isoforms, and that they localize into cell membrane bubble-like structures, resembling extracellular vesicles about to be released, as conveyed and/or membrane protein. Cytofluorimetric analysis confirmed the presence of PI-PLC isoforms in the extracellular vesicles collected from conditioned media of osteosarcoma cells. These findings suggest the feasibility to use circulating extracellular vesicles as biomarkers of osteosarcoma progression and/or the monitoring of this distressing disease.
Collapse
|
14
|
Owusu Obeng E, Rusciano I, Marvi MV, Fazio A, Ratti S, Follo MY, Xian J, Manzoli L, Billi AM, Mongiorgi S, Ramazzotti G, Cocco L. Phosphoinositide-Dependent Signaling in Cancer: A Focus on Phospholipase C Isozymes. Int J Mol Sci 2020; 21:ijms21072581. [PMID: 32276377 PMCID: PMC7177890 DOI: 10.3390/ijms21072581] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCβ, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.
Collapse
|
15
|
Ratti S, Mongiorgi S, Rusciano I, Manzoli L, Follo MY. Glycogen Synthase Kinase-3 and phospholipase C-beta signalling: Roles and possible interactions in myelodysplastic syndromes and acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118649. [DOI: 10.1016/j.bbamcr.2020.118649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
|
16
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
17
|
Abstract
Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate various functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature on PLC. In addition, references have been provided for more in-depth information regarding areas that are not discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the physiological roles of these enzymes in the development of diseases and the maintenance of homeostasis.
Collapse
|
18
|
Chen H, Yang Y, Wang Y, He Y, Duan J, Cheng J, Li Q. The effects of phospholipase C on oestradiol and progesterone secretion in porcine granulosa cells cultured in vitro. Reprod Domest Anim 2019; 54:1236-1243. [PMID: 31319005 DOI: 10.1111/rda.13517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Granulosa cells play important roles in the regulation of ovarian functions. Phospholipase C is crucial in several signalling pathways and could participate in the molecular mechanisms of cell proliferation, differentiation and ageing. The objective of this study was to identify the effects of phospholipase C on the steroidogenesis of oestradiol and progesterone in porcine granulosa cells cultured in vitro. Inhibitor U73122 or activator m-3M3FBS of phospholipase C was added to the in vitro medium of porcine granulosa cells, respectively. The secretion of oestradiol decreased after 2 hr, 8 hr, 12 hr, 24 hr and 48 hr of treatment with 500 nM U73122 (p < .05) and decreased after 2 hr of treatment in the 500 nM m-3M3FBS addition group (p < .05). The secretion of progesterone increased after 4 hr of treatment with 500 nM U73122 (p < .05) and increased after 2 hr and 8 hr of treatment in the 500 nM m-3M3FBS addition group (p < .05). The ratio of oestradiol to progesterone decreased at each time point, except 8 hr after the addition of 500 nM U73122 (p < .05). The ratio of oestradiol to progesterone decreased after 2 hr (p < .05) of treatment with 500 nM m-3M3FBS. In genes that regulate the synthesis of oestradiol or progesterone, the mRNA expression of CYP11A1 was markedly increased (p < .05), and the mRNA expression of other genes did not change significantly in the U73122 treatment group, while the addition of m-3M3FBS did not change those genes significantly despite the contrary trend. Our results demonstrated that phospholipase C can be a potential target to stimulate the secretion of oestradiol and suppress progesterone secretion in porcine granulosa cells cultured in vitro, which shed light on a novel biological function of phospholipase C in porcine granulosa cells.
Collapse
Affiliation(s)
- Huali Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Youfu Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Youlin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yamei He
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Hanzhong Vocational and Technical College, Hanzhong, China
| | - Jiaxin Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Follo MY, Ratti S, Manzoli L, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Suh PG, McCubrey JA, Cocco L. Inositide-Dependent Nuclear Signalling in Health and Disease. Handb Exp Pharmacol 2019; 259:291-308. [PMID: 31889219 DOI: 10.1007/164_2019_321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.
Collapse
Affiliation(s)
- Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea.,School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Abrams SL, Follo MY, Steelman LS, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Montalto G, Cervello M, Gizak A, Rakus D, Mao W, Lombardi P, McCubrey JA. Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 2019; 71:172-182. [PMID: 30361003 DOI: 10.1016/j.jbior.2018.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated with a poor prognosis. As our population ages, pancreatic cancer has an increasing incidence and will likely become the second leading cause of death from cancer. There are few truly-effective therapeutic options for pancreatic cancer. Surgery and certain chemotherapeutic drugs are used to treat pancreatic cancer patients. Novel approaches to treat pancreatic cancer patients are direly needed as they usually survive for less than a year after being diagnosed. In the following manuscript, we discuss the abilities of BBR and certain chemically-modified BBRs (NAX compounds) to suppress growth of pancreatic cancer cells.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, NY, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese, 20026, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
21
|
Ramazzotti G, Fiume R, Chiarini F, Campana G, Ratti S, Billi AM, Manzoli L, Follo MY, Suh PG, McCubrey J, Cocco L, Faenza I. Phospholipase C-β1 interacts with cyclin E in adipose- derived stem cells osteogenic differentiation. Adv Biol Regul 2018; 71:1-9. [PMID: 30420274 DOI: 10.1016/j.jbior.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) are multipotent mesenchymal stem cells that have the ability to differentiate into several cell types, including chondrocytes, osteoblasts, adipocytes, and neural cells. Given their easy accessibility and abundance, they became an attractive source of mesenchymal stem cells, as well as candidates for developing new treatments for reconstructive medicine and tissue engineering. Our study identifies a new signaling pathway that promotes ADSCs osteogenic differentiation and links the lipid signaling enzyme phospholipase C (PLC)-β1 to the expression of the cell cycle protein cyclin E. During osteogenic differentiation, PLC-β1 expression varies concomitantly with cyclin E expression and the two proteins interact. These findings contribute to clarify the pathways involved in osteogenic differentiation and provide evidence to develop therapeutic strategies for bone regeneration.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Roberta Fiume
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics - Bologna Unit, c/o Istituto Ortopedico Rizzoli, via di Barbiano 1-10, 40138, Bologna, Italy
| | - Gabriele Campana
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Stefano Ratti
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Anna Maria Billi
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Matilde Y Follo
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Pann-Gill Suh
- Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, Republic of Korea
| | | | - Lucio Cocco
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Irene Faenza
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
22
|
Ratti S, Follo MY, Ramazzotti G, Faenza I, Fiume R, Suh PG, McCubrey JA, Manzoli L, Cocco L. Nuclear phospholipase C isoenzyme imbalance leads to pathologies in brain, hematologic, neuromuscular, and fertility disorders. J Lipid Res 2018; 60:312-317. [PMID: 30287524 DOI: 10.1194/jlr.r089763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/30/2018] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCβ1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCβ1 and PI-PLCɣ1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCβ1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCβ1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
23
|
Chappell WH, Candido S, Abrams SL, Russo S, Ove R, Martelli AM, Cocco L, Ramazzotti G, Cervello M, Montalto G, Steelman LS, Leng X, Arlinghaus RB, Libra M, McCubrey JA. Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Adv Biol Regul 2018; 69:43-62. [PMID: 29861174 DOI: 10.1016/j.jbior.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL a.k.a lipocalin 2, lnc2) is a secreted protein which can form a complex with matrix metalloproteinase-9 (MMP9). This MMP9/NGAL complex has been associated with metastasis. MMP9 and NGAL are detected in the urine of patients afflicted with many different types of cancer, including prostate cancer. The effects of p53, NF-κB and the androgen receptor (AR) on the expression of NGAL was examined in four prostate cancer cell lines. Prostate cancer cell lines that are AR negative and expressed either mutant or no p53 (DU145 and PC3) displayed higher levels of NGAL expression compared to the prostate cancer cell lines (LNCaP and 22Rv-1) which are AR positive and express wild type (WT) p53. Introduction of WT-p53 into the PC3 prostate cancer cell line, resulted in reduction of the levels of NGAL expression. Conversely, introduction of dominant negative (DN) p53 or a retroviral construct expressing NF-κB into LNCaP cells increased NGAL expression. NGAL expression had functional effects on the ability of the cells to form colonies in soft agar. Whereas suppression of WT-53 in LNCaP cells increased NGAL expression, the introduction of WT-p53 suppressed NGAL transcription activity in PC3 prostate cells which normally express high level of NGAL. NF-κB and p53 were determined to regulate NGAL expression by positive and negative mechanisms, respectively. Our data indicate that prostate cancer growth, progression and sensitivity to chemotherapeutic drugs are regulated in part by NGAL and may involve complex interactions between NGAL, MMP9, NF-κB and p53.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Becton, Dickinson and Company (BD), BD Diagnostics, Franklin Lakes, NJ, USA
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Suzanne Russo
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Roger Ove
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Giuseppe Montalto
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
24
|
Kunrath-Lima M, de Miranda MC, Ferreira ADF, Faraco CCF, de Melo MIA, Goes AM, Rodrigues MA, Faria JAQA, Gomes DA. Phospholipase C delta 4 (PLCδ4) is a nuclear protein involved in cell proliferation and senescence in mesenchymal stromal stem cells. Cell Signal 2018; 49:59-67. [PMID: 29859928 DOI: 10.1016/j.cellsig.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
Ca2+ is an important second messenger, and it is involved in many cellular processes such as cell death and proliferation. The rise in intracellular Ca2+ levels can be due to the generation of inositol 1,4,5-trisphosphate (InsP3), which is a product of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipases C (PLCs), that leads to Ca2+ release from endoplasmic reticulum by InsP3 receptors (InsP3R). Ca2+ signaling patterns can vary in different regions of the cell and increases in nuclear Ca2+ levels have specific biological effects that differ from those of Ca2+ increase in the cytoplasm. There are PLCs in the cytoplasm and nucleus, but little is known about the functions of nuclear PLCs. This work aimed to characterize phenotypically the human PLCδ4 (hPLCδ4) in mesenchymal stem cells. This nuclear isoform of PLC is present in different cell types and has a possible role in proliferative processes. In this work, hPLCδ4 was found to be mainly nuclear in human adipose-derived mesenchymal stem cells (hASC). PLCδ4 knockdown demonstrated that it is essential for hASC proliferation, without inducing cell death. An increase of cells in G1, and a reduction of cells on interphase and G2/M in knockdown cells were seen. Furthermore, PLCδ4 knockdown increased the percentage of senescent cells, p16INK4A+ and p21Cip1 mRNAs expression, which could explain the impaired cell proliferation. The results show that hPLCδ4 is in involved in cellular proliferation and senescence in hASC.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfredo Miranda Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
26
|
Poli A, Ratti S, Finelli C, Mongiorgi S, Clissa C, Lonetti A, Cappellini A, Catozzi A, Barraco M, Suh PG, Manzoli L, McCubrey JA, Cocco L, Follo MY. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs). FASEB J 2018; 32:681-692. [PMID: 28970249 DOI: 10.1096/fj.201700690r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PI-PLCβ1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCβ1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCβ1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/β-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G0/G1 arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCβ1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).
Collapse
Affiliation(s)
- Alessandro Poli
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy.,Istituto Nazionale Genetica Molecolare, Fondazione Romeo e Enrica Invernizzi, Milan, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- L. and E. Seràgnoli Institute of Hematology, Lalla Seràgnoli, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Cristina Clissa
- L. and E. Seràgnoli Institute of Hematology, Lalla Seràgnoli, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,Hematology and Stem Cell Transplant Center, San Salvatore Hospital, Pesaro, Italy
| | - Annalisa Lonetti
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy.,Lalla Seràgnoli Department of Pediatrics, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social Sciences and Health, University of Cassino, Cassino, Italy
| | - Alessia Catozzi
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Marilena Barraco
- L. and E. Seràgnoli Institute of Hematology, Lalla Seràgnoli, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Parisi S, Ratti S, Mongiorgi S, Suh PG, Manzoli L, McCubrey JA, Cocco L, Follo MY, Finelli C. Current therapy and new drugs: a road to personalized treatment of myelodysplastic syndromes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1419820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sarah Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. e A. Seràgnoli”, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Matilde Y. Follo
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. e A. Seràgnoli”, S. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
28
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
29
|
Scarlata S, Singla A, Garwain O. Phospholipase Cβ interacts with cytosolic partners to regulate cell proliferation. Adv Biol Regul 2017; 67:7-12. [PMID: 28919329 DOI: 10.1016/j.jbior.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023]
Abstract
Phospholipase Cβ (PLCβ) is the main effector of the Gαq signaling pathway relaying different extracellular sensory information to generate intracellular calcium signals. Besides this classic function, we have found that PLCβ plays an important but unknown role in regulating PC12 cell differentiation by interacting with components in the RNA-induced silencing machinery. In trying to understand the role of PLCβ in PC12 cell differentiation, we find that over-expressing PLCβ reduces PC12 cell proliferation while down-regulating PLCβ increases the rate of cell proliferation. However, this behavior is not seen in other cancerous cell lines. To determine the underlying mechanism, we carried out mass spectrometry analysis of PLCβ complexes in PC12 cells. We find that in unsynchronized cells, PLCβ primarily binds cyclin-dependent kinase (CDK)16 whose activity plays a key role in cell proliferation. In vitro studies show a direct association between the two proteins that result in loss in CDK16 activity. When cells are arrested in the G2/M phase, a large population of PLCβ is bound to Ago2 in a complex that contains C3PO and proteins commonly found in stress granules. Additionally, another population of PLCβ complexes with CDK18 and cyclin B1. Fluorescence lifetime imaging microscopy (FLIM) confirms cell cycle dependent associations between PLCβ and these other protein binding partners. Taken together, our studies suggest that PLCβ may play an active role in mediating interactions required to move through the cell cycle.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01602, USA.
| | - Ashima Singla
- Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01602, USA
| | - Osama Garwain
- Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01602, USA
| |
Collapse
|
30
|
Wang H, Shears SB. Structural features of human inositol phosphate multikinase rationalize its inositol phosphate kinase and phosphoinositide 3-kinase activities. J Biol Chem 2017; 292:18192-18202. [PMID: 28882892 DOI: 10.1074/jbc.m117.801845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 01/17/2023] Open
Abstract
Human inositol phosphate multikinase (HsIPMK) critically contributes to intracellular signaling through its inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) 3-kinase activities. This catalytic profile is not conserved; orthologs from Arabidopsis thaliana and Saccharomyces cerevisiae are predominantly Ins(1,4,5)P3 6-kinases, and the plant enzyme cannot phosphorylate PtdIns(4,5)P2 Therefore, crystallographic analysis of the yeast and plant enzymes, without bound inositol phosphates, do not structurally rationalize HsIPMK activities. Here, we present 1.6-Å resolution crystal structures of HsIPMK in complex with either Ins(1,4,5)P3 or PtdIns(4,5)P2 The Ins(1,4,5)P3 headgroup of PtdIns(4,5)P2 binds in precisely the same orientation as free Ins(1,4,5)P3 itself, indicative of evolutionary optimization of 3-kinase activities against both substrates. We report on nucleotide binding between the separate N- and C-lobes of HsIPMK. The N-lobe exhibits a remarkable degree of conservation with protein kinase A (root mean square deviation = 1.8 Å), indicating common ancestry. We also describe structural features unique to HsIPMK. First, we observed a constrained, horseshoe-shaped substrate pocket, formed from an α-helix, a 310 helix, and a recently evolved tri-proline loop. We further found HsIPMK activities rely on a preponderance of Gln residues, in contrast to the larger Lys and Arg residues in yeast and plant orthologs. These conclusions are supported by analyzing 14 single-site HsIPMK mutants, some of which differentially affect 3-kinase and 6-kinase activities. Overall, we structurally rationalize phosphorylation of Ins(1,4,5)P3 and PtdIns(4,5)P2 by HsIPMK.
Collapse
Affiliation(s)
- Huanchen Wang
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Stephen B Shears
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
31
|
Ba MA, Surina J, Singer CA, Valencik ML. Knockdown of subunit 3 of the COP9 signalosome inhibits C2C12 myoblast differentiation via NF-KappaB signaling pathway. BMC Pharmacol Toxicol 2017. [PMID: 28623958 PMCID: PMC5474012 DOI: 10.1186/s40360-017-0154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The COP9 signalosome (CSN) is a conserved protein complex composed of 8 subunits designated CSN1-CSN8. CSN3 represents the third subunit of the CSN and maintains the integrity of the complex. CSN3 binds to the striated muscle-specific β1D integrin tail, and its subcellular localization is altered in differentiated skeletal muscle cells. However, the role of CSN3 in skeletal muscle differentiation is unknown. The main goal of this study was to identify whether CSN3 participates in myoblast differentiation and the signalling mechanisms involved using C2C12 cells as a skeletal muscle cell model. Methods Small-hairpin (shRNA) was used to knockdown CSN3 in C2C12 cells. Differentiation was evaluated by immunostaining and confocal microscopy. Markers of differentiation, NF-κB signaling and CSN subunits expression, were assessed by immunoblotting and/or immunostaining. Cell proliferation was analysed by cell counting, flow cytometry and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by one or two-way analysis of variance (ANOVA) followed by post-hoc testing. Results Transduction of C2C12 cells with two distinct CSN3 shRNAs led to the production of two cells lines expressing 7% of CSN3 protein (shCSN3-Low) and 43% of CSN3 protein (CSN3-Med) compared to controls. Knockdown of CSN3 was accompanied by destabilization of several CSN subunits and increased nuclear NF-κB localization. shCSN3-Med cells expressed less myogenin and formed shorter and thinner myotubes. In contrast, the shCSN3-Low cells expressed higher levels of myogenin prior and during the differentiation and remained mononucleated throughout the differentiation period. Both CSN3 knockdown cell lines failed to express sarcomeric myosin heavy chain (MHC) protein during differentiation. The fusion index was significantly higher in control cells than in shCSN3-Med cells, whereas shCSN3-Low cells showed no cell fusion. Interestingly, CSN3 knockdown cells exhibited a significantly slower growth rate relative to the control cells. Cell cycle analysis revealed that CSN3 knockdowns delayed in S phase and had increased levels of nuclear p21/Cip1 and p27/Kip1. Conclusions This study clarifies the first step toward unrevealing the CSN3/CSN-mediated pathways that controls C2C12 differentiation and proliferation. Further in vivo characterization of CSN/CSN3 may lead to the discovery of novel therapeutic target of skeletal muscle diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Mariam A Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA.
| | - Jeffrey Surina
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | - Maria L Valencik
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
32
|
Kim E, Ahn H, Kim MG, Lee H, Kim S. The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub. Mol Cells 2017; 40:315-321. [PMID: 28554203 PMCID: PMC5463039 DOI: 10.14348/molcells.2017.0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates (IP4 and IP5), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hyoungjoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Min Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
33
|
Ratti S, Mongiorgi S, Ramazzotti G, Follo MY, Mariani GA, Suh PG, McCubrey JA, Cocco L, Manzoli L. Nuclear Inositide Signaling Via Phospholipase C. J Cell Biochem 2017; 118:1969-1978. [PMID: 28106288 DOI: 10.1002/jcb.25894] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Abstract
The existence of an independent nuclear inositide pathway distinct from the cytoplasmic one has been demonstrated in different physiological systems and in diseases. In this prospect we analyze the role of PI-PLCβ1 nuclear isoform in relation to the cell cycle regulation, the cell differentiation, and different physiopathological pathways focusing on the importance of the nuclear localization from both molecular and clinical point of view. PI-PLCβ1 is essential for G1/S transition through DAG and Cyclin D3 and plays also a central role in G2/M progression through Cyclin B1 and PKCα. In the differentiation process of C2C12 cells PI-PLCβ1 increases in both myogenic differentiation and osteogenic differentiation. PI-PLCβ1 and Cyclin D3 reduction has been observed in Myotonic Dystrophy (DM) suggesting a pivotal role of these enzymes in DM physiopathology. PI-PLCβ1 is also involved in adipogenesis through a double phase mechanism. Moreover, PI-PLCβ1 plays a key role in the normal hematopoietic differentiation where it seems to decrease in erythroid differentiation and increase in myeloid differentiation. In Myelodysplastic Syndromes (MDS) PI-PLCβ1 has a genetic and epigenetic relevance and it is related to MDS patients' risk of Acute Myeloid Leukemia (AML) evolution. In MDS patients PI-PLCβ1 seems to be also a therapeutic predictive outcome marker. In the central nervous system, PI-PLCβ1 seems to be involved in different pathways in both brain cortex development and synaptic plasticity related to different diseases. Another PI-PLC isozyme that could be related to nuclear activities is PI-PLCζ that is involved in infertility processes. J. Cell. Biochem. 118: 1969-1978, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia A Mariani
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville 27834, North Carolina
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|