1
|
Su XB, Saiardi A. The role of inositol in the environmental organic phosphate cycle. Curr Opin Biotechnol 2024; 90:103196. [PMID: 39276615 DOI: 10.1016/j.copbio.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Cellular synthesis of phytic acid sequesters phosphates in the sugar inositol. Phytic acid in soil represents the most abundant form of organic phosphates. The supplementation of phytase or phytase-producing organisms has been considered as a strategy to improve usable soil phosphates. However, the impacts on the environmental flow of inositol, which is generated along with phosphate by phytase, have not been examined. In this review, we discuss the origin and nature of inositol produced in soil and the several possible destinations of inositol released by phytase activities. We emphasise how an improved understanding of soil inositol flow could help to provide new solutions to the phosphate shortage problem in agriculture.
Collapse
Affiliation(s)
- Xue B Su
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Nie X, Jia X, Kang X, Pu H, Ling Z, Wang X, Yu X, Zhang Y, Liu D, Zhao Z. Effects of isolated Saccharomyces cerevisiae on the metabolites and volatile organic compounds of Chinese-style sausage. Food Res Int 2024; 197:115269. [PMID: 39593349 DOI: 10.1016/j.foodres.2024.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Affiliation(s)
- Xin Nie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaohan Jia
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China; Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyue Kang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Haomou Pu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ziqing Ling
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China; Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinhui Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; National Agricultural Science and Technology Center (Chengdu), Chengdu 610000, China
| | - Xiaoping Yu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Kim S, Bhandari R, Brearley CA, Saiardi A. The inositol phosphate signalling network in physiology and disease. Trends Biochem Sci 2024; 49:969-985. [PMID: 39317578 DOI: 10.1016/j.tibs.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Combinatorial substitution of phosphate groups on the inositol ring gives rise to a plethora of inositol phosphates (InsPs) and inositol pyrophosphates (PP-InsPs). These small molecules constitute an elaborate metabolic and signalling network that influences nearly every cellular function. This review delves into the knowledge accumulated over the past decades regarding the biochemical principles and significance of InsP metabolism. We focus on the biological actions of InsPs in mammals, with an emphasis on recent findings regarding specific target proteins. We further discuss the roles of InsP metabolism in contributing to physiological homeostasis and pathological conditions. A deeper understanding of InsPs and their metabolic pathways holds the potential to address unresolved questions and propel advances towards therapeutic applications.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Razavi SA, Kalari M, Haghzad T, Haddadi F, Nasiri S, Hedayati M. Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy. Front Endocrinol (Lausanne) 2024; 15:1418956. [PMID: 39329107 PMCID: PMC11424451 DOI: 10.3389/fendo.2024.1418956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Thyroid cancer (TC) is a malignancy that is increasing in prevalence on a global scale, necessitating the development of innovative approaches for both diagnosis and treatment. Myo-inositol (MI) plays a crucial role in a wide range of physiological and pathological functions within human cells. To date, studies have investigated the function of MI in thyroid physiology as well as its potential therapeutic benefits for hypothyroidism and autoimmune thyroiditis. However, research in the field of TC is very restricted. Metabolomics studies have highlighted the promising diagnostic capabilities of MI, recognizing it as a metabolic biomarker for identifying thyroid tumors. Furthermore, MI can influence therapeutic characteristics by modulating key cellular pathways involved in TC. This review evaluates the potential application of MI as a naturally occurring compound in the management of thyroid diseases, including hypothyroidism, autoimmune thyroiditis, and especially TC. The limited number of studies conducted in the field of TC emphasizes the critical need for future research to comprehend the multifaceted role of MI in TC. A significant amount of research and clinical trials is necessary to understand the role of MI in the pathology of TC, its diagnostic and therapeutic potential, and to pave the way for personalized medicine strategies in managing this intricate disease.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Haghzad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Fatemeh Haddadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Noche JA, Vanderlip C, Wright S, Sordo L, Head E, Stark C. Myo-inositol and total NAA in the hippocampus are linked to CSF tau pathology in cognitively normal older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607353. [PMID: 39211099 PMCID: PMC11361118 DOI: 10.1101/2024.08.09.607353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Understanding relationships between in vivo neurometabolic changes and Alzheimer's disease (AD) pathology in the hippocampus, a region vulnerable to early changes in AD, will support early diagnosis. METHODS Two studies using 1 H-MRS examined concentrations of myo-inositol (MI), total creatine (tCr) and total NAA (tNAA) in the hippocampus. The first study compared hippocampal metabolite concentrations in healthy young and older adults and the second study assessed relationships between hippocampal metabolites and cerebrospinal fluid (CSF) measurements of Aβ42, phosphotau 181 (pTau181), and total tau (t-Tau) while adjusting for demographic covariates and spectral characteristics (linewidth, signal- to-noise ratio) in a separate group of older adults ranging from cognitively normal (CN) to AD-dementia. RESULTS Hippocampal MI, but not tCr or tNAA, was increased in cognitively normal older versus young adults. Within the second older adult group, MI and tNAA, but not tCr, were linked to increases in CSF pTau181 and t-Tau, but not Aβ42. DISCUSSION Tau deposition in cognitively normal individuals is associated with biochemical changes related to glial reactivity and neural integrity in the hippocampus.
Collapse
|
6
|
Ding L, Guo J, Yang Y, Lu Y, Xie X, Lu Z, Wang S, Xu H. Differences in adult nutritional requirements impact the population growth and survival of two related species of rice leaffolders to produce interspecific differentiation. Sci Rep 2024; 14:17200. [PMID: 39060323 PMCID: PMC11282227 DOI: 10.1038/s41598-024-66512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Nutrition is a limiting feature of species evolution. The differences in nutritional requirements are the evolutionary result of differential adaptations to environmental changes, explaining differences in their ecological traits. Cnaphalocrocis medinalis and Cnaphalocrocis exigua, two related species of rice leaffolders, have similar morphology and feeding properties but different migration and overwintering behaviors. However, it is unclear whether they have evolved adult nutritional differentiation traits to coexist. To explore this issue, this study examined the effects of carbohydrates and amino acids on their reproductive and demographic parameters. The findings indicate that carbohydrate intake prolonged the longevity and population growth of two rice leaffolders, but amino acid intake promoted egg hatching only. However, nutrient deficiency made it impossible for C. medinalis to reproduce successfully and survive, but it did not affect C. exigua. The population expansion and survival of migratory C. medinalis relied on adult nutritional intake. Conversely, the nutrients necessary for C. exigua overwintering activity mostly came from the storage of larvae. The difference in nutritional requirements for population growth and survival between the two rice leaffolders partially explained their differences in migration and overwintering.
Collapse
Affiliation(s)
- Lingwen Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin Xie
- Agricultural Technology Extension Center of Qianwei, Sichuan Province, Leshan, 614400, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuping Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Technical Centre for Animal, Plant, and Food Inspection and Quarantine, Shanghai Customs, Shanghai, 200335, China.
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Maldonado-Pava J, Tapia-Perdomo V, Estupinan-Cardenas L, Puentes-Cala E, Castillo-Villamizar GA. Exploring the biotechnological potential of novel soil-derived Klebsiella sp. and Chryseobacterium sp. strains using phytate as sole carbon source. Front Bioeng Biotechnol 2024; 12:1426208. [PMID: 38962663 PMCID: PMC11219571 DOI: 10.3389/fbioe.2024.1426208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.
Collapse
|
8
|
Scott BM, Koh K, Rix GD. Structural and functional profile of phytases across the domains of life. Curr Res Struct Biol 2024; 7:100139. [PMID: 38562944 PMCID: PMC10982552 DOI: 10.1016/j.crstbi.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin M. Scott
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Kevin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Gregory D. Rix
- Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| |
Collapse
|
9
|
Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, Tabuenca ZG, Arichi T, Edden RAE, Chai X, Puts NA. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex 2024; 34:bhae046. [PMID: 38430105 PMCID: PMC10908220 DOI: 10.1093/cercor/bhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| | - Hannah Hwa
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Benjamin Hopwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ross Lawrence
- Division of Cognitive Neurology, Department of Neurology, Johns Hopkins University, 1629 Thames Street Suite 350, Baltimore, MD 21231, United States
| | - Zeus G Tabuenca
- Department of Statistical Methods, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, 1st Floor, South Wing, St Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, United States
- F.M. Kirby Research Centre for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, United States
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, QC H3A2B4, Canada
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Gypakis A, Adelt S, Lemoine H, Vogel G, Wasner HK. Activated Inositol Phosphate, Substrate for Synthesis of Prostaglandylinositol Cyclic Phosphate (Cyclic PIP)-The Key for the Effectiveness of Inositol-Feeding. Int J Mol Sci 2024; 25:1362. [PMID: 38338641 PMCID: PMC10855042 DOI: 10.3390/ijms25031362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
The natural cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), is biosynthesized from prostaglandin E (PGE) and activated inositol phosphate (n-Ins-P), which is synthesized by a particulate rat-liver-enzyme from GTP and a precursor named inositol phosphate (pr-Ins-P), whose 5-ring phosphodiester structure is essential for n-Ins-P synthesis. Aortic myocytes, preincubated with [3H] myo-inositol, synthesize after angiotensin II stimulation (30 s) [3H] pr-Ins-P (65% yield), which is converted to [3H] n-Ins-P and [3H] cyclic PIP. Acid-treated (1 min) [3H] pr-Ins-P co-elutes with inositol (1,4)-bisphosphate in high performance ion chromatography, indicating that pr-Ins-P is inositol (1:2-cyclic,4)-bisphosphate. Incubation of [3H]-GTP with unlabeled pr-Ins-P gave [3H]-guanosine-labeled n-Ins-P. Cyclic PIP synthase binds the inositol (1:2-cyclic)-phosphate part of n-Ins-P to PGE and releases the [3H]-labeled guanosine as [3H]-GDP. Thus, n-Ins-P is most likely guanosine diphospho-4-inositol (1:2-cyclic)-phosphate. Inositol feeding helps patients with metabolic conditions related to insulin resistance, but explanations for this finding are missing. Cyclic PIP appears to be the key for explaining the curative effect of inositol supplementation: (1) inositol is a molecular constituent of cyclic PIP; (2) cyclic PIP triggers many of insulin's actions intracellularly; and (3) the synthesis of cyclic PIP is decreased in diabetes as shown in rodents.
Collapse
Affiliation(s)
- Antonios Gypakis
- General Secretariat for Research and Innovation, GR-11527 Athens, Greece;
| | - Stephan Adelt
- Fachbereich C—Biochemie, Bergische University, 42119 Wuppertal, Germany;
| | - Horst Lemoine
- Institute for Laser-Medicine, Molecular Drug-Research Group, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Günter Vogel
- Fachbereich C—Biochemie, Bergische University, 42119 Wuppertal, Germany;
| | - Heinrich K. Wasner
- BioReg Biopharm, Technology Innovation Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
López-Agudelo VA, Falk-Paulsen M, Bharti R, Rehman A, Sommer F, Wacker EM, Ellinghaus D, Luzius A, Sievers LK, Liebeke M, Kaser A, Rosenstiel P. Defective Atg16l1 in intestinal epithelial cells links to altered fecal microbiota and metabolic shifts during pregnancy in mice. Gut Microbes 2024; 16:2429267. [PMID: 39620359 PMCID: PMC11622647 DOI: 10.1080/19490976.2024.2429267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease. Here, we explored the longitudinal dynamics of gut microbiota composition and functional potential during pregnancy and after lactation in Atg16l1∆IEC mice carrying an intestinal epithelial deletion of the Crohn's disease risk gene Atg16l1. Using 16S rRNA amplicon and shotgun metagenomic sequencing, we demonstrated divergent temporal shifts in microbial composition between Atg16l1 wildtype and Atg16l1∆IEC pregnant mice in trimester 3, which was validated in an independent experiment. Observed differences included microbial genera implicated in IBD such as Lachnospiraceae, Roseburia, Ruminococcus, and Turicibacter. Changes partially recovered after lactation. Additionally, metagenomic and metabolomic analyses suggest an increased capacity for chitin degradation, resulting in higher levels of free N-acetyl-glucosamine products in feces, alongside reduced glucose and myo-inositol levels in serum around the time of delivery. On the host side, we found that the immunological response of Atg16l1∆IEC mice is characterized by higher colonic mRNA levels of TNFα and CXCL1 in trimester 3 and a lower weight of offspring at birth. Understanding pregnancy-dependent microbiome changes in the context of IBD may constitute the first step in the identification of fecal microbial biomarkers and microbiota-directed therapies that could help improve precision care for managing pregnancies in IBD patients.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Katharina Sievers
- Department of General Internal Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manuel Liebeke
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
12
|
Chen Q, Shen L, Li S. Emerging role of inositol monophosphatase in cancer. Biomed Pharmacother 2023; 161:114442. [PMID: 36841024 DOI: 10.1016/j.biopha.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Inositol monophosphatase (IMPase) is an enzyme with two homologs-IMPA1 and IMPA2-that is responsible for dephosphorylating myo-inositol monophosphate to generate myo-inositol. IMPase has been extensively studied in neuropsychiatric diseases and is regarded as a susceptibility gene. Recently, emerging evidence has implied that IMPase is linked to cancer development and progression and correlates with patient survival outcomes. Interestingly, whether it acts as a tumor-promoter or tumor-suppressor is inconsistent among different research studies. In this review, we summarize the latest findings on IMPase in cancer, focusing on exploring the underlying mechanisms for its pro- and anticancer roles. In addition, we discuss the potential methods of IMPase regulation in cancer cells and the possible approaches for IMPase intervention in clinical practice.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Nguyen Trung M, Kieninger S, Fandi Z, Qiu D, Liu G, Mehendale NK, Saiardi A, Jessen H, Keller B, Fiedler D. Stable Isotopomers of myo-Inositol Uncover a Complex MINPP1-Dependent Inositol Phosphate Network. ACS CENTRAL SCIENCE 2022; 8:1683-1694. [PMID: 36589890 PMCID: PMC9801504 DOI: 10.1021/acscentsci.2c01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 05/04/2023]
Abstract
The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR-down to individual enantiomers-which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - Stefanie Kieninger
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Zeinab Fandi
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Danye Qiu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Guizhen Liu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Neelay K. Mehendale
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adolfo Saiardi
- MRC
Laboratory for Molecular Cell Biology, University
College London, WC1E 6BT London, United Kingdom
| | - Henning Jessen
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bettina Keller
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| |
Collapse
|