1
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
2
|
Wu H, Guang C, Zhang W, Mu W. Recent development of phenyllactic acid: physicochemical properties, biotechnological production strategies and applications. Crit Rev Biotechnol 2023; 43:293-308. [PMID: 34965820 DOI: 10.1080/07388551.2021.2010645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phenyllactic acid (PLA) is capable of inhibiting the growth of many microorganisms, showing a broad-spectrum antimicrobial property, which allows it to hold vast applications in the: food, feed, pharmaceutical, and cosmetic industries, especially in the field of food safety. Recently, the production of PLA has garnered considerable attention due to the increasing awareness of food safety from the public. Accordingly, this review mainly updates the recent development for the production of PLA through microbial fermentation and whole-cell catalysis (expression single-, double-, and triple-enzyme) strategies. Firstly, the: physicochemical properties, existing sources, and measurement methods of PLA are systematically covered. Then, the inhibition spectrum of PLA is summarized, and synchronously, the antimicrobial and anti-biofilm mechanisms of PLA on commonly pathogenic microorganisms in foods are described in detail, thereby clarifying the reason for extending the shelf life of foods. Additionally, the factors affecting the production of PLA are summarized from the biosynthesis and catabolism pathway of PLA in microorganisms, as well as external environmental parameters insights. Finally, the downstream treatment process and applications of PLA are discussed and outlined. In the future, clinical data should be supplemented with the metabolic kinetics of PLA in humans and to evaluate animal toxicology, to enable regulatory use of PLA as a food additive. A food-grade host, such as Bacillus subtilis and Lactococcus lactis, should also be developed as a cell vector expressing enzymes for PLA production from a food safety perspective.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Li T, Qin Z, Wang D, Xia X, Zhou X, Hu G. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid. World J Microbiol Biotechnol 2022; 39:36. [PMID: 36472665 DOI: 10.1007/s11274-022-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Phenyllactic acid (PLA), a natural antimicrobial substance, has many potential applications in the food, animal feed, pharmaceutical and cosmetic industries. However, its production is limited by the complex reaction steps involved in its chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, enzymatic or whole-cell catalysis was developed as an alternative method for PLA production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value PLA. Specially, the advantages and disadvantages of the using of the three kinds of substrates, which includes phenylpyruvate, phenylalanine and glucose as starting materials by natural or engineered microbes is summarized. Notably, the bio-conversion of PLA often requires the consumption of expensive coenzyme NADH. To overcome the issues of NADH regeneration, efficiently internal cofactor regeneration systems constructed by co-expressing different enzyme combinations composed of lactate dehydrogenase with others for enhancing the PLA production, as well as their possible improvements, are discussed. In particular, the construction of fusion proteins with different linkers can achieve higher PLA yield and more efficient cofactor regeneration than that of multi-enzyme co-expression. Overall, this review provides a comprehensive overview of PLA biosynthesis pathways and strategies for increasing PLA yield through biotechnology, providing future directions for the large-scale commercial production of PLA and the expansion of downstream applications.
Collapse
Affiliation(s)
- Tinglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China
| | - Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China.
| | - Xue Xia
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Xiaojie Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Ge Hu
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
4
|
Valle A, Soto Z, Muhamadali H, Hollywood KA, Xu Y, Lloyd JR, Goodacre R, Cantero D, Cabrera G, Bolivar J. Metabolomics for the design of new metabolic engineering strategies for improving aerobic succinic acid production in Escherichia coli. Metabolomics 2022; 18:56. [PMID: 35857216 PMCID: PMC9300530 DOI: 10.1007/s11306-022-01912-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Glycerol is a byproduct from the biodiesel industry that can be biotransformed by Escherichia coli to high added-value products such as succinate under aerobic conditions. The main genetic engineering strategies to achieve this aim involve the mutation of succinate dehydrogenase (sdhA) gene and also those responsible for acetate synthesis including acetate kinase, phosphate acetyl transferase and pyruvate oxidase encoded by ackA, pta and pox genes respectively in the ΔsdhAΔack-ptaΔpox (M4) mutant. Other genetic manipulations to rewire the metabolism toward succinate consist on the activation of the glyoxylate shunt or blockage the pentose phosphate pathway (PPP) by deletion of isocitrate lyase repressor (iclR) or gluconate dehydrogenase (gnd) genes on M4-ΔiclR and M4-Δgnd mutants respectively. OBJECTIVE To deeply understand the effect of the blocking of the pentose phosphate pathway (PPP) or the activation of the glyoxylate shunt, metabolite profiles were analyzed on M4-Δgnd, M4-ΔiclR and M4 mutants. METHODS Metabolomics was performed by FT-IR and GC-MS for metabolite fingerprinting and HPLC for quantification of succinate and glycerol. RESULTS Most of the 65 identified metabolites showed lower relative levels in the M4-ΔiclR and M4-Δgnd mutants than those of the M4. However, fructose 1,6-biphosphate, trehalose, isovaleric acid and mannitol relative concentrations were increased in M4-ΔiclR and M4-Δgnd mutants. To further improve succinate production, the synthesis of mannitol was suppressed by deletion of mannitol dehydrogenase (mtlD) on M4-ΔgndΔmtlD mutant that increase ~ 20% respect to M4-Δgnd. CONCLUSION Metabolomics can serve as a holistic tool to identify bottlenecks in metabolic pathways by a non-rational design. Genetic manipulation to release these restrictions could increase the production of succinate.
Collapse
Affiliation(s)
- Antonio Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, University of Cadiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
- Institute of Viticulture and Agri-Food Research (IVAGRO) - International Campus of Excellence (ceiA3), University of Cadiz, 11510, Puerto Real, Cádiz, Spain.
| | - Zamira Soto
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, University of Cadiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
- Department of Chemical Engineering and Food Technology, University of Cadiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, 080020, Barranquilla, Colombia
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Department of Biochemistry and Systems Biology, Institute of Integrative Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Katherine A Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Department of Biochemistry and Systems Biology, Institute of Integrative Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Jonathan R Lloyd
- Williamson Research Centre, School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Department of Biochemistry and Systems Biology, Institute of Integrative Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Domingo Cantero
- Department of Chemical Engineering and Food Technology, University of Cadiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
- Institute of Viticulture and Agri-Food Research (IVAGRO) - International Campus of Excellence (ceiA3), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Gema Cabrera
- Department of Chemical Engineering and Food Technology, University of Cadiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
- Institute of Viticulture and Agri-Food Research (IVAGRO) - International Campus of Excellence (ceiA3), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Jorge Bolivar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, University of Cadiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
- Institute of Biomolecules (INBIO), University of Cadiz, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
5
|
Rathod JP, Vira C, Lali AM, Prakash G. Heterologous mannitol-1-phosphate dehydrogenase gene over-expression in Parachlorella kessleri for enhanced microalgal biomass productivity. J Genet Eng Biotechnol 2022; 20:38. [PMID: 35226194 PMCID: PMC8885943 DOI: 10.1186/s43141-022-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
Abstract
Background Microalgae have tremendous potential in CO2 sequestration, bioenergy, biofuels, wastewater treatment, and high-value metabolites production. However, large-scale production of microalgae is hampered due to photo-inhibition in outdoor cultivation. Mannitol, as an osmolyte, is known to relieve the stress produced under different abiotic stress conditions during the growth of a photosynthetic organism. Results In the present study, Mannitol-1-phosphate 5-dehydrogenase (Mt1D) was over-expressed to study the effect of mannitol over-production in Parachlorella kessleri under high-light induced stress. Over-expression of Mt1D led to 65% increased mannitol content in the transformed P. kessleri compared to that of wild type. Mannitol transformant demonstrated > 20-fold reduction in reactive oxygen species generation and 15% higher biomass productivity when grown in outdoor cultivation with high-light irradiance of 1200 μmol photons m−2 s−1. Conclusions The current study establishes that a higher mannitol concentration provides stress shielding and leads to better acclimatization of transgenic microalgae against high-light generated stress. It also led to reduced ROS generation and improved growth of microalga under study. Thus, overexpression of the Mt1D gene in microalgae can be a suitable strategy to combat high-light stress.
Collapse
Affiliation(s)
- Jayant Pralhad Rathod
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,ADT's Shardabai Pawar Mahila Arts, Commerce & Science College, Baramati, Maharashtra, India
| | - Chaitali Vira
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind M Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
6
|
Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review. Appl Biochem Biotechnol 2022; 194:2762-2795. [PMID: 35195836 DOI: 10.1007/s12010-022-03836-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Obesity, diabetes, and other cardiovascular diseases are directly related to the high consumption of processed sugars with high caloric content. The current food industry has novel trends related to replacing highly caloric sugars with non-caloric or low-calorie sweeteners. Mannitol, a polyol, represents a suitable substitute because it has a low caloric content and does not induce a glycemic response, which is crucial for diabetic people. Consequently, this polyol has multiple applications in the food, pharmaceutical, and medicine industries. Mannitol can be produced by plant extraction, chemical or enzymatic synthesis, or microbial fermentation. Different in vitro processes have been developed regarding enzymatic synthesis to obtain mannitol from fructose, glucose, or starch-derived substrates. Various microorganisms such as yeast, fungi, and bacteria are applied for microbial fermentation. Among them, heterofermentative lactic acid bacteria (LAB) represent a reliable and feasible alternative due to their metabolic characteristics. In this regard, the yield and productivity of mannitol depend on the culture system, the growing conditions, and the culture medium composition. In situ mannitol production represents a novel approach to decrease the sugar content in food and beverages. Also, genetic engineering offers an interesting option to obtain mannitol-producing strains. This review presents and discusses the most significant advances that have been made in the mannitol production through fermentation by heterofermentative LAB, including the pertinent and critical analysis of culture conditions considering broth composition, reaction systems, and their effects on productivities and yields.
Collapse
Affiliation(s)
- Juan Gilberto Martínez-Miranda
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Isaac Chairez
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Enrique Durán-Páramo
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico.
| |
Collapse
|
7
|
Hanko EKR, Sherlock G, Minton NP, Malys N. Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production. Metab Eng 2022; 72:24-34. [PMID: 35149227 DOI: 10.1016/j.ymben.2022.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/26/2023]
Abstract
Cupriavidus necator H16 is one of the most researched carbon dioxide (CO2)-fixing bacteria. It can store carbon in form of the polymer polyhydroxybutyrate and generate energy by aerobic hydrogen oxidation under lithoautotrophic conditions, making C. necator an ideal chassis for the biological production of value-added compounds from waste gases. Despite its immense potential, however, the experimental evidence of C. necator utilisation for autotrophic biosynthesis of chemicals is limited. Here, we genetically engineered C. necator for the high-level de novo biosynthesis of the industrially relevant sugar alcohol mannitol directly from Calvin-Benson-Bassham (CBB) cycle intermediates. To identify optimal mannitol production conditions in C. necator, a mannitol-responsive biosensor was applied for screening of mono- and bifunctional mannitol 1-phosphate dehydrogenases (MtlDs) and mannitol 1-phosphate phosphatases (M1Ps). We found that MtlD/M1P from brown alga Ectocarpus siliculosus performed overall the best under heterotrophic growth conditions and was selected to be chromosomally integrated. Consequently, autotrophic fermentation of recombinant C. necator yielded up to 3.9 g/L mannitol, representing a substantial improvement over mannitol biosynthesis using recombinant cyanobacteria. Importantly, we demonstrate that at the onset of stationary growth phase nearly 100% of carbon can be directed from the CBB cycle into mannitol through the glyceraldehyde 3-phosphate and fructose 6-phosphate intermediates. This study highlights for the first time the potential of C. necator to generate sugar alcohols from CO2 utilising precursors derived from the CBB cycle.
Collapse
Affiliation(s)
- Erik K R Hanko
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom; Present address: Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Gillian Sherlock
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
8
|
Wu X, Wu T, Huang A, Shen Y, Zhang X, Song W, Wang S, Ruan H. New Insights Into the Biosynthesis of Typical Bioactive Components in the Traditional Chinese Medicinal Fungus Cordyceps militaris. Front Bioeng Biotechnol 2022; 9:801721. [PMID: 34976991 PMCID: PMC8719641 DOI: 10.3389/fbioe.2021.801721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Cordyceps militaris, a traditional medicinal ingredient with a long history of application in China, is regarded as a high-value fungus due to its production of various bioactive ingredients with a wide range of pharmacological effects in clinical treatment. Several typical bioactive ingredients, such as cordycepin, D-mannitol, cordyceps polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA), have received increasing attention due to their antitumor, antioxidant, antidiabetic, radioprotective, antiviral and immunomodulatory activities. Here, we systematically sorted out the latest research progress on the chemical characteristics, biosynthetic gene clusters and pathways of these four typical bioactive ingredients. This summary will lay a foundation for obtaining low-cost and high-quality bioactive ingredients in large amounts using microbial cell factories in the future.
Collapse
Affiliation(s)
- Xiuyun Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Ailin Huang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuanyuan Shen
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuanyu Zhang
- New College, University of Toronto, Toronto, ON, Canada
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
9
|
Lei M, Peng X, Sun W, Zhang D, Wang Z, Yang Z, Zhang C, Yu B, Niu H, Ying H, Ouyang P, Liu D, Chen Y. Nonsterile l-Lysine Fermentation Using Engineered Phosphite-Grown Corynebacterium glutamicum. ACS OMEGA 2021; 6:10160-10167. [PMID: 34056170 PMCID: PMC8153679 DOI: 10.1021/acsomega.1c00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Fermentation using Corynebacterium glutamicum is an important method for the industrial production of amino acids. However, conventional fermentation processes using C. glutamicum are susceptible to microbial contamination and therefore require equipment sterilization or antibiotic dosing. To establish a more robust fermentation process, l-lysine-producing C. glutamicum was engineered to efficiently utilize xenobiotic phosphite (Pt) by optimizing the expression of Pt dehydrogenase in the exeR genome locus. This ability provided C. glutamicum with a competitive advantage over common contaminating microbes when grown on media containing Pt as a phosphorus source instead of phosphate. As a result, the engineered strain could produce 41.00 g/L l-lysine under nonsterile conditions during batch fermentation for 60 h, whereas the original strain required 72 h to produce 40.78 g/L l-lysine under sterile conditions. Therefore, the recombinant strain can efficiently produce l-lysine under nonsterilized conditions with unaffected production efficiency. Although this anticontamination strategy has been previously reported for other species, this is the first time it has been demonstrated in C. glutamicum; these findings should aid in the further development of cost-efficient amino acid fermentation processes.
Collapse
Affiliation(s)
- Ming Lei
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiwei Peng
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenjun Sun
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Di Zhang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenyu Wang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengjiao Yang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chong Zhang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huanqing Niu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Ying
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Pingkai Ouyang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Yong Chen
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol. Appl Microbiol Biotechnol 2021; 105:1913-1924. [PMID: 33544214 DOI: 10.1007/s00253-021-11154-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
D-Mannitol (hereinafter as mannitol) is a six-carbon sugar alcohol with diverse applications in food and pharmaceutical industries. To overcome the drawbacks of the chemical hydrogenation method commonly used for mannitol production at present, there is a need to search for novel prospective mannitol production strategies that are of high yield and low cost. In this study, we present a novel approach for the stoichiometric synthesis of mannitol via an in vitro synthetic enzymatic biosystem using the low-cost starch as substrate. By dividing the overall reaction pathway into three modules which could be executed sequentially in one pot, our design aimed at the stoichiometric conversion of starch-based materials into mannitol in an ATP-independent and cofactor-balanced manner. At optimized conditions, high product yields of around 95-98% were achieved using both 10 g/L and 50 g/L maltodextrin as substrate, indicating the potential of our designed system for industrial applications. This study not only provides a high-efficient strategy for the synthesis of mannitol but also expands the product scope of sugar alcohols by the in vitro synthetic enzymatic biosystems using low-cost starch-based materials as the input. KEY POINTS : • We described a design-build-test-learn pipeline to construct in vitro biosystems. • The designed system comprised six key enzymes and another three enzymes. • The system converted maltodextrin stoichiometrically to mannitol in one pot.
Collapse
|
11
|
Koko MYF, Mu W, Hassanin HAM, Zhang S, Lu H, Mohammed JK, Hussain M, Baokun Q, Yang L. Archaeal hyperthermostable mannitol dehydrogenases: A promising industrial enzymes for d-mannitol synthesis. Food Res Int 2020; 137:109638. [PMID: 33233217 DOI: 10.1016/j.foodres.2020.109638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Recently, the term healthy lifestyle connected to low-calorie diets, although it is not possible to get rid of added sugars as a source of energy, despite the close relation of added sugars to some diseases such as obesity, diabetes, etc. As a result, the sweetener market has flourished, which has led to increased demand for natural sweeteners such as polyols, including d-mannitol. Various methods have been developed to produce d-mannitol to achieve high productivity and low cost. In particular, metabolic engineering for d-mannitol considers one of the most promising approaches for d-mannitol production on the industrial scale. To date, the chemical process is not ideal for large-scale production because of its multistep mechanism involving hydrogenation and high cost. In this review, we highlight and present a comparative evaluation of the biochemical parameters that affecting d-mannitol synthesis from Thermotoga neapolitana and Thermotoga maritima mannitol dehydrogenase (MtDH) as a potential contribution for d-mannitol bio-synthesis. These species were selected because purified mannitol dehydrogenases from both strains have been reported to produce d-mannitol with no sorbitol formation under temperatures (90-120 °C).
Collapse
Affiliation(s)
- Marwa Yagoub Farag Koko
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Shuang Zhang
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Han Lu
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Muhammad Hussain
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Baokun
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Li Yang
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
12
|
Chi S, Wang G, Liu T, Wang X, Liu C, Jin Y, Yin H, Xu X, Yu J. Transcriptomic and Proteomic Analysis of Mannitol-metabolism-associated Genes in Saccharina japonica. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:415-429. [PMID: 33248278 PMCID: PMC8242268 DOI: 10.1016/j.gpb.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/20/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
Abstract
As a carbon-storage compound and osmoprotectant in brown algae, mannitol is synthesized and then accumulated at high levels in Saccharina japonica (Sja); however, the underlying control mechanisms have not been studied. Our analysis of genomic and transcriptomic data from Sja shows that mannitol metabolism is a cyclic pathway composed of four distinct steps. A mannitol-1-phosphate dehydrogenase (M1PDH2) and two mannitol-1-phosphatases (M1Pase1 and MIPase2) work together or in combination to exhibit full enzymatic properties. Based on comprehensive transcriptomic data from different tissues, generations, and sexes as well as under different stress conditions, coupled with droplet digital PCR (ddPCR) and proteomic confirmation, we suggest that SjaM1Pase1 plays a major role in mannitol biosynthesis and that the basic mannitol anabolism and the carbohydrate pool dynamics are responsible for carbon storage and anti-stress mechanism. Our proteomic data indicate that mannitol metabolism remains constant during diurnal cycle in Sja. In addition, we discover that mannitol-metabolism-associated (MMA) genes show differential expression between the multicellular filamentous (gametophyte) and large parenchymal thallus (sporophyte) generations and respond differentially to environmental stresses, such as hyposaline and hyperthermia conditions. Our results indicate that the ecophysiological significance of such differentially expressed genes may be attributable to the evolution of heteromorphic generations (filamentous and thallus) and environmental adaptation of Laminariales.
Collapse
Affiliation(s)
- Shan Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Qingdao Haida BlueTek Biotechnology Co., Ltd., Qingdao 266003, China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Tao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Cui Liu
- Qingdao Haida BlueTek Biotechnology Co., Ltd., Qingdao 266003, China
| | - Yuemei Jin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongxin Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Mannitol: physiological functionalities, determination methods, biotechnological production, and applications. Appl Microbiol Biotechnol 2020; 104:6941-6951. [DOI: 10.1007/s00253-020-10757-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
|
14
|
Madsen MA, Semerdzhiev S, Amtmann A, Tonon T. Engineering Mannitol Biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 Using a Green Algal Fusion Protein. ACS Synth Biol 2018; 7:2833-2840. [PMID: 30408953 DOI: 10.1021/acssynbio.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.
Collapse
Affiliation(s)
- Mary Ann Madsen
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stefan Semerdzhiev
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anna Amtmann
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
15
|
Noreña-Caro D, Benton MG. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Chen Y, Tan T. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5200-5209. [PMID: 29722539 DOI: 10.1021/acs.jafc.8b00819] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the biosynthesis of S-adenosylmethionine (SAM) in baker's yeast ( Saccharomyces cerevisiae), ATP functions as both a precursor and a driving force. However, few published reports have dealt with the control of ATP concentration using genetic design. In this study we have adopted a new ATP regulation strategy in yeast for enhancing SAM biosynthesis, including altering NADH availability and regulating the oxygen supply. Different ATP regulation systems were designed based on the introduction of water-forming NADH oxidase, Vitreoscilla hemoglobin, and phosphite dehydrogenase in combination with overexpression of the gene SAM2. Via application of this strategy, after 28 h cultivation, the SAM titer in the yeast strain ABYSM-2 reached a maximum level close to 55 mg/L, an increase of 67% compared to the control strain. The results show that the ATP regulation strategy is a valuable tool for SAM production and might further enhance the synthesis of other ATP-driven metabolites in yeast.
Collapse
Affiliation(s)
- Yawei Chen
- College of Chemical and Pharmaceutical Engineering , Henan University of Science and Technology , Luoyang 471023 , P. R. China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| |
Collapse
|
17
|
Suo B, Yang H, Wang Y, Lv H, Li Z, Xu C, Ai Z. Comparative Proteomic and Morphological Change Analyses of Staphylococcus aureus During Resuscitation From Prolonged Freezing. Front Microbiol 2018; 9:866. [PMID: 29774015 PMCID: PMC5943506 DOI: 10.3389/fmicb.2018.00866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 12/05/2022] Open
Abstract
When frozen, Staphylococcus aureus survives in a sublethally injured state. However, S. aureus can recover at a suitable temperature, which poses a threat to food safety. To elucidate the resuscitation mechanism of freezing survived S. aureus, we used cells stored at -18°C for 90 days as controls. After resuscitating the survived cells at 37°C, the viable cell numbers were determined on tryptic soy agar with 0.6% yeast extract (TSAYE), and the non-injured-cell numbers were determined on TSAYE supplemented with 10% NaCl. The results showed that the total viable cell number did not increase within the first 3 h of resuscitation, but the osmotic regulation ability of freezing survived cells gradually recovered to the level of healthy cells, which was evidenced by the lack of difference between the two samples seen by differential cell enumeration. Scanning electron microscopy (SEM) showed that, compared to late exponential stage cells, some frozen survived cells underwent splitting and cell lysis due to deep distortion and membrane rupture. Transmission electron microscopy (TEM) showed that, in most of the frozen survived cells, the nucleoids (low electronic density area) were loose, and the cytoplasmic matrices (high electronic density area) were sparse. Additionally, a gap was seen to form between the cytoplasmic membranes and the cell walls in the frozen survived cells. The morphological changes were restored when the survived cells were resuscitated at 37°C. We also analyzed the differential proteome after resuscitation using non-labeled high-performance liquid chromatography–mass spectrometry (HPLC-MS). The results showed that, compared with freezing survived S. aureus cells, the cells resuscitated for 1 h had 45 upregulated and 73 downregulated proteins. The differentially expressed proteins were functionally categorized by gene ontology enrichment, KEGG pathway, and STRING analyses. Cell membrane synthesis-related proteins, oxidative stress resistance-related proteins, metabolism-related proteins, and virulence factors exhibited distinct expression patterns during resuscitation. These findings have implications in the understanding of the resuscitation mechanism of freezing survived S. aureus, which may facilitate the development of novel technologies for improved detection and control of foodborne pathogens in frozen food.
Collapse
Affiliation(s)
- Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China.,Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-Chain Food, Henan Agricultural University, Zhengzhou, China
| | - Hua Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuexia Wang
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Haipeng Lv
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China.,Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-Chain Food, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Reshamwala SMS, Deb SS, Lali AM. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli. ACTA ACUST UNITED AC 2017; 44:1273-1277. [DOI: 10.1007/s10295-017-1957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/18/2017] [Indexed: 01/27/2023]
Abstract
Abstract
The platform chemical 2,3-butanediol (2,3-BDO) is produced by a number of microorganisms via a three-enzyme pathway starting from pyruvate. Here, we report production of 2,3-BDO via a shortened, two-enzyme pathway in Escherichia coli. A synthetic operon consisting of the acetolactate synthase (ALS) and acetoin reductase (AR) genes from Enterobacter under control of the T7 promoter was cloned in an episomal plasmid. E. coli transformed with this plasmid produced 2,3-BDO and the pathway intermediate acetoin, demonstrating that the shortened pathway was functional. To assemble a synthetic operon for inducer- and plasmid-free production of 2,3-BDO, ALS and AR genes were integrated in the E. coli genome under control of the constitutive ackA promoter. Shake flask-level cultivation led to accumulation of ~1 g/L acetoin and ~0.66 g/L 2,3-BDO in the medium. The novel biosynthetic route for 2,3-BDO biosynthesis described herein provides a simple and cost-effective approach for production of this important chemical.
Collapse
Affiliation(s)
- Shamlan M S Reshamwala
- 0000 0001 0668 0201 grid.44871.3e DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
| | - Shalini S Deb
- 0000 0001 0668 0201 grid.44871.3e DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
| | - Arvind M Lali
- 0000 0001 0668 0201 grid.44871.3e DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
- 0000 0001 0668 0201 grid.44871.3e Department of Chemical Engineering Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
| |
Collapse
|
19
|
Chen Y, Zhou H, Wang M, Tan T. Control of ATP concentration in Escherichia coli using an ATP-sensing riboswitch for enhanced S-adenosylmethionine production. RSC Adv 2017. [DOI: 10.1039/c7ra02538f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We proposed an ATP-sensing riboswitch-based strategy which could be applied to regulate the intracellular ATP concentration dynamically inE. coli. This strategy will be most beneficial for enhancing the production of the ATP-driven metabolites.
Collapse
Affiliation(s)
- Yawei Chen
- College of Chemical and Pharmaceutical Engineering
- Henan University of Science and Technology
- Luoyang 471023
- PR China
| | - Huiyun Zhou
- College of Chemical and Pharmaceutical Engineering
- Henan University of Science and Technology
- Luoyang 471023
- PR China
| | - Meng Wang
- National Energy R&D Center for Biorefinery
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|