1
|
Sasaki D, Suzuki H, Kusamori K, Itakura S, Todo H, Nishikawa M. Development of rice bran-derived nanoparticles with excellent anti-cancer activity and their application for peritoneal dissemination. J Nanobiotechnology 2024; 22:114. [PMID: 38493106 PMCID: PMC10943818 DOI: 10.1186/s12951-024-02381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Rice bran a by-product of the rice milling process is currently underutilized. Recent studies have shown that plant-derived nanoparticles (pdNPs) can be mass-produced at a low cost and exhibit biological and therapeutic activities. Rice bran contains various anti-cancer compounds, including γ-oryzanol and γ-tocotrienol, and rice bran-derived nanoparticles (rbNPs) can be employed as novel therapeutic agents for cancer treatment. RESULTS Koshihikari rice bran was suspended in water, and the suspension was centrifuged and filtered through a 0.45-µm-pore size syringe filter. The filtrate was ultracentrifuged, and the precipitates were suspended to obtain rbNPs. The rbNPs were negatively charged exosome-like nanoparticles with an average diameter of approximately 130 nm. The rbNPs exhibited cytotoxic activities against cancer cells but not against normal cells. The cytotoxic activity of rbNPs to murine colon adenocarcinoma colon26 cells was significantly greater than DOXIL® or other pdNPs. The rbNPs induced cell cycle arrest and apoptosis, and reduced the expression of proliferative proteins, including β-catenin and cyclin D1. Intraperitoneal injections of rbNPs into mice bearing peritoneal dissemination of colon26 cells significantly suppressed tumor growth with no significant adverse effects. CONCLUSION These results indicated that rbNPs are promising nanoparticles, hold significant potential for anti-cancer applications, and are expected to play a vital role in cancer treatment.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Hinako Suzuki
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, 2641, 278-8510, Japan.
| |
Collapse
|
2
|
Yu CG, Deng Q, Cao S, Zhao ZY, Mei DE, Feng CL, Zhou Q, Chen JL. Ultrasound-targeted cationic microbubbles combined with the NFκB binding motif increase SDF-1α gene transfection: A protective role in hearts after myocardial infarction. Kaohsiung J Med Sci 2022; 38:594-604. [PMID: 35324061 DOI: 10.1002/kjm2.12529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Treatment of myocardial infarction (MI) remains a major challenge. The chemokine family plays an important role in cardiac injury, repair, and remodeling following MI, while stromal cell-derived factor-1 alpha (SDF-1α) is the most promising therapeutic target. This study aimed to increase SDF-1α expression using a novel gene delivery system and further explore its effect on MI treatment. In this study, two kinds of plasmids, human SDF-1α plasmid (phSDF-1α) and human SDF-1α- nuclear factor κB plasmid (phSDF-1α-NFκB), were constructed and loaded onto cationic microbubble carriers, and the plasmids were released into MI rabbits by ultrasound-targeted microbubble destruction. The transfection efficiency of SDF-1α and the degree of heart repair were further explored and compared. In the MI rabbit models, transfection with phSDF-1α-NFκB resulted in higher SDF-1α expression in peri-infarct area compared with transfection with phSDF-1α or no transfection. Upregulation of SDF-1α was shown beneficial to these MI rabbit models, as demonstrated with better recovery of cardiac function, greater perfusion of the myocardium, more neovascularization, smaller infarction size and thicker infarct wall 1 month after treatment. Ultrasound-targeted cationic microbubbles combined with the NFκB binding motif could increase SDF-1α gene transfection, which would play a protective role after MI.
Collapse
Affiliation(s)
- Cai-Gui Yu
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Deng
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Cao
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi-Yu Zhao
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan-E Mei
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuang-Li Feng
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Zhou
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Ling Chen
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep 2021; 11:22818. [PMID: 34819568 PMCID: PMC8613273 DOI: 10.1038/s41598-021-02241-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Recent studies showed that plant-derived nanoparticles (NPs) can be easily produced in high yields and have potential applications as therapeutic agents or delivery carriers for bioactive molecules. In this study, we selected corn as it is inexpensive to grow and mass-produced globally. Super sweet corn was homogenized in water to obtain corn juice, which was then centrifuged, filtered through a 0.45-μm-pore size syringe filter, and ultracentrifuged to obtain NPs derived from corn, or corn-derived NPs (cNPs). cNPs obtained were approximately 80 nm in diameter and negatively charged (- 17 mV). cNPs were taken up by various types of cells, including colon26 tumor cells and RAW264.7 macrophage-like cells, with selective reduction of the proliferation of colon26 cells. Moreover, cNPs induced tumor necrosis factor-α release from RAW264.7 cells. cNPs and RAW264.7 in combination significantly suppressed the proliferation of colon26/fluc cells. Daily intratumoral injections of cNPs significantly suppressed the growth of subcutaneous colon26 tumors in mice, with no significant body weight loss. These results indicate excellent anti-tumor activity of cNPs.
Collapse
Affiliation(s)
- Daisuke Sasaki
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Kosuke Kusamori
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Yukiya Takayama
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Shoko Itakura
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Hiroaki Todo
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
4
|
Redkiewicz P, Stachyra A, Sawicka RA, Bocian K, Góra-Sochacka A, Kosson P, Sirko A. Immunogenicity of DNA Vaccine against H5N1 Containing Extended Kappa B Site: In Vivo Study in Mice and Chickens. Front Immunol 2017; 8:1012. [PMID: 28883819 PMCID: PMC5573718 DOI: 10.3389/fimmu.2017.01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023] Open
Abstract
Influenza is one of the most important illnesses in the modern world, causing great public health losses each year due to the lack of medication and broadly protective, long-lasting vaccines. The development of highly immunogenic and safe vaccines is currently one of the major problems encountered in efficient influenza prevention. DNA vaccines represent a novel and powerful alternative to the conventional vaccine approaches. To improve the efficacy of the DNA vaccine against influenza H5N1, we inserted three repeated kappa B (κB) motifs, separated by a 5-bp nucleotide spacer, upstream of the cytomegalovirus promoter and downstream of the SV40 late polyadenylation signal. The κB motif is a specific DNA element (10pb-long) recognized by one of the most important transcription factors NFκB. NFκB is present in almost all animal cell types and upon cell stimulation under a variety of pathogenic conditions. NFκB is released from IκB and translocates to the nucleus and binds to κB sites, thereby leading to enhanced transcription and expression of downstream genes. We tested the variants of DNA vaccine with κB sites flanking the antigen expression cassette and without such sites in two animal models: chickens (broilers and layers) and mice (BALB/c). In chickens, the variant with κB sites stimulated stronger humoral response against the target antigen. In mice, the differences in humoral response were less apparent. Instead, it was possible to spot several gene expression differences in the spleens isolated from mice immunized with both variants. The results of our study indicate that modification of the sequence outside of the sequence encoding the antigen might enhance the immune response to the target but understanding the mechanisms responsible for this process requires further analysis.
Collapse
Affiliation(s)
- Patrycja Redkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Róz A Sawicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kosson
- Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Zhang X, Kong W, Wanda SY, Xin W, Alamuri P, Curtiss R. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome. PLoS One 2015; 10:e0119041. [PMID: 25742162 PMCID: PMC4351096 DOI: 10.1371/journal.pone.0119041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/09/2015] [Indexed: 12/14/2022] Open
Abstract
Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| | - Wei Kong
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Wei Xin
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Praveen Alamuri
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
6
|
Grandinetti G, Smith AE, Reineke TM. Membrane and nuclear permeabilization by polymeric pDNA vehicles: efficient method for gene delivery or mechanism of cytotoxicity? Mol Pharm 2012; 9:523-38. [PMID: 22175236 PMCID: PMC3524998 DOI: 10.1021/mp200368p] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(l-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T4(43), are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that direct nucleus permeabilization could be not only a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups and polymer length play a role in polyplex size and charge in addition to protein expression efficiency and toxicity.
Collapse
Affiliation(s)
- Giovanna Grandinetti
- Department of Chemistry, Virginia Polytechnic Institute and State University. Blacksburg, VA 24061
| | - Adam E. Smith
- Department of Chemistry, Virginia Polytechnic Institute and State University. Blacksburg, VA 24061
| | - Theresa M. Reineke
- Department of Chemistry, Virginia Polytechnic Institute and State University. Blacksburg, VA 24061
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
7
|
van Gaal EVB, Oosting RS, van Eijk R, Bakowska M, Feyen D, Kok RJ, Hennink WE, Crommelin DJA, Mastrobattista E. DNA nuclear targeting sequences for non-viral gene delivery. Pharm Res 2011; 28:1707-22. [PMID: 21424159 PMCID: PMC3109246 DOI: 10.1007/s11095-011-0407-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/21/2011] [Indexed: 12/02/2022]
Abstract
Purpose To evaluate if introduction of DNA nuclear Targeting Sequences (DTS; i.e. recognition sequences for endogenous DNA-binding proteins) in plasmid DNA (pDNA) leads to increased transfection efficiency of non-viral gene delivery by virtue of enhanced nuclear import of the pDNA. Methods A set of DTS was identified and cloned into EGFP-reporter plasmids controlled by the CMV-promoter. These pDNA constructs were delivered into A431 and HeLa cells using standard electroporation, pEI-based polyfection or lipofection methods. The amount of pDNA delivered into the nucleus was determined by qPCR; transfection efficiency was determined by flow cytometry. Results Neither of these DTS increased transgene expression. We varied several parameters (mitotic activity, applied dose and delivery strategy), but without effect. Although upregulated transgene expression was observed after stimulation with TNF-α, this effect could be ascribed to non-specific upregulation of transcription rather than enhanced nuclear import. Nuclear copy numbers of plasmids containing or lacking a DTS did not differ significantly after lipofectamine-based transfection in dividing and non-dividing cells. Conclusion No beneficial effects of DTS on gene expression or nuclear uptake were observed in this study.
Collapse
Affiliation(s)
- Ethlinn V B van Gaal
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Munkonge FM, Amin V, Hyde SC, Green AM, Pringle IA, Gill DR, Smith JWS, Hooley RP, Xenariou S, Ward MA, Leeds N, Leung KY, Chan M, Hillery E, Geddes DM, Griesenbach U, Postel EH, Dean DA, Dunn MJ, Alton EWFW. Identification and functional characterization of cytoplasmic determinants of plasmid DNA nuclear import. J Biol Chem 2009; 284:26978-87. [PMID: 19638341 PMCID: PMC2785383 DOI: 10.1074/jbc.m109.034850] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Indexed: 01/07/2023] Open
Abstract
Import of exogenous plasmid DNA (pDNA) into mammalian cell nuclei represents a key intracellular obstacle to efficient non-viral gene delivery. This includes access of the pDNA to the nuclei of non-dividing cells where the presence of an intact nuclear membrane is limiting for gene transfer. Here we identify, isolate, and characterize, cytoplasmic determinants of pDNA nuclear import into digitonin-permeabilized HeLa cells. Depletion of putative DNA-binding proteins, on the basis of their ability to bind immobilized pDNA, abolished pDNA nuclear import supporting the critical role of cytoplasmic factors in this process. Elution of pDNA-bound proteins, followed by two-dimensional sodium dodecyl polyacrylamide gel electrophoresis identified several candidate DNA shuttle proteins. We show that two of these, NM23-H2, a ubiquitous c-Myc transcription-activating nucleoside diphosphate kinase, and the core histone H2B can both reconstitute pDNA nuclear import. Further, we demonstrate a significant increase in gene transfer in non-dividing HeLa cells transiently transfected with pDNA containing binding sequences from two of the DNA shuttle proteins, NM23-H2 and the homeobox transcription factor Chx10. These data support the hypothesis that exogenous pDNA binds to cytoplasmic shuttle proteins and is then translocated to the nucleus using the minimal import machinery. Importantly, increasing the binding of pDNA to shuttle proteins by re-engineering reporter plasmids with shuttle binding sequences enhances gene transfer. Increasing the potential for exogenously added pDNA to bind intracellular transport cofactors may enhance the potency of non-viral gene transfer.
Collapse
Affiliation(s)
- Felix M Munkonge
- Department of Gene Therapy, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6LR, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|