1
|
Santos-Oliveira PH, Silva JGP, Blank LM, Silva LF, Gomez JGC. Constant fed-batch cultivation with glucose and propionate as co-substrate: A strategy to fine-tune polyhydroxyalkanoates monomeric composition in Pseudomonas spp. Int J Biol Macromol 2024; 256:128287. [PMID: 37995793 DOI: 10.1016/j.ijbiomac.2023.128287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas sp. LFM693 is a 2-methylisocitrate lyase (prpB) disrupted mutant. This enzyme catalyzes a step in the 2-methylcitrate cycle, the only known and described pathway for propionate oxidation in this organism. The affected mutants can efficiently produce PHA containing even and odd-chain length hydroxyalkanoates (HAeven/odd) in the presence of propionate and glucose. In this study, a constant fed-batch configuration was utilized to control the composition of PHA and decrease the toxicity of propionate. The incorporation of HAodd into the copolymer was linear, ranging from 7 to approximately 30 %, and correlated directly with the propionate/glucose molar ratio in the feeding solution. This allowed for the molecular composition of the mclPHA to be fine-tuned with minimum process monitoring and control. The average PHA content was 52 % cell dry weight with a molar composition that favored 3-hydroxyalkanoates containing C8, C9, and C10. The conversion factor of propionate to HAodd varied between 0.36 and 0.53 mol·mol-1 (YHAodd/prop.), which are significantly lower than the theoretical maximum efficiency (1.0 mol·mol-1). These results along with the lack of 2-methylisocitrate as a byproduct provides further support for the evidence that the mutant prpB- is still capable of oxidizing propionate.
Collapse
Affiliation(s)
- Pedro Henrique Santos-Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
3
|
Vicente D, Proença DN, Morais PV. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2959. [PMID: 36833658 PMCID: PMC9957297 DOI: 10.3390/ijerph20042959] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.
Collapse
Affiliation(s)
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, 3000-456 Coimbra, Portugal
| | | |
Collapse
|
4
|
de Oliveira RD, Novello V, da Silva LF, Gomez JGC, Le Roux GAC. Glucose metabolism in Pseudomonas aeruginosa is cyclic when producing Polyhydroxyalkanoates and Rhamnolipids. J Biotechnol 2021; 342:54-63. [PMID: 34687809 DOI: 10.1016/j.jbiotec.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa is an important chassis for production of polyhydroxyalkanoates (PHA) and rhamnolipids (RHL). Advances in the understanding of the biosynthesis metabolism of these biocompounds are crucial for increasing yield. 13C-Metabolic Flux Ratio Analysis (13C-MFA) is a technique to estimate in vivo metabolic fluxes ratios. PHA and RHL are essentially non-growth associated products of biotechnological interest and both contain hydroxyalkanoates (HAs), whose labeling patterns could be accessed by GC-MS. In this study, to reveal the relative contributions of the Entner-Doudoroff (ED) pathway and the non-oxidative Pentose Phosphate (PP) pathway to PHA and RHL production, 13C-MFA was performed in Pseudomonas aeruginosa LFM634 when supplied with labeled glucose. This bacterial strain lacks both functional EMP and the oxidative PP branch. Labeling patterns in HAs were measured. Experiments with [U-13C] glucose indicated a low flux though PP pathway. An optimal design of labeling experiment showed that [6-13C] glucose would be the best substrate to enable an estimation of the ED flux with high accuracy. Results of experiments performed with this isotope indicated that about two-thirds of glyceraldehyde 3-phosphate is recycled through a cyclic ED architecture, suggesting that P. aeruginosa utilizes that cycle to regulate the NADPH/Acetyl-CoA ratio for PHA and RHL biosynthesis.
Collapse
Affiliation(s)
| | - Vânia Novello
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
5
|
Silva JB, Pereira JR, Marreiros BC, Reis MA, Freitas F. Microbial production of medium-chain length polyhydroxyalkanoates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
7
|
Boonyawanich S, Tanikkul P, Thenchartanan P, Pisutpaisal N. Productivity of Pseudomonas putida TISTR 1522 in polyhydroxyalkanoates (PHAs) production from saponified palm oil. Appl Biochem Biotechnol 2021; 193:1086-1098. [PMID: 33405009 DOI: 10.1007/s12010-020-03481-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 02/04/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted attention as an environmentally degradable bioplastic which potentially replaces synthetic polymers used in a wide range of industries. One of most promising microorganisms for the production of PHAs is Pseudomonas putida. In this study, we purpose to develop sustainable processes to convert abundant palm oil available in local market to high value PHAs and optimize PHAs production by Pseudomonas putida TISTR 1522 from saponified palm oil. We found that the highest yield of PHAs production (0.95 g/L, 40.15%) was obtained in culture medium supplemented with 1% (w/v) fatty acid salt by P. putida TISTR 1522 after 24-h cultivation. The intracellular PHAs were located in granules inside the cells, which fluoresced bright yellow by staining with Nile red. The physical appearance of intracellular PHAs investigated by transmission electron microscope (TEM) revealed that PHAs accumulate in granules, about 3-10 granules per cell. These granules are white and roundish-shaped with 0.3-0.5-μm diameter. The 1H NMR spectrum represented the typical characters of medium-chain length-PHAs. This variation of all parameters was successfully demonstrated a good intracellular PHAs accumulation in P. putida TISTR 1522 by fatty acid salt utilization.
Collapse
Affiliation(s)
- Siriorn Boonyawanich
- Department of Agro-Industrial, Food, and Environmental Technology (AFET), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.,The Biosensor and Bioelectronics Technology Centre, The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Pinanong Tanikkul
- Department of Environmental Science, Faculty of Science and Technology, Rajamangala University of Technology Rattanakosin, Salaya Campus, Salaya, 73170, Thailand
| | - Pornpanna Thenchartanan
- Department of Agro-Industrial, Food, and Environmental Technology (AFET), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Nipon Pisutpaisal
- Department of Agro-Industrial, Food, and Environmental Technology (AFET), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand. .,The Biosensor and Bioelectronics Technology Centre, The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| |
Collapse
|
8
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
9
|
Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Lee SH, Kim JH, Chung CW, Kim DY, Rhee YH. Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding. MICROBIAL ECOLOGY 2018; 75:720-728. [PMID: 28993853 DOI: 10.1007/s00248-017-1084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Analysis of mixed microbial populations responsible for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) under periodic substrate feeding in a sequencing batch reactor (SBR) was conducted. Regardless of activated sludge samples and the different MCL alkanoic acids used as the sole external carbon substrate, denaturing gradient gel electrophoresis analysis indicated that Pseudomonas aeruginosa was the dominant bacterium enriched during the SBR process. Several P. aeruginosa strains were isolated from the enriched activated sludge samples. The isolates were subdivided into two groups, one that produced only MCL-PHAs and another that produced both MCL- and short-chain-length PHAs. The SBR periodic feeding experiments with five representative MCL-PHA-producing Pseudomonas species revealed that P. aeruginosa has an advantage over other species that enables it to become dominant in the bacterial community.
Collapse
Affiliation(s)
- Sun Hee Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hee Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chung-Wook Chung
- Department of Biological Sciences, Andong National University, Andong, 36729, Republic of Korea
| | - Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young Ha Rhee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
11
|
Fontaine P, Mosrati R, Corroler D. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures. Int J Biol Macromol 2017; 98:430-435. [PMID: 28174083 DOI: 10.1016/j.ijbiomac.2017.01.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
The synthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) by Pseudomonas putida mt-2 was investigated under nitrogen-rich then deficient conditions with glycerol/octanoate or long-chain fatty acids (LCFAs) as carbon sources. When mixed, glycerol and octanoate were co-assimilated regardless of nitrogen availability but provided that glycerol uptake has been already triggered under non-limiting nutrient conditions. This concomitant consumption allowed to enhance mcl-PHAs accumulation (up to 57% of cell dry weight (CDW)) under both non-limiting and nitrogen deficient conditions. Octanoate then mostly drove anabolism of the polyester with 3-hydroxyoctanoate (3HO) synthesized as the main monomer (83%). If the preferred PHA precursor octanoate was supplied, glycerol was mainly involved in cell growth and/or maintenance but very little in PHA production even under nitrogen starvation. P. putida cells accumulated higher amounts of mcl-PHAs when grown on mixtures of LCFAs compared to LCFAs supplied as single substrate (25% and 9% of CDW, respectively). However, only a weak enrichment of the polyester was observed after transfer of cells in a fresh nitrogen-free medium containing the same combination of LCFAs. Some typical units within the polyester were related to the LCFAs ratio supplied in the medium indicating that tailor-made monomers could be synthesized.
Collapse
Affiliation(s)
- Paul Fontaine
- Normandie Univ., UNICAEN, UR ABTE, 14000 Caen, France
| | - Ridha Mosrati
- Normandie Univ., UNICAEN, UR ABTE, 14000 Caen, France
| | | |
Collapse
|
12
|
Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech 2016; 6:142. [PMID: 28330214 PMCID: PMC4919136 DOI: 10.1007/s13205-016-0452-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 11/03/2022] Open
Abstract
The purpose of present study was to optimize polyhydroxyalkanotes (PHAs) production in a gamma ray mutant strain of Pseudomonas aeruginosa grown on soybean oil in minimal salts media under shake flask conditions. The production kinetics was studied by sampling on daily basis for 6 days to investigate the best conditions for PHAs production like biomass estimation, carbon source utilization and PHAs yield. The PHA accumulation was observed up to 50.27 % (w/w) of cell dry mass. The Pseudomonas species synthesized medium chain length PHA copolyester as per identified by LCMS and confirmed by FTIR spectroscopy. The ESI-MS analysis exhibited the major polyhydroxybutyrate with a molecular mass of m/z 448.5.
Collapse
|
13
|
Draft Genome Sequence of Pseudomonas sp. Strain LFM046, a Producer of Medium-Chain-Length Polyhydroxyalkanoate. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00966-15. [PMID: 26294616 PMCID: PMC4543520 DOI: 10.1128/genomea.00966-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%.
Collapse
|
14
|
Vastano M, Casillo A, Corsaro MM, Sannia G, Pezzella C. Production of medium chain length polyhydroxyalkanoates from waste oils by recombinantEscherichia coli. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marco Vastano
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Angela Casillo
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Maria Michela Corsaro
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Giovanni Sannia
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| | - Cinzia Pezzella
- Dipartimento di Scienze Chimiche; Complesso Universitario Monte S. Angelo; Napoli Italy
| |
Collapse
|
15
|
Chen YJ, Huang YC, Lee CY. Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J Biosci Bioeng 2014; 118:145-52. [DOI: 10.1016/j.jbiosc.2014.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/25/2022]
|
16
|
Pappalardo F, Fragalà M, Mineo PG, Damigella A, Catara AF, Palmeri R, Rescifina A. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int J Biol Macromol 2014; 65:89-96. [DOI: 10.1016/j.ijbiomac.2014.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/17/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
17
|
Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/802984] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyhydroxyalkanoates (PHA) producers have been reported to reside at various ecological niches which are naturally or accidently exposed to high organic matter or growth limited conditions such as dairy wastes, hydrocarbon contaminated sites, pulp and paper mill wastes, agricultural wastes, activated sludges of treatment plants, rhizosphere, and industrial effluents. Few among them also produce extracellular by-products like rhamnolipids, extracellular polymeric substances, and biohydrogen gas. These sorts of microbes are industrially important candidates for the reason that they can use waste materials of different origin as substrate with simultaneous production of valuable bioproducts including PHA. Implementation of integrated system to separate their by-products (intracellular and extracellular) can be economical in regard to production. In this review, we have discussed various microorganisms dwelling at different environmental conditions which stimulate them to accumulate carbon as polyhydroxyalkanoates granules and factors influencing its production and composition. A brief aspect on metabolites which are produced concomitantly with PHA has also been discussed. In conclusion, exploring of capabilities like of dual production by microbes and use of wastes as renewable substrate under optimized cultural conditions either in batch or continuous process can cause deduction in present cost of bioplastic production from stored PHA granules.
Collapse
|
18
|
Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J Biosci Bioeng 2013; 116:485-92. [DOI: 10.1016/j.jbiosc.2013.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/17/2013] [Accepted: 04/11/2013] [Indexed: 11/17/2022]
|
19
|
Dinjaski N, Prieto MA. Swapping of Phasin Modules To Optimize the In Vivo Immobilization of Proteins to Medium-Chain-Length Polyhydroxyalkanoate Granules in Pseudomonas putida. Biomacromolecules 2013; 14:3285-93. [DOI: 10.1021/bm4008937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nina Dinjaski
- Department
of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040
Madrid, Spain
| | - M. Auxiliadora Prieto
- Department
of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040
Madrid, Spain
| |
Collapse
|
20
|
Venkateswar Reddy M, Nikhil GN, Venkata Mohan S, Swamy YV, Sarma PN. Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents. BIORESOURCE TECHNOLOGY 2012; 123:471-479. [PMID: 22940357 DOI: 10.1016/j.biortech.2012.07.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/16/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Polyhydroxyalkanoates (PHA) production using Pseudomonas otitidis, a newly isolated strain from PHA producing bioreactor was investigated using synthetic acids (SA) and acidogenic effluents (AE) from biohydrogen reactor at different organic loading rates (OLRs). P. otitidis showed ability to grow and accumulate PHA, with simultaneous waste remediation. AE showed less PHA production (54%, OLR3), than SA (58%, OLR2). PHA composition showed co-polymer, poly-3(hydroxy butyrate-co-hydroxy valerate), P3(HB-co-HV). Bioprocess evaluation and enzymatic activities showed good correlation with PHA production. Kinetic studies on the growth of bacteria using different models at varying OLR were substantiated with PHA production. High substrate removal was registered at OLR1 (SA, 87%; AE, 82%). AE could be used as an alternative for pure substrates keeping in view of their high cost.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 607, India
| | | | | | | | | |
Collapse
|
21
|
Venkateswar Reddy M, Venkata Mohan S. Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. BIORESOURCE TECHNOLOGY 2012; 114:573-82. [PMID: 22456236 DOI: 10.1016/j.biortech.2012.02.127] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 05/06/2023]
Abstract
Production of biodegradable plastics in the form of polyhydroxyalkanoates (PHA) especially from renewable substrates is gaining interest. The present work mainly aims to investigate the influence of substrate load and nutrient concentration (nitrogen and phosphorous) on PHA production using wastewater as substrate and mixed culture as biocatalyst. PHA accumulation was high at higher substrate load [OLR3, 40.3% of dry cell weight (DCW)], low nitrogen (N(1), 45.1% DCW) and low phosphorous (P(1), 54.2% DCW) conditions. With optimized nutrient conditions production efficiency increased by 14%. Fractional composition of PHA showed co-polymer [poly(β-OH) butyrate-co-poly(β-OH) valerate, P3(HB-co-HV)] contains PHB (88%) in more concentration compared to PHV (8%). Dehydrogenase and phosphatase enzymatic activities were monitored during process operation. Good substrate degradation (as COD) of 75% was registered during PHA production. The phylogenetic profile of 16S rRNA sequencing showed the dominance of Firmicutes (71.4%) and Proteobacteria (28.6%), which are known to involve in PHA accumulation and waste treatment.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 607, India
| | | |
Collapse
|
22
|
Reddy MV, Mohan SV. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. BIORESOURCE TECHNOLOGY 2012; 103:313-21. [PMID: 22055090 DOI: 10.1016/j.biortech.2011.09.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 05/11/2023]
Abstract
The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology (IICT), Hyderabad 500 607, India
| | | |
Collapse
|
23
|
Nitschke M, Costa SG, Contiero J. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Current advances in microbial cell factories for lactate-based polyesters driven by lactate-polymerizing enzymes: Towards the further creation of new LA-based polyesters. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Biosynthesis and characterization of copolymer poly(3HB-co-3HV) from saponified Jatropha curcas oil by Pseudomonas oleovorans. J Ind Microbiol Biotechnol 2010; 37:849-56. [DOI: 10.1007/s10295-010-0732-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/23/2010] [Indexed: 11/26/2022]
|