1
|
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. ENVIRONMENTAL RESEARCH 2022; 214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Trishita Bhattacharya
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Vasanth Kumar Vaithyanathan
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Hubert Cabana
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India; University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada.
| |
Collapse
|
2
|
Basso A, Brown MS, Cruz-Izquierdo A, Martinez CA, Serban S. Optimization of Metal Affinity Ketoreductase Immobilization for Application in Batch and Flow Processes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandra Basso
- Unit D, Purolite Ltd., Llantrisant Business Park, Llantrisant CF72 8LF, U.K
| | - Maria S. Brown
- Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Carlos A. Martinez
- Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simona Serban
- Unit D, Purolite Ltd., Llantrisant Business Park, Llantrisant CF72 8LF, U.K
| |
Collapse
|
3
|
Rajesh RO, Godan TK, Sindhu R, Pandey A, Binod P. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered 2020; 11:19-38. [PMID: 31880190 PMCID: PMC6961589 DOI: 10.1080/21655979.2019.1700093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The major drawback of chemical transformations for the production of 2, 5-furan dicarboxylic acid (FDCA) implies the usage of hazardous chemicals, high temperature and high pressure from nonrenewable resources. Alternate to chemical methods, biological methods are promising. Microbial FDCA production is improved through engineering approaches of media conditions, homologous and heterologous expression of genes, genetic and metabolic engineering, etc. The highest FDCA production of 41.29 g/L is observed by an engineered Raultella ornitholytica BF 60 from 35 g/L HMF in sodium phosphate buffer with a 95.14% yield in 72 h. Also, an enzyme cascade system of recombinant and wild enzymes like periplasmic aldehyde oxidase ABC, galactose oxidase M3-5, HRP and catalase have transformed 6.3 g/L HMF to 7.81 g/L FDCA in phosphate buffer with 100% yield in 6 h. Still, these processes are emerging for fulfilling the industrial needs due to the challenges in 'green FDCA production'.
Collapse
Affiliation(s)
- Rajendran Omana Rajesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Tharangattumana Krishnan Godan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| |
Collapse
|
4
|
Plž M, Petrovičová T, Rebroš M. Semi-Continuous Flow Biocatalysis with Affinity Co-Immobilized Ketoreductase and Glucose Dehydrogenase. Molecules 2020; 25:molecules25184278. [PMID: 32961948 PMCID: PMC7570937 DOI: 10.3390/molecules25184278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The co-immobilization of ketoreductase (KRED) and glucose dehydrogenase (GDH) on highly cross-linked agarose (sepharose) was studied. Immobilization of these two enzymes was performed via affinity interaction between His-tagged enzymes (six histidine residues on the N-terminus of the protein) and agarose matrix charged with nickel (Ni2+ ions). Immobilized enzymes were applied in a semicontinuous flow reactor to convert the model substrate; α-hydroxy ketone. A series of biotransformation reactions with a substrate conversion of >95% were performed. Immobilization reduced the requirement for cofactor (NADP+) and allowed the use of higher substrate concentration in comparison with free enzymes. The immobilized system was also tested on bulky ketones and a significant enhancement in comparison with free enzymes was achieved.
Collapse
|
5
|
Nanofibrillated Cellulose-Enzyme Assemblies for Enhanced Biotransformations with In Situ Cofactor Regeneration. Appl Biochem Biotechnol 2020; 191:1369-1383. [PMID: 32100231 DOI: 10.1007/s12010-020-03263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
We report herein the use of nanofibrillated cellulose (NFC) for development of enzyme assemblies in an oriented manner for biotransformation with in situ cofactor regeneration. This is achieved by developing fusion protein enzymes with cellulose-specific binding domains. Specifically, lactate dehydrogenase and NADH oxidase were fused with a cellulose binding domain, which enabled both enzyme recovery and assembling in essentially one single step by using NFC. Results showed that the binding capacity of the enzymes was as high as 0.9 μmol-enzyme/g-NFC. Compared to native parent free enzymes, NFC-enzyme assemblies improved the catalytic efficiency of the coupled reaction system by over 100%. The lifetime of enzymes was also improved by as high as 27 folds. The work demonstrates promising potential of using biocompatible and environmentally benign bio-based nanomaterials for construction of efficient catalysts for intensified bioprocessing and biotransformation applications.
Collapse
|
6
|
Xu MQ, Li FL, Yu WQ, Li RF, Zhang YW. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD + regeneration. Int J Biol Macromol 2019; 144:1013-1021. [PMID: 31669469 DOI: 10.1016/j.ijbiomac.2019.09.178] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Cofactor regeneration is an important method to avoid the consumption of large quantities of oxidized cofactor NAD+ in enzyme-catalyzed reactions. Herein, glycerol dehydrogenase (GDH) and NADH oxidase preparations by aggregating enzymes with ammonium sulphate followed by cross-linking formed aggregates for effective regeneration of NAD+. After optimization, the activity of combi-CLEAs and separate CLEAs mixtures were 950 and 580 U/g, respectively. And the catalytic stability of combi-CLEAs against pH and temperature was superior to the free enzyme mixture. After ten cycles of reuse, the catalytic efficiency could still retain 63.3% of its initial activity, indicating that the constructed combi-CLEAs system had excellent reusability. Also, the conversion of glycerol to 1,3-dihydroxyacetone (DHA) was improved by the constructed NAD+ regeneration system, resulting in 4.6%, which was 2.5 times of the free enzyme system. Thus, wide applications of this co-immobilization method in the production of various chiral chemicals could be expected in the industry for its high efficiency at a low cost.
Collapse
Affiliation(s)
- Meng-Qiu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Fei-Long Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wen-Qian Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Rui-Fang Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
7
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
8
|
|
9
|
Abstract
Biocatalysis has emerged in the last decade as a pre-eminent technology for enabling the envisaged transition to a more sustainable bio-based economy. For industrial viability it is essential that enzymes can be readily recovered and recycled by immobilization as solid, recyclable catalysts. One method to achieve this is via carrier-free immobilization as cross-linked enzyme aggregates (CLEAs). This methodology proved to be very effective with a broad selection of enzymes, in particular carbohydrate-converting enzymes. Methods for optimizing CLEA preparations by, for example, adding proteic feeders to promote cross-linking, and strategies for making the pores accessible for macromolecular substrates are critically reviewed and compared. Co-immobilization of two or more enzymes in combi-CLEAs enables the cost-effective use of multiple enzymes in biocatalytic cascade processes and the use of “smart” magnetic CLEAs to separate the immobilized enzyme from other solids has raised the CLEA technology to a new level of industrial and environmental relevance. Magnetic-CLEAs of polysaccharide-converting enzymes, for example, are eminently suitable for use in the conversion of first and second generation biomass.
Collapse
|
10
|
Bilal M, Zhao Y, Noreen S, Shah SZH, Bharagava RN, Iqbal HMN. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1564744] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Sadia Noreen
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | | | - Ram Naresh Bharagava
- Department of Microbiology (DM), Laboratory for Bioremediation and Metagenomics Research (LBMR), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
11
|
Bachosz K, Synoradzki K, Staszak M, Pinelo M, Meyer AS, Zdarta J, Jesionowski T. Bioconversion of xylose to xylonic acid via co-immobilized dehydrogenases for conjunct cofactor regeneration. Bioorg Chem 2019; 93:102747. [PMID: 30739714 DOI: 10.1016/j.bioorg.2019.01.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Enzymatic cofactor-dependent conversion of monosaccharides can be used in the bioproduction of value-added compounds. In this study, we demonstrate co-immobilization of xylose dehydrogenase (XDH, EC 1.1.1.175) and alcohol dehydrogenase (ADH, EC 1.1.1.1) using magnetite-silica core-shell particles for simultaneous conversion of xylose into xylonic acid (XA) and in situ cofactor regeneration. The reaction conditions were optimized by factorial design, and were found to be: XDH:ADH ratio 2:1, temperature 25 °C, pH 7, and process duration 60 min. Under these conditions enzymatic production of xylonic acid exceeded 4.1 mM and was more than 25% higher than in the case of a free enzymes system. Moreover, the pH and temperature tolerance as well as the thermo- and storage stability of the co-immobilized enzymes were significantly enhanced. Co-immobilized XDH and ADH make it possible to obtain higher xylonic acid concentration over broad ranges of pH (6-8) and temperature (15-35 °C) as compared to free enzymes, and retained over 60% of their initial activity after 20 days of storage. In addition, the half-life of the co-immobilized system was 4.5 times longer, and the inactivation constant (kD = 0.0141 1/min) four times smaller, than those of the free biocatalysts (kD = 0.0046 1/min). Furthermore, after five reaction cycles, immobilized XDH and ADH retained over 65% of their initial properties, with a final biocatalytic productivity of 1.65 mM of xylonic acid per 1 U of co-immobilized XDH. The results demonstrate the advantages of the use of co-immobilized enzymes over a free enzyme system in terms of enhanced activity and stability.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, PL-60179 Poznan, Poland; Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50422 Wroclaw, Poland
| | - Maciej Staszak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering, DTU Chemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
12
|
Abstract
Enzymes are efficient biocatalysts providing an important tool in many industrial biocatalytic processes. Currently, the immobilized enzymes prepared by the cross-linked enzyme aggregates (CLEAs) have drawn much attention due to their simple preparation and high catalytic efficiency. Combined cross-linked enzyme aggregates (combi-CLEAs) including multiple enzymes have significant advantages for practical applications. In this review, the conditions or factors for the preparation of combi-CLEAs such as the proportion of enzymes, the type of cross-linker, and coupling temperature were discussed based on the reaction mechanism. The recent applications of combi-CLEAs were also reviewed.
Collapse
|
13
|
Han L, Liang B. New approaches to NAD(P)H regeneration in the biosynthesis systems. World J Microbiol Biotechnol 2018; 34:141. [PMID: 30203299 DOI: 10.1007/s11274-018-2530-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), as two kinds of well-known cofactor, are widely used in the most of enzymatic redox reactions, playing an important role in industrial catalysis. In general, supply of NAD(P)H is a major challenged factor in redox fermentation systems due to its high cost and low stability, which have stimulated the development of NADH regeneration systems in recent years. Until now, a series of NAD(P)H regeneration systems have been developed. This review focuses primarily on new approaches of NAD(P)H cofactor regeneration in the biosynthesis systems, such as single cell in vivo NADH regeneration system, double cell coupling NADH regeneration system, in vitro enzyme-coupled NADH regeneration system, microbial cell surface display NADH regeneration system. Finally, the prospect and tendency of NADH regeneration are discussed.
Collapse
Affiliation(s)
- Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| | - Bo Liang
- College of Life Sciences, Energy-Rich Compounds Production by Photosynthesis Carbon Fixation Research Center, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| |
Collapse
|
14
|
Abstract
In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
15
|
Magnetic Combined Cross-Linked Enzyme Aggregates of Ketoreductase and Alcohol Dehydrogenase: An Efficient and Stable Biocatalyst for Asymmetric Synthesis of (R)-3-Quinuclidinol with Regeneration of Coenzymes In Situ. Catalysts 2018. [DOI: 10.3390/catal8080334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes are biocatalysts. In this study, a novel biocatalyst consisting of magnetic combined cross-linked enzyme aggregates (combi-CLEAs) of 3-quinuclidinone reductase (QNR) and glucose dehydrogenase (GDH) for enantioselective synthesis of (R)-3-quinuclidinolwith regeneration of cofactors in situ was developed. The magnetic combi-CLEAs were fabricated with the use of ammonium sulfate as a precipitant and glutaraldehyde as a cross-linker for direct immobilization of QNR and GDH from E. coli BL(21) cell lysates onto amino-functionalized Fe3O4 nanoparticles. The physicochemical properties of the magnetic combi-CLEAs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and magnetic measurements. Field emission scanning electron microscope (FE-SEM) images revealed a spherical structure with numerous pores which facilitate the movement of the substrates and coenzymes. Moreover, the magnetic combi-CLEAs exhibited improved operational and thermal stability, enhanced catalytic performance for transformation of 3-quinuclidinone (33 g/L) into (R)-3-quinuclidinol in 100% conversion yield and 100% enantiomeric excess (ee) after 3 h of reaction. The activity of the biocatalysts was preserved about 80% after 70 days storage and retained more than 40% of its initial activity after ten cycles. These results demonstrated that the magnetic combi-CLEAs, as cost-effective and environmentally friendly biocatalysts, were suitable for application in synthesis of (R)-3-quinuclidinol essential for the production of solifenacin and aclidinium with better performance than those currently available.
Collapse
|
16
|
Techniques for Preparation of Cross-Linked Enzyme Aggregates and Their Applications in Bioconversions. Catalysts 2018. [DOI: 10.3390/catal8050174] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enzymes are biocatalysts. They are useful in environmentally friendly production processes and have high potential for industrial applications. However, because of problems with operational stability, cost, and catalytic efficiency, many enzymatic processes have limited applications. The use of cross-linked enzyme aggregates (CLEAs) has been introduced as an effective carrier-free immobilization method. This immobilization method is attractive because it is simple and robust, and unpurified enzymes can be used. Coimmobilization of different enzymes can be achieved. CLEAs generally show high catalytic activities, good storage and operational stabilities, and good reusability. In this review, we summarize techniques for the preparation of CLEAs for use as biocatalysts. Some important applications of these techniques in chemical synthesis and environmental applications are also included. CLEAs provide feasible and efficient techniques for improving the properties of immobilized enzymes for use in industrial applications.
Collapse
|
17
|
|
18
|
Abstract
In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | | |
Collapse
|
19
|
Bilal M, Iqbal HMN, Guo S, Hu H, Wang W, Zhang X. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point. Int J Biol Macromol 2018; 108:893-901. [PMID: 29102791 DOI: 10.1016/j.ijbiomac.2017.10.182] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 02/05/2023]
Abstract
Over the past years, technological and scientific advances have proven biocatalysis as a sustainable alternative than traditional chemical catalysis including organo- or metallocatalysis. In this context, immobilization based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type derivatives. Many enzymes including oxidoreductases have been engineered by rational and directed evolution, to realize the catalytic activity, enantioselectivity, and stability attributes which are essential for their biotechnological exploitation. Induce yet stable activity in enzyme catalysis offer new insights and motivation to engineer efficient catalysts for practical and commercial purposes. It has now become possible to envisage substrate accessibility to the catalytic site of the enzyme by current computational capabilities that reduce the experimental work related to the enzyme selection, screening, and engineering. Herein, state-of-the-art protein engineering approaches for improving enzymatic activities including chemical modification, directed evolution, and rational design or their combination methods are discussed. The emphasis is also given to the applications of the resulting tailored catalysts ranging from fine chemicals to novel pharmaceutical compounds that use biocatalysts as a vital step.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Su E, Meng Y, Ning C, Ma X, Deng S. Magnetic combined cross-linked enzyme aggregates (Combi-CLEAs) for cofactor regeneration in the synthesis of chiral alcohol. J Biotechnol 2018; 271:1-7. [PMID: 29452130 DOI: 10.1016/j.jbiotec.2018.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/19/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Magnetic Fe3O4 nanoparticles were prepared and embedded into the Combi-CLEAs to produce the magnetic Combi-CLEAs in this work. The process for magnetic Combi-CLEAs preparation was optimized, and its properties were investigated. The optimum temperature, thermal stability and optimum pH of magnetic Combi-CLEAs were similar to those of Combi-CLEAs. The catalytic performance of magnetic Combi-CLEAs was tested with the biosynthesis of (S)-ethyl 4-chloro-3-hydroxybutyrate ((S)-CHBE). Magnetic Combi-CLEAs could tolerate higher substrate concentration in the biphasic system. The catalytic efficiency and long-term operational stability of magnetic Combi-CLEAs were obviously superior to those of Combi-CLEAs in both aqueous and biphasic systems. Embedding of magnetic Fe3O4 nanoparticles endowing rigidity contributed to these improvements. Furthermore, the preparation of magnetic Combi-CLEAs was easy, and its recovery during multiple batches of reactions could be fulfilled by magnetic field. Aforementioned advantages make the magnetic Combi-CLEAs hold obvious potential for industrial application.
Collapse
Affiliation(s)
- Erzheng Su
- Enzyme and Fermentation Technology Laboratory, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yang Meng
- Enzyme and Fermentation Technology Laboratory, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenxi Ning
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoqiang Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Senwen Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Integrating a light-driven coenzyme regeneration system by expression of an alcohol dehydrogenase in phototrophic bacteria for synthesis of chiral alcohol. J Biotechnol 2017; 259:120-125. [DOI: 10.1016/j.jbiotec.2017.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022]
|
22
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
23
|
Roy I, Mukherjee J, Gupta MN. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media. Methods Mol Biol 2017; 1504:109-123. [PMID: 27770417 DOI: 10.1007/978-1-4939-6499-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.
Collapse
Affiliation(s)
- Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Joyeeta Mukherjee
- Chemistry Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Munishwar N Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India.
| |
Collapse
|
24
|
Zhou L, Tang W, Jiang Y, Ma L, He Y, Gao J. Magnetic combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase: an efficient biocatalyst for dye decolourization. RSC Adv 2016. [DOI: 10.1039/c6ra12009a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the magnetic combined cross-linked enzyme aggregates (combi-CLEAs) of glucose oxidase (GOD) and horseradish peroxidase (HRP) were designed and prepared successfully.
Collapse
Affiliation(s)
- Liya Zhou
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving
| | - Wei Tang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving
| | - Li Ma
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Ying He
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Jing Gao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving
| |
Collapse
|
25
|
He YC, Tao ZC, Ding Y, Zhang DP, Wu YQ, Lu Y, Liu F, Xue YF, Wang C, Xu JH. Effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate by supplementation of l-glutamine, d-xylose and β-cyclodextrin in n-butyl acetate–water media. J Biotechnol 2015; 203:62-7. [DOI: 10.1016/j.jbiotec.2015.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|