1
|
Park Y, Woo JM, Shin J, Chung M, Seo EJ, Lee SJ, Park JB. Unveiling the biological activities of the microbial long chain hydroxy fatty acids as dual agonists of GPR40 and GPR120. Food Chem 2025; 465:142010. [PMID: 39556901 DOI: 10.1016/j.foodchem.2024.142010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/10/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
The physiological functions of various fatty acid-originating metabolites from foods and fermented products remained mostly untouched. Thereby, this study examined the biological activities of hydroxy fatty acids as agonists of G protein-coupled receptors (i.e., GPR40 and GPR120), which are derived from long-chain fatty acids (e.g., oleic acid and linoleic acid) by microbiota. Cell-based Ca2+ mobilization assays and in silico docking simulations revealed that not only the degree of unsaturation but also the number and position of hydroxyl groups played a key role in their agonist activities. For instance, 8,11-dihydroxyoctadec-9Z-enoic acid exhibited significantly greater Ca2+ response in the GPR40/GPR120-expressing cells as compared to the endogenous agonists (e.g., linoleic acid and docosahexaenoic acid), forming hydrogen bond interactions with residues in the ligand-binding pockets of receptors. This study will contribute to understanding the relationships between fatty acid structures and agonist activities.
Collapse
Affiliation(s)
- Yeeun Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji-Min Woo
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeeun Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Myunghae Chung
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun-Ji Seo
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Balraj S, Gnana Prakash D, Iyyappan J, Bharathiraja B. Modelling and optimization of biodiesel production from waste fish oil using nano immobilized rPichiapastoris whole cell biocatalyst with response surface methodology and hybrid artificial neural network based approach. BIORESOURCE TECHNOLOGY 2024; 393:130012. [PMID: 37979885 DOI: 10.1016/j.biortech.2023.130012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In this study, zinc oxide (ZnO) nano particle immobilized recombinant whole cell biocatalyst (rWCB) was used for bioconversion of waste fish oil in to biodiesel in a lab scale packed bed reactor (PBR). Central composite design and hybrid artificial neural network (ANN) models were explored to optimize the production of biodiesel. Developed rWCB exhibited maximum lipase activity at 15 % (v/v) of glutaraldehyde concentration and 6 % (w/v) of ZnO nanoparticles at pH of 7. Maximum biodiesel yield reached about 91.54 ± 1.86 % after 43 h in PBR using hybrid ANN model predicted process conditions of 13.2 % (w/v) of nano immobilized rWCB concentration and 4.7:1 of methanol to oil ratio at 33 °C. Importantly, developed nano immobilized rWCB was adequately stable for commercialization. Thus, production of biodiesel from waste fish oil using ZnO nano immobilized rWCB could become potential candidate for commercialization.
Collapse
Affiliation(s)
- S Balraj
- Deparment of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, Tamil Nadu, India
| | - D Gnana Prakash
- Deparment of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, Tamil Nadu, India.
| | - J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Science and Technology (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - B Bharathiraja
- Deparment of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| |
Collapse
|
3
|
Fatty Acid Hydratases: Versatile Catalysts to Access Hydroxy Fatty Acids in Efficient Syntheses of Industrial Interest. Catalysts 2020. [DOI: 10.3390/catal10030287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The utilization of hydroxy fatty acids has gained more and more attention due to its applicability in many industrial building blocks that require it, for example, polymers or fragrances. Furthermore, hydroxy fatty acids are accessible from biorenewables, thus contributing to a more sustainable raw material basis for industrial chemicals. Therefore, a range of investigations were done on fatty acid hydratases (FAHs), since these enzymes catalyze the addition of water to an unsaturated fatty acid, thus providing an elegant route towards hydroxy-substituted fatty acids. Besides the discovery and characterization of fatty acid hydratases (FAHs), the design and optimization of syntheses with these enzymes, the implementation in elaborate cascades, and the improvement of these biocatalysts, by way of mutation in terms of the substrate scope, has been investigated. This mini-review focuses on the research done on process development using fatty acid hydratases as a catalyst. It is notable that biotransformations, running at impressive substrate loadings of up to 280 g L−1, have been realized. A further topic of this mini-review is the implementation of fatty acid hydratases in cascade reactions. In such cascades, fatty acid hydratases were, in particular, combined with alcohol dehydrogenases (ADH), Baeyer-Villiger monooxygenases (BVMO), transaminases (TA) and hydrolases, thus enabling access to a broad variety of molecules that are of industrial interest.
Collapse
|
4
|
Cha H, Hwang S, Lee D, Kumar AR, Kwon Y, Voß M, Schuiten E, Bornscheuer UT, Hollmann F, Oh D, Park J. Whole‐Cell Photoenzymatic Cascades to Synthesize Long‐Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angew Chem Int Ed Engl 2020; 59:7024-7028. [DOI: 10.1002/anie.201915108] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hee‐Jeong Cha
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Se‐Yeun Hwang
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Da‐Som Lee
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
5
|
Cha H, Hwang S, Lee D, Kumar AR, Kwon Y, Voß M, Schuiten E, Bornscheuer UT, Hollmann F, Oh D, Park J. Whole‐Cell Photoenzymatic Cascades to Synthesize Long‐Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hee‐Jeong Cha
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Se‐Yeun Hwang
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Da‐Som Lee
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul 05029 Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
6
|
Abstract
In this work, we studied the biotechnological potential of thirteen probiotic microorganisms currently used to improve human health. We discovered that the majority of the investigated bacteria are able to catalyze the hydration reaction of the unsaturated fatty acids (UFAs). We evaluated their biocatalytic activity toward the three most common vegetable UFAs, namely oleic, linoleic, and linolenic acids. The whole-cell biotransformation experiments were performed using a fatty acid concentration of 3 g/L in anaerobic conditions. Through these means, we assessed that the main part of the investigated strains catalyzed the hydration reaction of UFAs with very high regio- and stereoselectivity. Our biotransformation reactions afforded almost exclusively 10-hydroxy fatty acid derivatives with the single exception of Lactobacillus acidophilus ATCC SD5212, which converted linoleic acid in a mixture of 13-hydroxy and 10-hydroxy derivatives. Oleic, linoleic, and linolenic acids were transformed into (R)-10-hydroxystearic acid, (S)-(12Z)-10-hydroxy-octadecenoic, and (S)-(12Z,15Z)-10-hydroxy-octadecadienoic acids, respectively, usually with very high enantiomeric purity (ee > 95%). It is worth noting that the biocatalytic capabilities of the thirteen investigated strains may change considerably from each other, both in terms of activity, stereoselectivity, and transformation yields. Lactobacillus rhamnosus ATCC 53103 and Lactobacillus plantarum 299 V proved to be the most versatile, being able to efficiently and selectively hydrate all three investigated fatty acids.
Collapse
|
7
|
Ménil S, Petit J, Courvoisier‐Dezord E, Debard A, Pellouin V, Reignier T, Sergent M, Deyris V, Duquesne K, Berardinis V, Alphand V. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system. Biotechnol Bioeng 2019; 116:2852-2863. [DOI: 10.1002/bit.27133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Sidiky Ménil
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean‐Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | | | - Adrien Debard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | - Virginie Pellouin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | - Thomas Reignier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Michelle Sergent
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE Marseille France
| | - Valérie Deyris
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Véronique Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniversite Evry, Université Paris‐Saclay Evry France
| | | |
Collapse
|
8
|
Marella ER, Dahlin J, Dam MI, Ter Horst J, Christensen HB, Sudarsan S, Wang G, Holkenbrink C, Borodina I. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids. Metab Eng 2019; 61:427-436. [PMID: 31404648 DOI: 10.1016/j.ymben.2019.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 01/17/2023]
Abstract
Lactone flavors with fruity, milky, coconut, and other aromas are widely used in the food and fragrance industries. Lactones are produced by chemical synthesis or by biotransformation of plant-sourced hydroxy fatty acids. We established a novel method to produce flavor lactones from abundant non-hydroxylated fatty acids using yeast cell factories. Oleaginous yeast Yarrowia lipolytica was engineered to perform hydroxylation of fatty acids and chain-shortening via β-oxidation to preferentially twelve or ten carbons. The strains could produce γ-dodecalactone from oleic acid and δ-decalactone from linoleic acid. Through metabolic engineering, the titer was improved 4-fold, and the final strain produced 282 mg/L γ-dodecalactone in a fed-batch bioreactor. The study paves the way for the production of lactones by fermentation of abundant fatty feedstocks.
Collapse
Affiliation(s)
- Eko Roy Marella
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Marie Inger Dam
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Jolanda Ter Horst
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Hanne Bjerre Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Suresh Sudarsan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark.
| |
Collapse
|
9
|
Demming RM, Hammer SC, Nestl BM, Gergel S, Fademrecht S, Pleiss J, Hauer B. Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angew Chem Int Ed Engl 2019; 58:173-177. [PMID: 30256501 PMCID: PMC6471033 DOI: 10.1002/anie.201810005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/30/2022]
Abstract
The direct enantioselective addition of water to unactivated alkenes could simplify the synthesis of chiral alcohols and solve a long-standing challenge in catalysis. Here we report that an engineered fatty acid hydratase can catalyze the asymmetric hydration of various terminal and internal alkenes. In the presence of a carboxylic acid decoy molecule for activation of the oleate hydratase from E. meningoseptica, asymmetric hydration of unactivated alkenes was achieved with up to 93 % conversion, excellent selectivity (>99 % ee, >95 % regioselectivity), and on a preparative scale.
Collapse
Affiliation(s)
- Rebecca M. Demming
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Stephan C. Hammer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Sebastian Gergel
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Silvia Fademrecht
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
10
|
Demming RM, Hammer SC, Nestl BM, Gergel S, Fademrecht S, Pleiss J, Hauer B. Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca M. Demming
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Stephan C. Hammer
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sebastian Gergel
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Silvia Fademrecht
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry; Department of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
11
|
Sudheer PDVN, Seo D, Kim EJ, Chauhan S, Chunawala JR, Choi KY. Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzyme Microb Technol 2018; 119:45-51. [PMID: 30243386 DOI: 10.1016/j.enzmictec.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/17/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from recinoleic acid was achieved by whole-cell biotransformation by Escherichia coli, utilizing crude glycerol as the sole carbon source. Whole-cell biotransformation resulted in ∼93% conversion of the substrate ricinoleic acid to (Z)-11-(heptanoyloxy)undec-9-enoic acid. We replaced the inducer-dependent promoter system (T7 and Rhm promotors) with a constitutive promoter system. This resulted in successful expression of ADH, FadL, and E6-BVMO, without costly inducer addition. Efficacy evaluation of the whole-cell biotransformation by inducer-free system by five different E. coli strains revealed that the highest product titer was accumulated in E. coli BW25113 strain. The engineered inducer-free system using crude glycerol as the sole carbon source showed competitive performance with induction systems. Optimized conditions resulted in the accumulation of 7.38 ± 0.42 mM (Z)-11-(heptanoyloxy)undec-9-enoic acid, and when 10 mM substrate was used as feed concentration, the product titer reached 2.35 g/L. The inducer-free construct with constitutive promoter system that this study established, which utilizes the waste by-product crude glycerol, will pave the way for the economic synthesis of many industrially important chemicals, like (Z)-11-(heptanoyloxy)undec-9-enoic acid.
Collapse
Affiliation(s)
- Pamidimarri D V N Sudheer
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Dahee Seo
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Eun-Joo Kim
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Sushma Chauhan
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - J R Chunawala
- Process Design & Engineering Cell, Central Salt and Marine Chemicals Research Institute-CSIR, Bhavnagar, 364002, India
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea.
| |
Collapse
|
12
|
Choi JH, Seo MJ, Lee KT, Oh DK. Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0374-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Serra S, De Simeis D. New insights on the baker's yeast-mediated hydration of oleic acid: the bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid. J Appl Microbiol 2018; 124:719-729. [PMID: 29280549 DOI: 10.1111/jam.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Abstract
AIMS The preparation of the high-value flavour γ-dodecalactone is based on the biotransformation of natural 10-HSA, which is in turn obtained by microbial hydration of oleic acid. We want to establish a reliable baker's yeast-mediated procedure for 10-HSA preparation. METHODS AND RESULTS The previously reported yeast-mediated hydration procedures are unreliable because bacteria-free baker's yeast is not able to hydrate oleic acid. The actual responsible for performing this reaction are the bacterial contaminants present in baker's yeast. Moreover, we demonstrated that the enantioselectivity in the production of (R)-10-HSA is affected mainly by the temperature used in the biotransformation. CONCLUSIONS We demonstrated that Saccharomyces cerevisiae is not able to hydrate oleic acid, whereas different bacterial strains present in baker's yeast transform oleic acid into (R)-10-HSA. We reported a general procedure for the preparation of (R)-10-HSA starting from oleic acid and using commercially available baker's yeast. SIGNIFICANCE AND IMPACT OF THE STUDY This study holds both scientific and industrial interest. It unambiguously establishes that the eukaryote micro-organisms present in baker's yeast are not able to hydrate oleic acid. The isolation of oleic acid hydrating bacterial strains from commercial baker's yeast points to their prospective use for the industrial synthesis of 10-HSA.
Collapse
Affiliation(s)
- S Serra
- C.N.R. Istituto di Chimica del Riconoscimento Molecolare, Milan, Italy
| | - D De Simeis
- C.N.R. Istituto di Chimica del Riconoscimento Molecolare, Milan, Italy
| |
Collapse
|
14
|
Liang N, Cai P, Wu D, Pan Y, Curtis JM, Gänzle MG. High-Speed Counter-Current Chromatography (HSCCC) Purification of Antifungal Hydroxy Unsaturated Fatty Acids from Plant-Seed Oil and Lactobacillus Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11229-11236. [PMID: 29224354 DOI: 10.1021/acs.jafc.7b05658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxy unsaturated fatty acids (HUFA) can function as antifungal agents. To investigate the antifungal spectrum, that is, the scope of the in vitro fungal-inhibition activities of HUFA and their potential applications, three HUFA were produced by microbial transformation or extracted from plant-seed oils; these compounds included coriolic acid (13-hydroxy-9,11-octadecadienoic acid) from Coriaria seed oil, 10-hydroxy-12-octadecenoic acid from cultures of Lactobacillus hammesii, and 13-hydroxy-9-octadecenoic acid from cultures of Lactobacillus plantarum TMW1.460Δlah. HUFA were purified by high-speed counter-current chromatography (HSCCC), characterized by LC-MS and MS/MS, and their antifungal activities were evaluated with 15 indicator fungal strains. The HUFA had different antifungal spectra when compared with unsaturated fatty acids with comparable structures but without hydroxy groups. The inhibitory effects of HUFA specifically targeted filamentous fungi, including Aspergillus niger and Penicillium roqueforti, whereas yeasts, including Candida spp. and Saccharomyces spp., were resistant to HUFA. The findings here support the development of food applications for antifungal HUFA.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Datong Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| |
Collapse
|
15
|
Demming RM, Fischer MP, Schmid J, Hauer B. (De)hydratases-recent developments and future perspectives. Curr Opin Chem Biol 2017; 43:43-50. [PMID: 29156448 DOI: 10.1016/j.cbpa.2017.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/29/2017] [Indexed: 01/18/2023]
Abstract
Hydratases have gained attention as alternative to chemical catalysts for their ability to add and eliminate water with high regio-selectivity, stereo-selectivity and enantio-selectivity. Recently, especially cofactor-independent hydratases came into research focus as they are of particular interest for industrial application. The investigation of the substrate scope as well as mutagenesis studies combined with high-resolution crystal structures and bioinformatic methods shed light on this promising enzyme class. This review presents latest findings in the field of fatty acid hydratases, linalool dehydratase isomerase and carotenoid hydratases focusing on mechanistic und structural aspects as well as the expansion of the substrate scope and new applications in organic synthesis.
Collapse
Affiliation(s)
- Rebecca M Demming
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Max-Philipp Fischer
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jens Schmid
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
16
|
Zhang D, Shang T, Huang Y, Wang S, Liu H, Wang J, Wang Y, Ji H, Zhang R. Gene expression profile changes in the jejunum of weaned piglets after oral administration of Lactobacillus or an antibiotic. Sci Rep 2017; 7:15816. [PMID: 29150660 PMCID: PMC5693952 DOI: 10.1038/s41598-017-16158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
The small intestine plays an essential role in the health and well-being of animals. Previous studies have shown that Lactobacillus has a protective effect on intestinal morphology, intestinal epithelium integrity and appropriate maturation of gut-associated tissues. Here, gene expression in jejunum tissue of weaned piglets was investigated by RNA-seq analysis after administration of sterile saline, Lactobacillus reuteri, or an antibiotic (chlortetracycline). In total, 401 and 293 genes were significantly regulated by chlortetracycline and L. reuteri, respectively, compared with control treatment. Notably, the HP, NOX1 and GPX2 genes were significantly up-regulated in the L. reuteri group compared with control, which is related to the antioxidant ability of this strain. In addition, the expression of genes related to arachidonic acid metabolism and linoleic acid metabolism enriched after treatment with L. reuteri. The fatty acid composition in the jejunum and colon was examined by GC-MS analysis and suggested that the MUFA C18:1n9c, and PUFAs C18:2n6c and C20:4n6 were increased in the L. reuteri group, verifying the GO enrichment and KEGG pathway analyses of the RNA-seq results. The results contribute to our understanding of the probiotic activity of this strain and its application in pig production.
Collapse
Affiliation(s)
- Dongyan Zhang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China
| | - Yan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
17
|
Yang B, Gao H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen H, Chen W. Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 2017; 68:26-36. [PMID: 28889933 DOI: 10.1016/j.plipres.2017.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) has been shown to exert various potential physiological properties including anti-carcinogenic, anti-obesity, anti-cardiovascular and anti-diabetic activities, and consequently has been considered as a promising food supplement. Bacterial biosynthesis of CLA is an attractive approach for commercial production due to its high isomer-selectivity and convenient purification process. Many bacterial species have been reported to convert free linoleic acid (LA) to CLA, hitherto only the precise CLA-producing mechanisms in Propionibacterium acnes and Lactobacillus plantarum have been illustrated completely, prompting the development of recombinant technology used in CLA production. The purpose of the article is to review the bacterial CLA producers as well as the recent progress on describing the mechanism of microbial CLA-production. Furthermore, the advances and potential in the heterologous expression of CLA genetic determinants will be presented.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland; College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
18
|
Demming RM, Otte KB, Nestl BM, Hauer B. Optimized Reaction Conditions Enable the Hydration of Non-natural Substrates by the Oleate Hydratase fromElizabethkingia meningoseptica. ChemCatChem 2017. [DOI: 10.1002/cctc.201601329] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rebecca M. Demming
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Konrad B. Otte
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bettina M. Nestl
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
19
|
Schmid J, Steiner L, Fademrecht S, Pleiss J, Otte KB, Hauer B. Biocatalytic study of novel oleate hydratases. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Chen YY, Liang NY, Curtis JM, Gänzle MG. Characterization of Linoleate 10-Hydratase of Lactobacillus plantarum and Novel Antifungal Metabolites. Front Microbiol 2016; 7:1561. [PMID: 27757104 PMCID: PMC5047880 DOI: 10.3389/fmicb.2016.01561] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022] Open
Abstract
Lactobacilli convert linoleic acid to the antifungal compound 10-hydroxy-12-octadecenoic acid (10-HOE) by linoleate 10-hydratase (10-LAH). However, the effect of this conversion on cellular membrane physiology and properties of the cell surface have not been demonstrated. Moreover, Lactobacillus plantarum produces 13-hydroxy-9-octadecenoic acid (13-HOE) in addition to 10-HOE, but the antifungal activity of 13-HOE was unknown. Phylogenetic analyses conducted in this study did not differentiate between 10-LAH and linoleate 13-hydratase (13-LAH). Thus, linoleate hydratases (LAHs) must be characterized through their differences in their activities of linoleate conversion. Four genes encoding putative LAHs from lactobacilli were cloned, heterologous expressed, purified and identified as FAD-dependent 10-LAH. The unsaturated fatty acid substrates stimulated the growth of lactobacilli. We also investigated the role of 10-LAH in ethanol tolerance, membrane fluidity and hydrophobicity of cell surfaces in lactobacilli by disruption of lah. Compared with the L. plantarum lah deficient strain, 10-LAH in wild-type strain did not exert effect on cell survival and membrane fluidity under ethanol stress, but influenced the cell surface hydrophobicity. Moreover, deletion of 10-LAH in L. plantarum facilitated purification of 13-HOE and demonstration of its antifungal activity against Penicillium roqueforti and Aspergillus niger.
Collapse
Affiliation(s)
- Yuan Y Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada
| | - Nuan Y Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada; College of Bioengineering and Food Science, Hubei University of TechnologyWuhan, China
| |
Collapse
|
21
|
Chen G, Liu J, Qi Y, Yao J, Yan B. Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4-chitosan microspheres. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Han JE, Seo MJ, Shin KC, Oh DK. Production of 10R-hydroxy unsaturated fatty acids from hempseed oil hydrolyzate by recombinant Escherichia coli cells expressing PpoC from Aspergillus nidulans. Appl Microbiol Biotechnol 2016; 100:7933-44. [PMID: 27129531 DOI: 10.1007/s00253-016-7508-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 10/21/2022]
Abstract
The first and second preferred substrates of recombinant Escherichia coli cells expressing 10R-dioxygenase (PpoC) from Aspergillus nidulans and the purified enzyme were linoleic acid and α-linolenic acid, respectively. PpoC in cells showed higher thermal and reaction stabilities compared to purified PpoC. Thus, 10R-hydroxy unsaturated fatty acids were produced from linoleic acid, α-linolenic acid, and hempseed oil hydrolyzate containing linoleic acid and α-linolenic acid as substrates by whole recombinant cells expressing PpoC. The optimal reaction conditions for the production of 10R-hydroxy-8E,12Z-octadecadienoic acid (10R-HODE) were pH 8.0, 30 °C, 250 rpm, 5 % (v/v) dimethyl sulfoxide, 5 g l(-1) linoleic acid, and 60 g l(-1) cells in 100-ml baffled flask. Under these conditions, whole recombinant cells expressing PpoC produced 2.7 g l(-1) 10R-HODE from 5 g l(-1) linoleic acid for 40 min, with a conversion yield of 54 % (w/w) and a productivity of 4.0 g l(-1) h(-1); produced 2.2 g l(-1) 10R-hydroxy-8E,12Z,15Z-octadecatrienoic acid (10R-HOTrE) from 3 g l(-1) α-linolenic acid for 30 min, with a conversion yield of 72 % (w/w) and a productivity of 4.3 g l(-1) h(-1); and produced 1.8 g l(-1) 10R-HODE and 0.5 g l(-1) 10R-HOTrE from 5 g l(-1) hempseed oil hydrolyzate containing 2.5 g l(-1) linoleic acid and 1.0 g l(-1) α-linolenic acid for 30 min, with a conversion yield of 74 and 51 % (w/w), respectively, and a productivity of 3.6 and 1.0 g l(-1) h(-1), respectively. To the best of our knowledge, this is the first report on the biotechnological production of 10R-hydroxy unsaturated fatty acids.
Collapse
Affiliation(s)
- Jeong-Eun Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
23
|
13-Hydroxy-9Z,15Z-Octadecadienoic Acid Production by Recombinant Cells Expressing Lactobacillus acidophilus 13-Hydratase. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2809-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Kang WR, Seo MJ, An JU, Shin KC, Oh DK. Production of δ-decalactone from linoleic acid via 13-hydroxy-9(Z)-octadecenoic acid intermediate by one-pot reaction using linoleate 13-hydratase and whole Yarrowia lipolytica cells. Biotechnol Lett 2016; 38:817-23. [PMID: 26758723 DOI: 10.1007/s10529-016-2041-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To produce δ-decalactone from linoleic acid by one-pot reaction using linoleate 13-hydratase with supplementation with whole Yarrowia lipolytica cells. RESULTS Whole Y. lipolytica cells at 25 g l(-1) produced1.9 g l(-1) δ-decalactone from 7.5 g 13-hydroxy-9(Z)-octadecenoic acid l(-1) at pH 7.5 and 30 °C for 21 h. Linoleate 13-hydratase from Lactobacillus acidophilus at 3.5 g l(-1) with supplementation with 25 g Y. lipolytica cells l(-1) in one pot at 3 h produced 1.9 g l(-1) δ-decalactone from 10 g linoleic acid l(-1) via 13-hydroxy-9(Z)-octadecenoic acid intermediate at pH 7.5 and 30°C after 18 h, with a molar conversion yield of 31 % and productivity of 106 mg l(-1) h(-1). CONCLUSION To the best of our knowledge, this is the first production of δ-decalactone using unsaturated fatty acid.
Collapse
Affiliation(s)
- Woo-Ri Kang
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
25
|
Seo JH, Lee SM, Lee J, Park JB. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids. J Biotechnol 2015; 216:158-66. [PMID: 26546054 DOI: 10.1016/j.jbiotec.2015.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Not only short chain ω-hydroxycarboxylic acids, α,ω-dicarboxylic acids, and ω-aminocarboxylic acids but also medium to long chain carboxylic acids are widely used as building blocks and intermediates in the chemical, pharmaceutical, and food industries. Thereby, recent achievements in biological production of medium to long chain carboxylic acids are addressed here. ω-Hydroxycarboxylic and α,ω-dicarboxylic acids were synthesized via terminal CH bond oxygenation of fatty acids and/or internal oxidative cleavage of the fatty acid carbon skeletons. ω-Aminocarboxylic acids were enzymatically produced from ω-hydroxycarboxylic acids via ω-oxocarboxylic acids. Productivities and product yields of some of the products are getting close to the industrial requirements for large scale production.
Collapse
Affiliation(s)
- Joo-Hyun Seo
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun-Mee Lee
- Division of Food Science, Kyungil University, Gyeongsan 712-701, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|