1
|
Tian DS, Zhang X, Cox RJ. Comparing total chemical synthesis and total biosynthesis routes to fungal specialized metabolites. Nat Prod Rep 2024. [PMID: 39145774 DOI: 10.1039/d4np00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Covering the period 1965-2024Total synthesis has been defined as the art and science of making the molecules of living Nature in the laboratory, and by extension, their analogues. At the extremes, specialised metabolites can be created by total chemical synthesis or by total biosynthesis. In this review we explore the advantages and disadvantages of these two approaches using quantitative methodology that combines measures of molecular complexity, molecular weight and fraction of sp3 centres for bioactive fungal metabolites. Total biosynthesis usually involves fewer chemical steps and those steps move more directly to the target than comparable total chemical synthesis. However, total biosynthesis currently lacks the flexibility of chemical synthesis and the ability to easily diversify synthetic routes.
Collapse
Affiliation(s)
- Dong-Song Tian
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Xiao Zhang
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Russell J Cox
- Institute for Organic Chemistry, Leibniz University of Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
3
|
Àvila-Cabré S, Pérez-Trujillo M, Albiol J, Ferrer P. Engineering the synthetic β-alanine pathway in Komagataella phaffii for conversion of methanol into 3-hydroxypropionic acid. Microb Cell Fact 2023; 22:237. [PMID: 37978380 PMCID: PMC10655335 DOI: 10.1186/s12934-023-02241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Methanol is increasingly gaining attraction as renewable carbon source to produce specialty and commodity chemicals, as it can be generated from renewable sources such as carbon dioxide (CO2). In this context, native methylotrophs such as the yeast Komagataella phaffii (syn Pichia pastoris) are potentially attractive cell factories to produce a wide range of products from this highly reduced substrate. However, studies addressing the potential of this yeast to produce bulk chemicals from methanol are still scarce. 3-Hydroxypropionic acid (3-HP) is a platform chemical which can be converted into acrylic acid and other commodity chemicals and biopolymers. 3-HP can be naturally produced by several bacteria through different metabolic pathways. RESULTS In this study, production of 3-HP via the synthetic β-alanine pathway has been established in K. phaffii for the first time by expressing three heterologous genes, namely panD from Tribolium castaneum, yhxA from Bacillus cereus, and ydfG from Escherichia coli K-12. The expression of these key enzymes allowed a production of 1.0 g l-1 of 3-HP in small-scale cultivations using methanol as substrate. The addition of a second copy of the panD gene and selection of a weak promoter to drive expression of the ydfG gene in the PpCβ21 strain resulted in an additional increase in the final 3-HP titer (1.2 g l-1). The 3-HP-producing strains were further tested in fed-batch cultures. The best strain (PpCβ21) achieved a final 3-HP concentration of 21.4 g l-1 after 39 h of methanol feeding, a product yield of 0.15 g g-1, and a volumetric productivity of 0.48 g l-1 h-1. Further engineering of this strain aiming at increasing NADPH availability led to a 16% increase in the methanol consumption rate and 10% higher specific productivity compared to the reference strain PpCβ21. CONCLUSIONS Our results show the potential of K. phaffii as platform cell factory to produce organic acids such as 3-HP from renewable one-carbon feedstocks, achieving the highest volumetric productivities reported so far for a 3-HP production process through the β-alanine pathway.
Collapse
Affiliation(s)
- Sílvia Àvila-Cabré
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan Albiol
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.
| |
Collapse
|
4
|
Geistodt-Kiener A, Totozafy JC, Le Goff G, Vergne J, Sakai K, Ouazzani J, Mouille G, Viaud M, O'Connell RJ, Dallery JF. Yeast-based heterologous production of the Colletochlorin family of fungal secondary metabolites. Metab Eng 2023; 80:216-231. [PMID: 37863177 DOI: 10.1016/j.ymben.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Transcriptomic studies have revealed that fungal pathogens of plants activate the expression of numerous biosynthetic gene clusters (BGC) exclusively when in presence of a living host plant. The identification and structural elucidation of the corresponding secondary metabolites remain challenging. The aim was to develop a polycistronic system for heterologous expression of fungal BGCs in Saccharomyces cerevisiae. Here we adapted a polycistronic vector for efficient, seamless and cost-effective cloning of biosynthetic genes using in vivo assembly (also called transformation-assisted recombination) directly in Escherichia coli followed by heterologous expression in S. cerevisiae. Two vectors were generated with different auto-inducible yeast promoters and selection markers. The effectiveness of these vectors was validated with fluorescent proteins. As a proof-of-principle, we applied our approach to the Colletochlorin family of molecules. These polyketide secondary metabolites were known from the phytopathogenic fungus Colletotrichum higginsianum but had never been linked to their biosynthetic genes. Considering the requirement for a halogenase, and by applying comparative genomics, we identified a BGC putatively involved in the biosynthesis of Colletochlorins in C. higginsianum. Following the expression of those genes in S. cerevisiae, we could identify the presence of the precursor Orsellinic acid, Colletochlorins and their non-chlorinated counterparts, the Colletorins. In conclusion, the polycistronic vectors described herein were adapted for the host S. cerevisiae and allowed to link the Colletochlorin compound family to their corresponding biosynthetic genes. This system will now enable the production and purification of infection-specific secondary metabolites of fungal phytopathogens. More widely, this system could be applied to any fungal BGC of interest.
Collapse
Affiliation(s)
| | - Jean Chrisologue Totozafy
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, 78000, Versailles, France
| | - Géraldine Le Goff
- Centre National de La Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, 91190, Gif-sur-Yvette, France
| | - Justine Vergne
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Kaori Sakai
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Jamal Ouazzani
- Centre National de La Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, 91190, Gif-sur-Yvette, France
| | - Grégory Mouille
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, 78000, Versailles, France
| | - Muriel Viaud
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | | |
Collapse
|
5
|
Zha J, Liu D, Ren J, Liu Z, Wu X. Advances in Metabolic Engineering of Pichia pastoris Strains as Powerful Cell Factories. J Fungi (Basel) 2023; 9:1027. [PMID: 37888283 PMCID: PMC10608127 DOI: 10.3390/jof9101027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Pichia pastoris is the most widely used microorganism for the production of secreted industrial proteins and therapeutic proteins. Recently, this yeast has been repurposed as a cell factory for the production of chemicals and natural products. In this review, the general physiological properties of P. pastoris are summarized and the readily available genetic tools and elements are described, including strains, expression vectors, promoters, gene editing technology mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, and adaptive laboratory evolution. Moreover, the recent achievements in P. pastoris-based biosynthesis of proteins, natural products, and other compounds are highlighted. The existing issues and possible solutions are also discussed for the construction of efficient P. pastoris cell factories.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.L.); (J.R.); (Z.L.)
| | | | | | | | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.L.); (J.R.); (Z.L.)
| |
Collapse
|
6
|
Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol 2023; 8:396-415. [PMID: 37384124 PMCID: PMC10293595 DOI: 10.1016/j.synbio.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
Methanol has recently gained significant attention as a potential carbon substrate for the production of fuels and chemicals, owing to its high degree of reduction, abundance, and low price. Native methylotrophic yeasts and bacteria have been investigated for the production of fuels and chemicals. Alternatively, synthetic methylotrophic strains are also being developed by reconstructing methanol utilization pathways in model microorganisms, such as Escherichia coli. Owing to the complex metabolic pathways, limited availability of genetic tools, and methanol/formaldehyde toxicity, the high-level production of target products for industrial applications are still under development to satisfy commercial feasibility. This article reviews the production of biofuels and chemicals by native and synthetic methylotrophic microorganisms. It also highlights the advantages and limitations of both types of methylotrophs and provides an overview of ways to improve their efficiency for the production of fuels and chemicals from methanol.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
7
|
Tang G, Man H, Wang J, Zou J, Zhao J, Han J. An oxidoreductase gene CtnD involved in citrinin biosynthesis in Monascus purpureus verified by CRISPR/Cas9 gene editing and overexpression. Mycotoxin Res 2023; 39:247-259. [PMID: 37269452 DOI: 10.1007/s12550-023-00491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Monascus produces a kind of mycotoxin, citrinin, whose synthetic pathway is still not entirely clear. The function of CtnD, a putative oxidoreductase located upstream of pksCT in the citrinin gene cluster, has not been reported. In this study, the CtnD overexpressed strain and the Cas9 constitutively expressed chassis strain were obtained by genetic transformation mediated by Agrobacterium tumefaciens. The pyrG and CtnD double gene-edited strains were then obtained by transforming the protoplasts of the Cas9 chassis strain with in vitro sgRNAs. The results showed that overexpression of CtnD resulted in significant increases in citrinin content of more than 31.7% and 67.7% in the mycelium and fermented broth, respectively. The edited CtnD caused citrinin levels to be reduced by more than 91% in the mycelium and 98% in the fermented broth, respectively. It was shown that CtnD is a key enzyme involved in citrinin biosynthesis. RNA-Seq and RT-qPCR showed that the overexpression of CtnD had no significant effect on the expression of CtnA, CtnB, CtnE, and CtnF but led to distinct changes in the expression of acyl-CoA thioesterase and two MFS transporters, which may play an unknown role in citrinin metabolism. This study is the first to report the important function of CtnD in M. purpureus through a combination of CRISPR/Cas9 editing and overexpression.
Collapse
Affiliation(s)
- Guangfu Tang
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Haiqiao Man
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jiao Wang
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jie Zou
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jiehong Zhao
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China.
| | - Jie Han
- Key Lab of Pharmacognostics of Guizhou Province, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China.
| |
Collapse
|
8
|
Tan H, Wang L, Wang H, Cheng Y, Li X, Wan H, Liu C, Liu T, Li Q. Engineering Komagataella phaffii to biosynthesize cordycepin from methanol which drives global metabolic alterations at the transcription level. Synth Syst Biotechnol 2023; 8:242-252. [PMID: 37007278 PMCID: PMC10060148 DOI: 10.1016/j.synbio.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cordycepin has the potential to be an alternative to the disputed herbicide glyphosate. However, current laborious and time-consuming production strategies at low yields based on Cordyceps militaris lead to extremely high cost and restrict its application in the field of agriculture. In this study, Komagataella phaffii (syn. Pichia pastoris) was engineered to biosynthesize cordycepin from methanol, which could be converted from CO2. Combined with fermentation optimization, cordycepin content in broth reached as high as 2.68 ± 0.04 g/L within 168 h, around 15.95 mg/(L·h) in productivity. Additionally, a deaminated product of cordycepin was identified at neutral or weakly alkaline starting pH during fermentation. Transcriptome analysis found the yeast producing cordycepin was experiencing severe inhibition in methanol assimilation and peroxisome biogenesis, responsible for delayed growth and decreased carbon flux to pentose phosphate pathway (PPP) which led to lack of precursor supply. Amino acid interconversion and disruption in RNA metabolism were also due to accumulation of cordycepin. The study provided a unique platform for the manufacture of cordycepin based on the emerging non-conventional yeast and gave practical strategies for further optimization of the microbial cell factory.
Collapse
Affiliation(s)
- Huiping Tan
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan Road, Ganjingzi District, Dalian, 116034, China
| | - Huiguo Wang
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Yanghao Cheng
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Xiang Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Huihui Wan
- Analytical Instrumentation Centre, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Qian Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| |
Collapse
|
9
|
Zhang Q, Wang X, Zeng W, Xu S, Li D, Yu S, Zhou J. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metab Eng 2023; 76:50-62. [PMID: 36634840 DOI: 10.1016/j.ymben.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Carminic acid is a natural red dye extracted from the insect Dactylopius coccus. Due to its ideal dying effect and high safety, it is widely used in food and cosmetics industries. Previous study showed that introduction of polyketide synthase (OKS) from Aloe arborescens, cyclase (ZhuI) and aromatase (ZhuJ) from Streptomyces sp. R1128, and C-glucosyltransferase (UGT2) from D. coccus into Aspergillus nidulans could achieve trace amounts of de novo production. These four genes were introduced into Saccharomyces cerevisiae, but carminic acid was not detected. Analysis of the genome of A. nidulans revealed that 4'-phosphopantetheinyl transferase (NpgA) and monooxygenase (AptC) are essential for de novo biosynthesis of carminic acid in S. cerevisiae. Additionally, endogenous hydroxylase (Cat5) from S. cerevisiae was found to be responsible for hydroxylation of flavokermesic acid to kermesic acid. Therefore, all enzymes and their functions in the biosynthesis of carminic acid were explored and reconstructed in S. cerevisiae. Through systematic pathway engineering, including regulating enzyme expression, enhancing precursor supply, and modifying the β-oxidation pathway, the carminic acid titer in a 5 L bioreactor reached 7580.9 μg/L, the highest yet reported for a microorganism. Heterologous reconstruction of the carminic acid biosynthetic pathway in S. cerevisiae has great potential for de novo biosynthesis of anthraquinone dye.
Collapse
Affiliation(s)
- Qian Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
10
|
Advances in Komagataella phaffii Engineering for the Production of Renewable Chemicals and Proteins. FERMENTATION 2022. [DOI: 10.3390/fermentation8110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The need for a more sustainable society has prompted the development of bio-based processes to produce fuels, chemicals, and materials in substitution for fossil-based ones. In this context, microorganisms have been employed to convert renewable carbon sources into various products. The methylotrophic yeast Komagataella phaffii has been extensively used in the production of heterologous proteins. More recently, it has been explored as a host organism to produce various chemicals through new metabolic engineering and synthetic biology tools. This review first summarizes Komagataella taxonomy and diversity and then highlights the recent approaches in cell engineering to produce renewable chemicals and proteins. Finally, strategies to optimize and develop new fermentative processes using K. phaffii as a cell factory are presented and discussed. The yeast K. phaffii shows an outstanding performance for renewable chemicals and protein production due to its ability to metabolize different carbon sources and the availability of engineering tools. Indeed, it has been employed in producing alcohols, carboxylic acids, proteins, and other compounds using different carbon sources, including glycerol, glucose, xylose, methanol, and even CO2.
Collapse
|
11
|
Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A 2022; 119:e2201711119. [PMID: 35858340 PMCID: PMC9303929 DOI: 10.1073/pnas.2201711119] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Methanol-based biorefinery is a promising strategy to achieve carbon neutrality goals by linking CO2 capture and solar energy storage. As a typical methylotroph, Pichia pastoris shows great potential in methanol biotransformation. However, challenges still remain in engineering methanol metabolism for chemical overproduction. Here, we present the global rewiring of the central metabolism for efficient production of free fatty acids (FFAs; 23.4 g/L) from methanol, with an enhanced supply of precursors and cofactors, as well as decreased accumulation of formaldehyde. Finally, metabolic transforming of the fatty acid cell factory enabled overproduction of fatty alcohols (2.0 g/L) from methanol. This study demonstrated that global metabolic rewiring released the great potential of P. pastoris for methanol biotransformation toward chemical overproduction.
Collapse
|
12
|
Development and evaluation of a qPCR detection method for citrinin in Liupao tea. Anal Biochem 2022; 653:114771. [DOI: 10.1016/j.ab.2022.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
|
13
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
14
|
Qian Z, Liu Q, Cai M. Investigating Fungal Biosynthetic Pathways Using Pichia pastoris as a Heterologous Host. Methods Mol Biol 2022; 2489:115-127. [PMID: 35524048 DOI: 10.1007/978-1-0716-2273-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal natural products have extensive biological activities, and thus have been largely commercialized in the pharmaceutical, agricultural, and food industries. Recently, heterologous expression has become an irreplaceable technique to functionalize fungal biosynthetic gene clusters and synthesize fungal natural products in various chassis organisms. This chapter describes the general method of using Pichia pastoris as a chassis host to investigate fungal biosynthetic pathways.
Collapse
Affiliation(s)
- Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
15
|
Kawanishi Y, Matsunaga S. Synthetic Carbon Fixation: Conversion of Heterotrophs into Autotrophs by Calvin-Benson-Bassham Cycle Induction. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuki Kawanishi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Sachihiro Matsunaga
- Laboratory of Integrated Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences
| |
Collapse
|
16
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
17
|
Zhai X, Ji L, Gao J, Zhou YJ. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha. Appl Microbiol Biotechnol 2021; 105:8761-8769. [PMID: 34748038 DOI: 10.1007/s00253-021-11665-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/24/2023]
Abstract
Promoters play an important role in regulating gene expression, and construction of microbial cell factories requires multiple promoters for balancing the metabolic pathways. However, there are only a limited number of characterized promoters for gene expression in the methylotrophic yeast Ogataea polymorpha, which hampers the extensive harnessing of this important yeast toward a cell factory. Here we characterized the promoters of methanol utilization pathway, precursor supply pathway, and reactive oxygen species (ROS) defense system, by using a green fluorescence protein variant (GFPUV) as a quantification signal. Finally, the characterized promoters were used for tuning a fatty alcohol biosynthetic pathway in O. polymorpha and realized fatty alcohol production from methanol. This promoter box should be helpful for gene expression and pathway optimization in the methylotrophic yeast O. polymorpha. KEY POINTS : • 22 promoters related to methanol metabolism were characterized in O. polymorpha. • Promoter truncation resulted shorter and compact promoters. • Promoters with various strengths were used for regulating a fatty alcohol biosynthesis from methanol.
Collapse
Affiliation(s)
- Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lulu Ji
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China. .,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
18
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
19
|
Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 2021; 6:110-119. [PMID: 33997361 PMCID: PMC8113645 DOI: 10.1016/j.synbio.2021.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris (a.k.a. Komagataella phaffii) is one of the most commonly used hosts for industrial production of recombinant proteins. As a non-conventional yeast, P. pastoris has unique biological characteristics and its expression system has been well developed. With the advances in synthetic biology, more efforts have been devoted to developing P. pastoris into a chassis for the production of various high-value compounds, such as natural products. This review begins with the introduction of synthetic biology tools for the engineering of P. pastoris, including vectors, promoters, and terminators for heterologous gene expression as well as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated System (CRISPR/Cas) for genome editing. This review is then followed by examples of the production of value-added natural products in metabolically engineered P. pastoris strains. Finally, challenges and outlooks in developing P. pastoris as a synthetic biology chassis are prospected.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
20
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
21
|
Chen AY, Lan EI. Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnol J 2020; 15:e1900356. [DOI: 10.1002/biot.201900356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Arvin Y. Chen
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ethan I. Lan
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
22
|
Zhou B, Ma Y, Tian Y, Li J, Zhong H. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of Monascus Response to High Ammonium Chloride Concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:808-817. [PMID: 31870144 DOI: 10.1021/acs.jafc.9b05852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various Monascus bioactive metabolites used as food or food additives in Asia for centuries are subjected to constant physical and chemical changes and different Monascus genus. With the aim to identify enzymes that participate in or indirectly regulate the pigments and citrinin biosynthesis pathways of Monascus purpureus cultured under high ammonium chloride, the changes of the proteome profile were examined using sequential window acquisition of all theoretical mass spectra-mass spectrometry-based quantitative proteomics approach in combination with bioinformatics analysis. A total of 292 proteins were confidently detected and quantified in each sample, including 163 that increased and 129 that decreased (t-tests, p ≤ 0.05). Pathway analysis indicated that high ammonium chloride in the present study accelerates the carbon substrate utilization and promotes the activity of key enzymes in glycolysis and β-oxidation of fatty acid catabolism to generate sufficient acetyl-CoA. However, the synthesis of the monascus pigments and citrinin was not enhanced because of inhibition of the polyketide synthase activity. All results demonstrated that the cause of initiation of pigments and citrinin synthesis is mainly due to the apparent inhibition of acyl and acetyl transfer by some acyltransferase and acetyltransferase, likely malony-CoA:ACP transacylase.
Collapse
Affiliation(s)
- Bo Zhou
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose , Changsha 410004 , China
| | - Yifan Ma
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| | - Yuan Tian
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| | - Jingbo Li
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Haiyan Zhong
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| |
Collapse
|
23
|
RamyaSree B, Jose PA, Divakar K. Fermentative Production of Secondary Metabolites from Bioengineered Fungal Species and Their Applications. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Othoum G, Prigent S, Derouiche A, Shi L, Bokhari A, Alamoudi S, Bougouffa S, Gao X, Hoehndorf R, Arold ST, Gojobori T, Hirt H, Lafi FF, Nielsen J, Bajic VB, Mijakovic I, Essack M. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci Rep 2019; 9:19254. [PMID: 31848398 PMCID: PMC6917714 DOI: 10.1038/s41598-019-55726-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in the use of microbial cells for scalable production of industrial enzymes encourage exploring new environments for efficient microbial cell factories (MCFs). Here, through a comparison study, ten newly sequenced Bacillus species, isolated from the Rabigh Harbor Lagoon on the Red Sea shoreline, were evaluated for their potential use as MCFs. Phylogenetic analysis of 40 representative genomes with phylogenetic relevance, including the ten Red Sea species, showed that the Red Sea species come from several colonization events and are not the result of a single colonization followed by speciation. Moreover, clustering reactions in reconstruct metabolic networks of these Bacillus species revealed that three metabolic clades do not fit the phylogenetic tree, a sign of convergent evolution of the metabolism of these species in response to special environmental adaptation. We further showed Red Sea strains Bacillus paralicheniformis (Bac48) and B. halosaccharovorans (Bac94) had twice as much secreted proteins than the model strain B. subtilis 168. Also, Bac94 was enriched with genes associated with the Tat and Sec protein secretion system and Bac48 has a hybrid PKS/NRPS cluster that is part of a horizontally transferred genomic region. These properties collectively hint towards the potential use of Red Sea Bacillus as efficient protein secreting microbial hosts, and that this characteristic of these strains may be a consequence of the unique ecological features of the isolation environment.
Collapse
Affiliation(s)
- G Othoum
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Prigent
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Derouiche
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - L Shi
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Bokhari
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Alamoudi
- Department of Biology, Science and Arts College, King Abdulaziz University, Rabigh, 21589, Kingdom of Saudi Arabia
| | - S Bougouffa
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - X Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - R Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - T Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - H Hirt
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - F F Lafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,College of Natural and Health Sciences, Zayed University, 144534, Abu-Dhabi, United Arab Emirates
| | - J Nielsen
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - V B Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - I Mijakovic
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - M Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
25
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
26
|
Othoum G, Bougouffa S, Bokhari A, Lafi FF, Gojobori T, Hirt H, Mijakovic I, Bajic VB, Essack M. Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genomics 2019; 20:696. [PMID: 31481022 PMCID: PMC6724285 DOI: 10.1186/s12864-019-6065-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background Biosynthetic gene clusters produce a wide range of metabolites with activities that are of interest to the pharmaceutical industry. Specific interest is shown towards those metabolites that exhibit antimicrobial activities against multidrug-resistant bacteria that have become a global health threat. Genera of the phylum Firmicutes are frequently identified as sources of such metabolites, but the biosynthetic potential of its Virgibacillus genus is not known. Here, we used comparative genomic analysis to determine whether Virgibacillus strains isolated from the Red Sea mangrove mud in Rabigh Harbor Lagoon, Saudi Arabia, may be an attractive source of such novel antimicrobial agents. Results A comparative genomics analysis based on Virgibacillus dokdonensis Bac330, Virgibacillus sp. Bac332 and Virgibacillus halodenitrificans Bac324 (isolated from the Red Sea) and six other previously reported Virgibacillus strains was performed. Orthology analysis was used to determine the core genomes as well as the accessory genome of the nine Virgibacillus strains. The analysis shows that the Red Sea strain Virgibacillus sp. Bac332 has the highest number of unique genes and genomic islands compared to other genomes included in this study. Focusing on biosynthetic gene clusters, we show how marine isolates, including those from the Red Sea, are more enriched with nonribosomal peptides compared to the other Virgibacillus species. We also found that most nonribosomal peptide synthases identified in the Virgibacillus strains are part of genomic regions that are potentially horizontally transferred. Conclusions The Red Sea Virgibacillus strains have a large number of biosynthetic genes in clusters that are not assigned to known products, indicating significant potential for the discovery of novel bioactive compounds. Also, having more modular synthetase units suggests that these strains are good candidates for experimental characterization of previously identified bioactive compounds as well. Future efforts will be directed towards establishing the properties of the potentially novel compounds encoded by the Red Sea specific trans-AT PKS/NRPS cluster and the type III PKS/NRPS cluster. Electronic supplementary material The online version of this article (10.1186/s12864-019-6065-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ghofran Othoum
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ameerah Bokhari
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,College of Natural and Health Sciences, Zayed University, Abu-Dhabi, 144534, United Arab Emirates
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ivan Mijakovic
- Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
27
|
Xu Q, Bai C, Liu Y, Song L, Tian L, Yan Y, Zhou J, Zhou X, Zhang Y, Cai M. Modulation of acetate utilization in Komagataella phaffii by metabolic engineering of tolerance and metabolism. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:61. [PMID: 30936941 PMCID: PMC6427870 DOI: 10.1186/s13068-019-1404-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Acetate, an economical industrial chemical, which is also the precursor of acetyl-CoA, could serve as an alternative substrate for biomanufacturing. This nontraditional substrate can be widely produced from syngas via hydrolysis or pyrolysis of the cellulosic biomass, chemical or microbial catalysis, anaerobic fermentation in treated wastewater, etc. However, the toxicity of acetate to microorganisms has held back its utilization, especially for the eukaryotes that are good hosts for production of complicated pharmaceuticals or chemicals. This study seeks to improve acetate utilization in a widely used yeast host, Komagataella phaffii (previously Pichia pastoris), by metabolic engineering of acetate tolerance, transport, and metabolism. RESULTS A kinase-deficient library of K. phaffii was firstly used to screen acetate-resistant kinases. The HRK1 knockout strain was sensitive to acetate and overexpression of this gene improved acetate tolerance and cell growth of the strain. Also, overexpression of HRK1 caused a 55% productivity improvement of acetyl-CoA-dependent 6-methylsalicylic acid (6-MSA). However, activation of Hrk1 on membrane H(+)-ATPase Pma1 seemed not to work in the engineered strain. Acetate transporter gene ScFPS1* was further overexpressed, despite of not improving 6-MSA biosynthesis. To enhance acetate metabolism, acetyl-CoA synthesizing related genes, yeast PpACS1, ScACS1*, and E. coli ackA/pta were overexpressed separately. Introduction of PpACS1 and ScACS1* each increased biosynthesis of 6-MSA by approximately 20% on 20 mM acetate. Finally, co-overexpression of HRK1 and ScACS1* improved 6-MSA productivity by 51% on 20 mM acetate, despite that a low expression level of HRK1 happened when genes were expressed under the same promoter. CONCLUSIONS HRK1 screened by K. phaffii kinase-deficient library played an important role in acetate tolerance and was proved to profit the biosynthesis of acetyl-CoA-derived chemicals. It could be a potential target for metabolic engineering of acetate utilization in other eukaryotic hosts as well. A combined strategy of introducing genes for acetate tolerance and metabolism further improved biosynthesis of acetyl-CoA derived reporter compound in K. phaffii. This makes it a good choice for acetyl-CoA-derived chemicals with acetate as substrate or precursor in K. phaffii, which would also extend the use of this chassis host.
Collapse
Affiliation(s)
- Qin Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Chenxiao Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Yiqi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Lili Song
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Lin Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Jinfeng Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237 China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
28
|
Duan X, Gao J, Zhou YJ. Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Metabolic engineering of Pichia pastoris. Metab Eng 2018; 50:2-15. [PMID: 29704654 DOI: 10.1016/j.ymben.2018.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Besides its use for efficient production of recombinant proteins the methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) has been increasingly employed as a platform to produce metabolites of varying origin. We summarize here the impressive methodological developments of the last years to model and analyze the metabolism of P. pastoris, and to engineer its genome and metabolic pathways. Efficient methods to insert, modify or delete genes via homologous recombination and CRISPR/Cas9, supported by modular cloning techniques, have been reported. An outstanding early example of metabolic engineering in P. pastoris was the humanization of protein glycosylation. More recently the cell metabolism was engineered also to enhance the productivity of heterologous proteins. The last few years have seen an increased number of metabolic pathway design and engineering in P. pastoris, mainly towards the production of complex (secondary) metabolites. In this review, we discuss the potential role of P. pastoris as a platform for metabolic engineering, its strengths, and major requirements for future developments of chassis strains based on synthetic biology principles.
Collapse
|
30
|
Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv 2017; 36:182-195. [PMID: 29129652 DOI: 10.1016/j.biotechadv.2017.11.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Pichia pastoris has been recognized as one of the most industrially important hosts for heterologous protein production. Despite its high protein productivity, the optimization of P. pastoris cultivation is still imperative due to strain- and product-specific challenges such as promoter strength, methanol utilization type and oxygen demand. To address the issues, strategies involving genetic and process engineering have been employed. Optimization of codon usage and gene dosage, as well as engineering of promoters, protein secretion pathways and methanol metabolic pathways have proved beneficial to innate protein expression levels. Large-scale production of proteins via high cell density fermentation additionally relies on the optimization of process parameters including methanol feed rate, induction temperature and specific growth rate. Recent progress related to the enhanced production of proteins in P. pastoris via various genetic engineering and cultivation strategies are reviewed. Insight into the regulation of the P. pastoris alcohol oxidase 1 (AOX1) promoter and the development of methanol-free systems are highlighted. Novel cultivation strategies such as mixed substrate feeding are discussed. Recent advances regarding substrate and product monitoring techniques are also summarized. Application of P. pastoris to the production of biodiesel and other value-added products via metabolic engineering are also reviewed. P. pastoris is becoming an indispensable platform through the use of these combined engineering strategies.
Collapse
|
31
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|