1
|
Frohnmeyer H, Kodra N, Elling L. Advanced enzymatic multigram-scale production of nucleotide sugars in a continuous fed-batch membrane reactor. J Biotechnol 2024; 395:1-11. [PMID: 39241966 DOI: 10.1016/j.jbiotec.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Enzymatic production of nucleotide sugars on a multigram scale presents a challenge, as only a few processes have been reported for large-scale nucleotide sugar production. They rely primarily on batch synthesis and employ exceptional amounts of enzymes. This study introduces a novel approach for the multigram-scale production of nucleotide sugars with a continuous fed-batch membrane reactor. We successfully synthesized five main nucleotide sugars: UDP-Gal, UDP-GalNAc, UDP-GlcA, GDP-Man, and CMP-Neu5Ac on a multigram scale. Efficient biocatalyst utilization results in high performance, including space-time yield (STY, g*L-1h-1), total turnover number (TTN, g product per g enzyme), and an efficient product formation rate (g/h) suitable for industrially relevant bioprocesses. The established continuous-fed batch reactor system produced up to 8.2 g CMP-Neu5Ac in three consecutive productions in less than 15 h with satisfying TTNs of 91 gProduct/gEnzyme. Continuous production of UDP-GlcA over 28 h resulted in a final product amount of 14.8 g and TTN of 493 gP/gE. This process enables the production of nucleotide sugars with stable product formation, requiring minimal technical equipment for multigram quantities of nucleotide sugars at the laboratory scale. Notably, the system exhibited robustness and flexibility, allowing its application to various enzymatic nucleotide sugar synthesis cascades.
Collapse
Affiliation(s)
- Hannes Frohnmeyer
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany
| | - Nikol Kodra
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany.
| |
Collapse
|
2
|
Frohnmeyer H, Verkade JMM, Spiertz M, Rentsch A, Hoffmann N, Sobota M, Schwede F, Tjeerdsma P, Elling L. Process Development for the Enzymatic Gram-Scale Production of the Unnatural Nucleotide Sugar UDP-6-Azido-GalNAc. CHEMSUSCHEM 2024; 17:e202400311. [PMID: 38655621 DOI: 10.1002/cssc.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Azido sugars hold great promise as substrates in numerous click-chemistry applications. However, the synthesis of activated azido sugars is limited by cost and complexity. Conventional chemical activation methods are intricate and time-consuming. In response, we have developed a process for the large-scale production of UDP-6-azido-GalNAc through enzymatic nucleotide sugar synthesis on a gram scale. Our optimization strategies encompassed refining the process parameters of an enzyme cascade featuring NahK from Bifidobacterium longum and AGX1 from Homo sapiens. Using the repetitive-batch-mode technology, we synthesized up to 2.1 g of UDP-6-azido-GalNAc, achieving yields up to 97 % in five consecutive batch cycles using a single enzyme batch. The synthesis process demonstrated to have total turnover numbers (TTNs) between 4.4-4.8 g of product per gram of enzyme (gP/gE) and STYs ranging from 1.7-2.4 g per liter per hour (g*L-1*h-1). By purification of a product solution pool containing 2.6 g (4.1 mmol) UDP-6-azido-GalNAc, 2.1 g (2,122.1 mg) UDP-6-azido-GalNAc (sodium salt) with a purity of 99.96 % (HPLC) were obtained. The overall recovery after purification was 81 % (3.32 mmol). Our work establishes a robust production platform for the gram-scale synthesis of unnatural nucleotide sugars, opening new avenues for applications in glycan engineering.
Collapse
Affiliation(s)
- Hannes Frohnmeyer
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Jorge M M Verkade
- Synaffix BV, Pivot Park, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Markus Spiertz
- SeSaM-Biotech GmbH, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Andreas Rentsch
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199, Bremen, Germany
| | - Niels Hoffmann
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Milan Sobota
- SeSaM-Biotech GmbH, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199, Bremen, Germany
| | - Peter Tjeerdsma
- Synaffix BV, Pivot Park, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Lothar Elling
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| |
Collapse
|
3
|
Li Y, Chen Q, Liu S, Deng L, Li S, Gao R. Efficient One-Pot Synthesis of Uridine Diphosphate Galactose Employing a Trienzyme System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3644-3653. [PMID: 38335068 DOI: 10.1021/acs.jafc.3c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The limited availability of high-cost nucleotide sugars is a significant constraint on the application of their downstream products (glycosides and prebiotics) in the food or pharmaceutical industry. To better solve the problem, this study presented a one-pot approach for the biosynthesis of UDP-Gal using a thermophilic multienzyme system consisting of GalK, UGPase, and PPase. Under optimal conditions, a 2 h reaction resulted in a UTP conversion rate of 87.4%. In a fed-batch reaction with Gal/ATP = 20 mM:10 mM, UDP-Gal accumulated to 33.76 mM with a space-time yield (STY) of 6.36 g/L·h-1 after the second feeding. In repetitive batch synthesis, the average yield of UDP-Gal over 8 cycles reached 10.80 g/L with a very low biocatalyst loading of 0.002 genzymes/gproduct. Interestingly, Galk (Tth0595) could synthesize Gal-1P using ADP as a donor of phosphate groups, which had never been reported before. This approach possessed the benefits of high synthesis efficiency, low cost, and superior reaction system stability, and it provided new insights into the rapid one-pot synthesis of UDP-Gal and high-value glycosidic compounds.
Collapse
Affiliation(s)
- Yajing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Qi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Siyao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Lin Deng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Shichao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
5
|
Enzyme cascades for the synthesis of nucleotide sugars: Updates to recent production strategies. Carbohydr Res 2023; 523:108727. [PMID: 36521208 DOI: 10.1016/j.carres.2022.108727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Nucleotide sugars play an elementary role in nature as building blocks of glycans, polysaccharides, and glycoconjugates used in the pharmaceutical, cosmetics, and food industries. As substrates of Leloir-glycosyltransferases, nucleotide sugars are essential for chemoenzymatic in vitro syntheses. However, high costs and the limited availability of nucleotide sugars prevent applications of biocatalytic cascades on a large industrial scale. Therefore, the focus is increasingly on nucleotide sugar synthesis strategies to make significant application processes feasible. The chemical synthesis of nucleotide sugars and their derivatives is well established, but the yields of these processes are usually low. Enzyme catalysis offers a suitable alternative here, and in the last 30 years, many synthesis routes for nucleotide sugars have been discovered and used for production. However, many of the published procedures shy away from assessing the practicability of their processes. With this review, we give an insight into the development of the (chemo)enzymatic nucleotide sugar synthesis pathways of the last years and present an assessment of critical process parameters such as total turnover number (TTN), space-time yield (STY), and enzyme loading.
Collapse
|
6
|
Frohnmeyer H, Rueben S, Elling L. Gram‐scale production of GDP‐β‐l‐fucose with multi‐enzyme cascades in a repetitive‐batch mode. ChemCatChem 2022. [DOI: 10.1002/cctc.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hannes Frohnmeyer
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering GERMANY
| | - Simon Rueben
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering GERMANY
| | - Lothar Elling
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering Pauwelsstr. 20 52074 Aachen GERMANY
| |
Collapse
|
7
|
Gottschalk J, Elling L. Current state on the enzymatic synthesis of glycosaminoglycans. Curr Opin Chem Biol 2020; 61:71-80. [PMID: 33271474 DOI: 10.1016/j.cbpa.2020.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycans (GAGs) are linear anionic polysaccharides, and most of them show a specific sulfation pattern. GAGs have been studied for decades, and still, new biological functions are discovered. Hyaluronic acid and heparin are sold for medical or cosmetic applications. With increased market and applications, the production of GAGs stays in the focus of research groups and the industry. Common industrial GAG production relies on the extraction of animal tissue. Contamination, high dispersity, and uncontrolled sulfation pattern are still obstacles to this process. Tailored production strategies for the chemoenzymatic synthesis have been developed to address these obstacles. In recent years, enzyme cascades, including uridine-5'-diphosphate sugar syntheses, were established to obtain defined polymer size and dispersity, as well as defined sulfation patterns. Nevertheless, the complex synthesis of GAGs is still a challenging research field.
Collapse
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
9
|
Minen RI, Martinez MP, Iglesias AA, Figueroa CM. Biochemical characterization of recombinant UDP-sugar pyrophosphorylase and galactinol synthase from Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:780-788. [PMID: 32866791 DOI: 10.1016/j.plaphy.2020.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Raffinose (Raf) protects plant cells during seed desiccation and under different abiotic stress conditions. The biosynthesis of Raf starts with the production of UDP-galactose by UDP-sugar pyrophosphorylase (USPPase) and continues with the synthesis of galactinol by galactinol synthase (GolSase). Galactinol is then used by Raf synthase to produce Raf. In this work, we report the biochemical characterization of USPPase (BdiUSPPase) and GolSase 1 (BdiGolSase1) from Brachypodium distachyon. The catalytic efficiency of BdiUSPPase was similar with galactose 1-phosphate and glucose 1-phosphate, but 5- to 17-fold lower with other sugar 1-phosphates. The catalytic efficiency of BdiGolSase1 with UDP-galactose was three orders of magnitude higher than with UDP-glucose. A structural model of BdiGolSase1 allowed us to determine the residues putatively involved in the binding of substrates. Among these, we found that Cys261 lies within the putative catalytic pocket. BdiGolSase1 was inactivated by oxidation with diamide and H2O2. The activity of the diamide-oxidized enzyme was recovered by reduction with dithiothreitol or E. coli thioredoxin, suggesting that BdiGolSase1 is redox-regulated.
Collapse
Affiliation(s)
- Romina I Minen
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - María P Martinez
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.
| |
Collapse
|
10
|
Fluorinated Galactoses Inhibit Galactose-1-Phosphate Uridyltransferase and Metabolically Induce Galactosemia-like Phenotypes in HEK-293 Cells. Cells 2020; 9:cells9030607. [PMID: 32138379 PMCID: PMC7140460 DOI: 10.3390/cells9030607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 01/24/2023] Open
Abstract
Genetic defects of human galactose-1-phosphate uridyltransferase (hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor galactose, we looked for ways to induce metabolically a galactosemia-like phenotype by hGALT inhibition in HEK293 cells. In kinetic studies, we provide evidence for 2-fluorinated galactose-1-phosphate (F-Gal-1-P) to competitively inhibit recombinant hGALT with a KI of 0.9 mM. Contrasting with hepatic cells, no alterations of N-glycoprofiles in MIG (metabolic induction of galactosemia)-HEK293 cells were revealed for an inducible secretory netrin-1 probe by MALDI-MS. Differential fluorescence-activated cell sorting demonstrated reduced surface expression of N-glycosylated CD109, EGFR, DPP4, and rhMUC1. Membrane raft proteomes exhibited dramatic alterations pointing to an affection of the unfolded protein response, and of targeted protein traffick. Most prominent, a negative regulation of oxidative stress was revealed presumably as a response to a NADPH pool depletion during reduction of Gal/F-Gal. Cellular perturbations induced by fluorinated galactoses in normal epithelial cells resemble proteomic changes revealed for galactosemic fibroblasts. In conclusion, the metabolic induction of galactosemia-like phenotypes in healthy epithelial/neuronal cells could support studies on the molecular pathomechanisms in classic galactosemia, in particular under conditions of low galactose stress and residual GALT activity.
Collapse
|
11
|
Long L, Azadi P, Chen R. Designer biocatalysts for direct incorporation of exogenous galactose into globotriose. Biotechnol Bioeng 2019; 117:285-290. [PMID: 31631323 DOI: 10.1002/bit.27198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 11/09/2022]
Abstract
Galactose is ubiquitous. The synthesis of galactose-containing oligosaccharides using Leloir galactosyltransferase requires uridine diphosphate (UDP)-galactose as the precursor. Of all UDP-galactose synthesis pathways developed for in vitro synthesis, the salvage pathway represents the simplest route. In this study, for the first time, we designed and constructed an Escherichia coli strain to use salvage pathway for UDP-galactose synthesis, demonstrating effective and direct incorporation of exogenous galactose into globotriose (Gb3). Successful establishment of salvage pathway enabled a complete delineation of carbon and energy source. Consequently, the designed biocatalyst was able to achieve high yield synthesis from galactose (0.95 moles of Gb3/moles galactose consumed) and a high product titer (2 g/L) in shaker flask within 24 hr. Elimination of limitation in acceptor sugar via homologous overexpression of LacY, the transporter for lactose, further improved the synthesis, raising Gb3 titer to 6 g/L in 24 hr and 7.5 g/L in 48 hr. The design principles successfully demonstrated in this study could be broadly applied for synthesis of other galactose-containing oligosaccharides. This study also illustrates a valid strategy to overcome limitation in the transport of acceptor sugar. As lactose is one of the most important basal structures, the significant improvement in synthesis through its enhanced transport could be emulated in numerous other lactose-based oligosaccharides.
Collapse
Affiliation(s)
- Lingfeng Long
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,School of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Rachel Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
12
|
Fischöder T, Cajic S, Grote V, Heinzler R, Reichl U, Franzreb M, Rapp E, Elling L. Enzymatic Cascades for Tailored 13C 6 and 15N Enriched Human Milk Oligosaccharides. Molecules 2019; 24:E3482. [PMID: 31557948 PMCID: PMC6803985 DOI: 10.3390/molecules24193482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Raphael Heinzler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
- glyXera GmbH, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
13
|
Toward Automated Enzymatic Glycan Synthesis in a Compartmented Flow Microreactor System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Zhou AP, Zong D, Gan PH, Zou XL, Fei X, Zhong YY, He CZ. Physiological Analysis and Transcriptome Profiling of Inverted Cuttings of Populus yunnanensis Reveal That Cell Wall Metabolism Plays a Crucial Role in Responding to Inversion. Genes (Basel) 2018; 9:E572. [PMID: 30477186 PMCID: PMC6316517 DOI: 10.3390/genes9120572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023] Open
Abstract
Inverted cuttings of Populus yunnanensis remain alive by rooting from the original morphological apex and sprouting from the base, but the lateral branches exhibit less vigorous growth than those of the upright plant. In this study, we examined the changes in hormone contents, oxidase activities, and transcriptome profiles between upright and inverted cuttings of P. yunnanensis. The results showed that the indole-3-acetic acid (IAA) and gibberellic acid (GA₃) contents were significantly lower in inverted cuttings than in upright cuttings only in the late growth period (September and October), while the abscisic acid (ABA) level was always similar between the two direction types. The biosynthesis of these hormones was surprisingly unrelated to the inversion of P. yunnanensis during the vegetative growth stage (July and August). Increased levels of peroxidases (PODs) encoded by 13 differentially expressed genes (DEGs) served as lignification promoters that protected plants against oxidative stress. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that most DEGs (107) were related to carbohydrate metabolism. Furthermore, altered activities of uridine diphosphate (UDP)-sugar pyrophosphorylase (USP, 15 DEGs) for nucleotide sugars, pectin methylesterase (PME, 7 DEGs) for pectin, and POD (13 DEGs) for lignin were important factors in the response of the trees to inversion, and these enzymes are all involved cell wall metabolism.
Collapse
Affiliation(s)
- An-Pei Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Pei-Hua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xin-Lian Zou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xuan Fei
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Yuan-Yuan Zhong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Cheng-Zhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
16
|
Fischöder T, Wahl C, Zerhusen C, Elling L. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale. Biotechnol J 2018; 14. [PMID: 30367549 DOI: 10.1002/biot.201800386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Indexed: 01/02/2023]
Abstract
The availability of nucleotide sugars is considered as bottleneck for Leloir-glycosyltransferases mediated glycan synthesis. A breakthrough for the synthesis of nucleotide sugars is the development of salvage pathway like enzyme cascades with high product yields from affordable monosaccharide substrates. In this regard, the authors aim at high enzyme productivities of these cascades by a repetitive batch approach. The authors report here for the first time that the exceptional high enzyme cascade stability facilitates the synthesis of Uridine-5'-diphospho-α-d-galactose (UDP-Gal), Uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), and Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in a multi-gram scale by repetitive batch mode. The authors obtained 12.8 g UDP-Gal through a high mass based total turnover number (TTNmass ) of 494 [gproduct /genzyme ] and space-time-yield (STY) of 10.7 [g/L*h]. Synthesis of UDP-GlcNAc in repetitive batch mode gave 11.9 g product with a TTNmass of 522 [gproduct /genzyme ] and a STY of 9.9 [g/L*h]. Furthermore, the scale-up to a 200 mL scale using a pressure operated concentrator was demonstrated for a UDP-GalNAc producing enzyme cascade resulting in an exceptional high STY of 19.4 [g/L*h] and 23.3 g product. In conclusion, the authors demonstrate that repetitive batch mode is a versatile strategy for the multi-gram scale synthesis of nucleotide sugars by stable enzyme cascades.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Claudia Wahl
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Christian Zerhusen
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| |
Collapse
|
17
|
Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update. Appl Microbiol Biotechnol 2018; 102:3017-3026. [PMID: 29476402 DOI: 10.1007/s00253-018-8839-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature's catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2' fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.
Collapse
|
18
|
Decker D, Kleczkowski LA. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases. FRONTIERS IN PLANT SCIENCE 2017; 8:1610. [PMID: 28970843 PMCID: PMC5609113 DOI: 10.3389/fpls.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/04/2017] [Indexed: 05/08/2023]
Abstract
UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.
Collapse
|