1
|
Skrzypczak N, Buczkowski A, Bohusz W, Nowak E, Tokarska K, Leśniewska A, Alzebari AM, Ruszkowski P, Gdaniec M, Bartl F, Przybylski P. Modifications of geldanamycin via CuAAC altering affinity to chaperone protein Hsp90 and cytotoxicity. Eur J Med Chem 2023; 256:115450. [PMID: 37210951 DOI: 10.1016/j.ejmech.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Functionalization of alkyne (1) and azide (2) derivatives of geldanamycin (GDM) via dipolar cycloaddition CuAAC yielded 35 new congeners (3-37) with C(17)-triazole arms bearing caps of different nature (basic vs. acidic, hydrophilic vs. hydrophobic). Confrontation of biological data (anticancer activity vs. toxicity in normal cells) with lipophilicity (clogP), dissociation constants (Kd) of complexes with Hsp90 and binding modes to Hsp90 revealed SAR in specific subgroups of GDM derivatives. The most potent GDM congeners 14-16, bearing C(17)-triazole-benzyl-halogen arms exhibited the most optimal clogP values of 2.7-3.1 at favourable binding to Hsp90 (KdHsp90 at μM level). The anticancer activity of 14-16 (IC50 = 0.23-0.41 μM) is higher than those of GDM (IC50 = 0.58-0.64 μM) and actinomycin D (ActD, IC50 = 0.62-0.71 μM) in SKBR-3, SKOV-3 and PC-3 cell lines, with a comparable cytotoxicity in healthy cells. The relationship between structure and attractive anticancer potency (IC50 = 0.53-0.74 μM) is also observed for congeners with C(17)-triazole-saccharide or C(17)-triazole-unsaturated arms. In the former, the absolute configuration at C(4) (ᴅ-glucose vs. ᴅ-galactose) whereas in the latter the length of the unsaturated arm influences the cytotoxic effects due to different binding strength (Kd, ΔE) and modes with Hsp90. Among all triazole congeners of GDM that are biologically attractive and exhibit lower toxicity in normal cells than GDM and ActD, the derivative 22, bearing the C(17)-triazole-cinnamyl arm, shows the lowest Kd (Hsp90), optimal clogP = 2.82, the best pro-apoptotic properties in SKBR-3 and SKOV-3 and the best selectivity indices (SI). For the most potent GDM derivatives with C(17)-triazole arm, the docking studies have suggested the importance of the intermolecular stabilization between the arm and the D57 or Y61 of Hsp90.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz, 90-236, Poland
| | - Wiktor Bohusz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ewelina Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Klaudia Tokarska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Attaa Mohammed Alzebari
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806, Poznań, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultӓt, Institut fȕr Biologie, Biophysikalische Chemie Humboldt-Universitӓt zu Berlin, Invalidenstraße 42, Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Vieira IMM, Santos BLP, Ruzene DS, Silva DP. An overview of current research and developments in biosurfactants. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Meng-Xi LI, Hui-Bin H, Jie-Yun L, Jing-Xiao CAO, Zhen-Wang Z. Antibacterial Performance of a Streptomyces spectabilis Strain Producing Metacycloprodigiosin. Curr Microbiol 2021; 78:2569-2576. [PMID: 33978787 DOI: 10.1007/s00284-021-02513-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
After separation of bacterial colonies on solid plates, purification, and screening through the agar cup-plate method, an antibiotic-resistant bacterial isolate was obtained, and named strain L20190601, the 16S rRNA gene sequence data of strain L20190601 to GenBank, NCBI have provided GenBank accession number MW931615. 16S rRNA gene sequencing revealed that this isolate was highly similar to a number of Streptomyces species. Among them, the homology with S. spectabilis was the highest, reaching 99.9, together with curved hyphal morphology and biochemical tests, allowed us to identify strain L20190601 as S. spectabilis. The red pigment produced by S. spectabilis strain L20190601 was structurally identified. An acid-base color reaction assay showed that when this pigment was dissolved in a solution at pH 3.0 and 9.0, the color of the solution was red and yellow, respectively. In addition, the analysis of absorption spectra revealed that at pH 8.0 and 3.0, the maximum absorption peaks were at 466 and 531 nm, respectively. These results are consistent with the spectral absorption characteristics of metacycloprodigiosin reported in the literature. Moreover, the retention time of purified pigments was identical to those of standard metacycloprodigiosin solutions. Mass spectrometry analysis revealed that the molecular weight of the red compound was 392.2 [M + H]+. Finally, metacycloprodigiosin was found to be effective against eight clinically common pathogens: Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus typhi, Candida albicans, and Trichophyton rubrum. In summary, metacycloprodigiosin exhibited strong antibacterial activity and a broad antibacterial spectrum, and thus is a promising compound for the development of a new type of antibacterial drug.
Collapse
Affiliation(s)
- L I Meng-Xi
- College of Clinical Medicine, HuBei University of Science and Technology, Xianning, 437000, Hubei, China.,College of Chemical and Biological Engineering, Hechi University, Hechi, 546300, China
| | - Huang Hui-Bin
- College of Chemical and Biological Engineering, Hechi University, Hechi, 546300, China
| | - Long Jie-Yun
- College of Chemical and Biological Engineering, Hechi University, Hechi, 546300, China
| | - C A O Jing-Xiao
- College of Chemical and Biological Engineering, Hechi University, Hechi, 546300, China
| | - Zhang Zhen-Wang
- Medicine Research Institute, HuBei University of Science and Technology, Xianning, 437000, China.
| |
Collapse
|
5
|
Gui M, Zhang MX, Wu WH, Sun P. Natural Occurrence, Bioactivity and Biosynthesis of Elaiophylin Analogues. Molecules 2019; 24:molecules24213840. [PMID: 31731388 PMCID: PMC6864862 DOI: 10.3390/molecules24213840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Elaiophylins belong to a special family of 16-membered macrodiolides with C2-symmetry. They have exhibited remarkable biological activities, such as antimicrobial, anthelmintic, anticancer, immunosuppressive, anti-inflammatory, antiviral, and α-glucosidase inhibitory activities. A member of elaiophylins, efomycin M, is as a specific small molecule inhibitor of selectin in preclinical trial for the treatment of psoriasis, ischemia-reperfusion, and allergy. The biosynthetic investigation of elaiophylins has uncovered a unique thioesterase, which is responsible for the formation of C2-symmetric diolide. We herein summarize the natural occurrence, bioactivity, and biosynthesis of elaiophylins covering the literatures from 1959 to 2019. Hopefully, this review will inspire further research interests of these compounds and encourage the discovery of new analogues by metabolic engineering or genome mining.
Collapse
Affiliation(s)
- Min Gui
- State Key Laboratory of Dairy Biotechnology, Technology Center and Dairy Research Institute of Bright Dairy & Food Co. Ltd., 1518 West Jiangchang Road, Shanghai 200436, China;
| | - Meng-xue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China;
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Wen-hui Wu
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Correspondence: (W.-h.W.); (P.S.); Tel.: +86-21-81871259 (P.S.)
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China;
- Correspondence: (W.-h.W.); (P.S.); Tel.: +86-21-81871259 (P.S.)
| |
Collapse
|
6
|
Martín JF, Ramos A, Liras P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics (Basel) 2019; 8:antibiotics8030087. [PMID: 31262015 PMCID: PMC6784220 DOI: 10.3390/antibiotics8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus, Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells. Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster, an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the inorganic phosphate concentration in the medium. This regulation is exerted through the two components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor Streptomyces avermitilis and other Streptomyces species. The available genetic information provides interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain.
| | - Angelina Ramos
- Instituto de Biotecnología (INBIOTEC). Av. Real 1, 24006 León, Spain
| | - Paloma Liras
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain
| |
Collapse
|
7
|
Buedenbender L, Robertson LP, Lucantoni L, Avery VM, Kurtböke Dİ, Carroll AR. HSQC-TOCSY Fingerprinting-Directed Discovery of Antiplasmodial Polyketides from the Marine Ascidian-Derived Streptomyces sp. (USC-16018). Mar Drugs 2018; 16:md16060189. [PMID: 29849004 PMCID: PMC6025042 DOI: 10.3390/md16060189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Chemical investigations on the fermentation extract obtained from an ascidian-derived Streptomyces sp. (USC-16018) yielded a new ansamycin polyketide, herbimycin G (1), as well as a known macrocyclic polyketide, elaiophylin (2), and four known diketopiperazines (3–6). The structures of the compounds were elucidated based on 1D/2D NMR and MS data. The absolute configuration of 1 was established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Antiplasmodial activities were tested for the natural products against chloroquine sensitive (3D7) and chloroquine resistant (Dd2) Plasmodium falciparum strains; the two polyketides (1–2) demonstrated an inhibition of >75% against both parasite strains and while 2 was highly cytotoxic, herbimycin G (1) showed no cytotoxicity and good predicted water solubility.
Collapse
Affiliation(s)
- Larissa Buedenbender
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Luke P Robertson
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Gold Coast Campus, QLD 4222, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Leonardo Lucantoni
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - D İpek Kurtböke
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia.
| | - Anthony R Carroll
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Gold Coast Campus, QLD 4222, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|