1
|
Markova YA, Petrushin IS, Belovezhets LA. Detection of gene clusters for biodegradation of alkanes and aromatic compounds in the Rhodococcus qingshengii VKM Ac-2784D genome. Vavilovskii Zhurnal Genet Selektsii 2023; 27:276-282. [PMID: 37323539 PMCID: PMC10266561 DOI: 10.18699/vjgb-23-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023] Open
Abstract
Bacterial species of the genus Rhodococcus are known to be efficient degraders of hydrocarbons in contaminated soil. They are also employed for bioremediation of polluted environments. These bacteria are widely met in soil, water and living organisms. Previously, we have isolated the Rhodococcus qingshengii strain VKM Ac-2784D from the rhizosphere of couch grass growing on oil-contaminated soil. This strain can effectively degrade oil and some model compounds (naphthalene, anthracene and phenanthrene). The results of phylogenetic analysis show that this strain belongs to the species R. qingshengii. To understand the catabolic properties of this strain, we have studied its gene clusters possessing such properties. The alkane destruction genes are represented by two clusters and five separate alkB genes. The destruction of aromatic compounds involves two stages, namely central and peripheral. The R. qingshengii VKM Ac-2784D genome contains four out of eight known central metabolic pathways for the destruction of aromatic compounds. The structure of the gene clusters is similar to that of the known strains R. jostii RHA1 and R. ruber Chol-4. The peripheral pathways include the genes encoding proteins for benzoic acid destruction. The presence of biphenyl 2,3-dioxygeneses as well as gene clusters of benzoate and 2-hydroxypentandienoate pathways suggests that R. qingshengii VKM Ac-2784D could degrade polychlorinated biphenyls. The biodegradation ability can be enhanced by biosurfactants, which are known to be synthesized by Rhodococcus. The R. qingshengii VKM Ac-2784D genome contains the otsA, otsB, treY, treZ genes. The bioinformatics data are supported by the previous biochemical experiments that allow a mixture of species with a wide variation of metabolic pathways to be obtained.
Collapse
Affiliation(s)
- Yu A Markova
- Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - I S Petrushin
- Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Irkutsk State University, Irkutsk, Russia
| | - L A Belovezhets
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
2
|
The Contribution of Actinobacteria to the Degradation of Chlorinated Compounds: Variations in the Activity of Key Degradation Enzymes. Microorganisms 2023; 11:microorganisms11010141. [PMID: 36677434 PMCID: PMC9861648 DOI: 10.3390/microorganisms11010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Bacteria make a huge contribution to the purification of the environment from toxic stable pollutants of anthropogenic and natural origin due to the diversity of their enzyme systems. For example, the ability to decompose 3-chlorobenzoate (3CBA) by the four representative genera of Actinobacteria, such as Rhodococcus, Gordonia, Microbacterium, and Arthrobacter, was studied. In most cases, the formation of 4-chlorocatechol as the only key intermediate during the decomposition of 3CBA was observed. However, Rhodococcus opacus strain 1CP was an exception, whose cells decomposed 3CBA via both 3-chloro- and 4-chlorocatechol. The enzyme 3-Chlorobenzoate 1,2-dioxygenase (3CBDO) induced during the growth of these bacteria in the presence of 3CBA differed significantly in substrate specificity from the benzoate dioxygenases induced upon growth in the presence of benzoate. The R. opacus 6a strain was found to contain genes encoding chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase, whose nucleotide sequence was 100% consistent with the sequences of the corresponding genes encoding the enzymes of the modified 4-chlorocatechol ortho-cleavage pathway of the strain R. opacus 1CP. However, the gene encoding chloromuconolactone dehalogenase (clcF) was not found in the representatives of the actinomycete genera, including Gordonia and Arthrobacter. A linear mega-plasmid carrying 3-chlorocatechol degradation genes remained stable after maintaining the R. opacus 1CP strain on an agar-rich medium for 25 years. In general, a similar plasmid was absent in actinobacteria of other genera, as well as in closely related species of R. opacus 6a.
Collapse
|
3
|
Khutsishvili SS, Perfileva AI, Nozhkina OA, Ganenko TV, Krutovsky KV. Novel Nanobiocomposites Based on Natural Polysaccharides as Universal Trophic Low-Dose Micronutrients. Int J Mol Sci 2021; 22:ijms222112006. [PMID: 34769436 PMCID: PMC8584298 DOI: 10.3390/ijms222112006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.
Collapse
Affiliation(s)
- Spartak S. Khutsishvili
- Department of Physical Organic Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia;
| | - Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.)
| | - Olga A. Nozhkina
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.)
| | - Tatjana V. Ganenko
- Laboratory of Functional Nanomaterials, A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Forestry Faculty, G.F. Morozov Voronezh State University of Forestry and Technologies, 8 Timiryazeva Str., 394036 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-393-3537
| |
Collapse
|
4
|
Trindade M, Sithole N, Kubicki S, Thies S, Burger A. Screening Strategies for Biosurfactant Discovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:17-52. [PMID: 34518910 DOI: 10.1007/10_2021_174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa.
| | - Nombuso Sithole
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anita Burger
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Combining OSMAC Approach and Untargeted Metabolomics for the Identification of New Glycolipids with Potent Antiviral Activity Produced by a Marine Rhodococcus. Int J Mol Sci 2021; 22:ijms22169055. [PMID: 34445761 PMCID: PMC8396431 DOI: 10.3390/ijms22169055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis. In this work, the whole genome of the marine isolate Rhodococcus sp. I2R was sequenced and analyzed by antiSMASH for the identification of biosynthetic gene clusters. The strain was cultivated in 22 different growth media and the generated extracts were subjected to metabolomic analysis and functional screening. Notably, only a single growth condition induced the production of unique compounds, which were partially purified and structurally characterized by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). This strategy led to identifying a bioactive fraction containing >30 new glycolipids holding unusual functional groups. The active fraction showed a potent antiviral effect against enveloped viruses, such as herpes simplex virus and human coronaviruses, and high antiproliferative activity in PC3 prostate cancer cell line. The identified compounds belong to the biosurfactants class, amphiphilic molecules, which play a crucial role in the biotech and biomedical industry.
Collapse
|
6
|
Hofmann M, Heine T, Malik L, Hofmann S, Joffroy K, Senges CHR, Bandow JE, Tischler D. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms 2021; 9:microorganisms9010111. [PMID: 33466508 PMCID: PMC7824959 DOI: 10.3390/microorganisms9010111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
To guarantee the supply of critical elements in the future, the development of new technologies is essential. Siderophores have high potential in the recovery and recycling of valuable metals due to their metal-chelating properties. Using the Chrome azurol S assay, 75 bacterial strains were screened to obtain a high-yield siderophore with the ability to complex valuable critical metal ions. The siderophore production of the four selected strains Nocardioides simplex 3E, Pseudomonas chlororaphis DSM 50083, Variovorax paradoxus EPS, and Rhodococcus erythropolis B7g was optimized, resulting in significantly increased siderophore production of N. simplex and R. erythropolis. Produced siderophore amounts and velocities were highly dependent on the carbon source. The genomes of N. simplex and P. chlororaphis were sequenced. Bioinformatical analyses revealed the occurrence of an achromobactin and a pyoverdine gene cluster in P. chlororaphis, a heterobactin and a requichelin gene cluster in R. erythropolis, and a desferrioxamine gene cluster in N. simplex. Finally, the results of the previous metal-binding screening were validated by a proof-of-concept development for the recovery of metal ions from aqueous solutions utilizing C18 columns functionalized with siderophores. We demonstrated the recovery of the critical metal ions V(III), Ga(III), and In(III) from mixed metal solutions with immobilized siderophores of N. simplex and R. erythropolis.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
- Correspondence: (M.H.); (D.T.)
| | - Thomas Heine
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Luise Malik
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Sarah Hofmann
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Kristin Joffroy
- Institute of Biosciences, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (T.H.); (L.M.); (S.H.); (K.J.)
| | - Christoph Helmut Rudi Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany; (C.H.R.S.); (J.E.B.)
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany; (C.H.R.S.); (J.E.B.)
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Correspondence: (M.H.); (D.T.)
| |
Collapse
|
7
|
Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567-8594. [PMID: 32918579 PMCID: PMC7502451 DOI: 10.1007/s00253-020-10861-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. KEY POINTS: • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance. Graphical abstract.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, Calgary University, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Hofmann M, Heine T, Schulz V, Hofmann S, Tischler D. Draft genomes and initial characteriaztion of siderophore producing pseudomonads isolated from mine dump and mine drainage. ACTA ACUST UNITED AC 2019; 25:e00403. [PMID: 31867228 PMCID: PMC6906695 DOI: 10.1016/j.btre.2019.e00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
High and stable siderophore production. Identification of siderophore biosynthesis gene clusters. Beech wood hydrolysate as alternative carbon source.
Siderophores are of high interest for biotechnological, pharmaceutical, agricultural and industrial applications. Although they are synthesized by various organisms, the yield is usually low which hindrances their suitability for broad range uses. Thus, it is necessary to identify novel producers and to increase the understanding of the biosynthesis pathways. Herein we report the isolation of two novel Pseudomonas strains and the identification of the gene clusters for the biosynthesis of pseudomonine as well as pyochelin and pyoverdine.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Thomas Heine
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Vivian Schulz
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Sarah Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany.,Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
9
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Tischler D, van Berkel WJH, Fraaije MW. Editorial: Actinobacteria, a Source of Biocatalytic Tools. Front Microbiol 2019; 10:800. [PMID: 31040839 PMCID: PMC6477052 DOI: 10.3389/fmicb.2019.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dirk Tischler
- Microbial Biotechnology, Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, Netherlands
| |
Collapse
|