1
|
Li Y, Wang C, Huang R, Zhang S, Yin J, Zhang J, Wu J. Production of single-cell protein from vinegar residue by Rhodotorula glutinis and techno-economic analysis. BIORESOURCE TECHNOLOGY 2025; 422:132252. [PMID: 39965715 DOI: 10.1016/j.biortech.2025.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/26/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Single-cell protein (SCP) is attracting attention due to its high value. This study aimed to produce SCP by Rhodotorula glutinis from vinegar residue (VR). The fermentation conditions were optimized by using glucose and then VR was utilized to produce SCP. The titer of SCP was 32.14 g/L, and the protein content and lipid content were 26.67 % and 7.94 %. The yield of SCP was 0.32 g/g VR. Economic analysis of producing SCP from VR showed that processing 100,000 tons of VR annually can produce 32,140 tons of SCP at a production cost of 1,308.38 USD/ton. Sensitivity analysis revealed that the costs of cellulase and yeast were the main factors influencing the production cost of SCP, accounting for 33.6 % and 51.1 % of the raw material cost. Substituting urea for yeast powder could reduce the production cost of SCP to 761.65 USD/ton. This study provided important insights into the industrial production of SCP from VR.
Collapse
Affiliation(s)
- Yilian Li
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chen Wang
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruichao Huang
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuai Zhang
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinbao Yin
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianan Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jing Wu
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
2
|
Kumar KK, Deeba F, Pandey AK, Islam A, Paul D, Gaur NA. Sustainable lipid production by oleaginous yeasts: Current outlook and challenges. BIORESOURCE TECHNOLOGY 2025; 421:132205. [PMID: 39923863 DOI: 10.1016/j.biortech.2025.132205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Yeast lipid has gained prominence as a sustainable energy source and so various oleaginous yeasts are being investigated to create efficient lipogenic platforms. This review aims to assess the various biotechnological strategies for enhanced production of yeast lipids via agro-waste processing and media engineering including multiomic analyses, genetic engineering, random mutagenesis, and laboratory adaptive evolution. The review also emphasizes the role of cutting-edge omics technologies in pinpointing differentially expressed genes and enriched networks crucial for designing advanced metabolic engineering strategies for prominent oleaginous yeast species. The review addresses the challenges and future prospects of a viable lipid production industry that is possible through advancements in current technologies, strain improvement, media optimization and techno-economic and life cycle analyses at lab, pilot and industrial scales. This review comprehensively provides deep insights for enhancement of yeast lipid biosynthesis to reach industrially benchmarked standard of a lipid production platform.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Farha Deeba
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Ajay Kumar Pandey
- School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur-208024, Uttar Pradesh, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Debarati Paul
- Amity Institute of Biotechnology, AUUP, Noida, sec-125, 201313, India.
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India.
| |
Collapse
|
3
|
Elfeky N, Rizk A, Gharieb MM. Exploring the lipids, carotenoids, and vitamins content of Rhodotorula glutinis with selenium supplementation under lipid accumulating and growth proliferation conditions. BMC Microbiol 2024; 24:451. [PMID: 39506648 PMCID: PMC11539581 DOI: 10.1186/s12866-024-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Rhodotorula glutinis, a specific type of yeast, has been recognised as a superior resource for generating selenium-enriched biomass that possesses exceptional nutritional and functional attributes. The purpose of this investigation was to assess the effect of sodium selenite at different concentrations on lipid and carotenoid synthesis, as well as the growth of R. glutinis. METHODS The lipid's fatty acid composition was determined using gas chromatography (GC). The vitamins were detected by high-performance liquid chromatography (HPLC). Transmission electron microscopy was used to detect the structural modification of yeast cells caused by the addition of sodium selenite to the growth medium, as well as the accumulation of elemental selenium in the yeast cells. RESULTS The yeast cells demonstrated the ability to endure high concentrations of sodium selenite under lipid accumulation (LAM) and growth-promoting (YPD) conditions. 25.0 mM and 30.0 mM, respectively, were published as the IC50 values for the LAM and YPD conditions. In both growth media, 1 mM sodium selenite boosted lipid synthesis. Lipid accumulation increased 26% in LAM to 11.4 g/l and 18% in YPD to 4.3 g/l. Adding 1 mM and 3 mM sodium selenite to YPD medium increased total and cellular carotenoids by 22.8% (646.7 µg/L and 32.12 µg/g) and 48.7% (783.3 µg/L and 36.43 µg/g), respectively. Palmitic acid was identified as the most abundant fatty acid in all treatments, followed by oleic acid and linoleic acid. The concentrations of water soluble vitamins (WSV) and fat soluble vitamins (FSV) were generally significantly increased after supplementation with 1.0 mM sodium selenite. TEM examination revealed a significant reduction in lipid bodies accumulation in the yeast cells when sodium selenite was added to lipid-promoting environments. This decline is accompanied by an augmentation in the formation of peroxisomes, indicating that selenium has a direct impact on the degradation of fatty acids. In addition, autophagy appears to be the primary mechanism by which selenium ions are detoxified. Additionally, intracellular organelles disintegrate, cytoplasmic vacuolization occurs, and the cell wall and plasma membrane rupture, resulting in the discharge of cytoplasmic contents, when a high concentration of sodium selenite (20.0 mM) is added. Also, the presence of numerous electron-dense granules suggests an intracellular selenium-detoxification pathway. CONCLUSION This study proposes the use of YPD with 1 mM sodium selenite to cultivate selenium-enriched biomass from R. glutinis. This approach leads to heightened lipid levels with higher accumulation of oleic, linoleic and linolenic acids, carotenoids, and vitamins. Hence, this biomass has the potential to be a valuable additive for animal, fish, and poultry feed. Furthermore, explain certain potential factors that indicate the impact of selenium in reducing the accumulation of lipid droplets in R. glutinis during lipogenesis, as detected through TEM examination.
Collapse
Affiliation(s)
- Nora Elfeky
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt.
| | - Aya Rizk
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Mohamed M Gharieb
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| |
Collapse
|
4
|
Srivastava R, Srivastava N, Kaur S, Kant K, Gaurav K. The potential of magnesium oxide nanoparticles (MgONPs) in the transesterification of lipids produced by Rhodotorula minuta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56024-56041. [PMID: 39249616 DOI: 10.1007/s11356-024-34935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The urgent need to address energy security risks and global warming has led to exploration of renewable energy sources. One such avenue is biodiesel specifically focusing on the potential of Rhodotorula minuta, a type of yeast known for producing lipids that can be used as a sustainable alternative for production of biodiesel. In the current study, this promising yeast was evaluated for its potential to produce lipids. The morphological characterization was carried out by scanning electron microscope (SEM), and intracellular detail was studied by transmission electron microscope (TEM). Changes in content and cellular biomass were monitored at time intervals with the highest biomass yield of 12.4 g/l and lipid content of 6.2 g/l achieved after 72 h. In the present work, magnesium oxide nanoparticles (MgO NPs) were synthesized and extensively characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), SEM, TEM, and X-ray diffraction (XRD). By employing response surface methodology (RSM) with Box-Behnken design (BBD), optimal process conditions for transesterification could be determined. The best result achieved was a yield of 88.6% when the conditions were optimized, using methanol to oil ratio of 18:1 and 8% (w/w) amount of catalyst maintaining a reaction temperature of 55 °C and allowing the reaction to proceed for 120 min.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India
| | - Niti Srivastava
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, 122413, India
| | - SonamPreet Kaur
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, 122413, India
| | - Kamal Kant
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, 122413, India
| | - Kumar Gaurav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, 122413, India.
| |
Collapse
|
5
|
Rosas-Paz M, Zamora-Bello A, Torres-Ramírez N, Villarreal-Huerta D, Romero-Aguilar L, Pardo JP, El Hafidi M, Sandoval G, Segal-Kischinevzky C, González J. Nitrogen limitation-induced adaptive response and lipogenesis in the Antarctic yeast Rhodotorula mucilaginosa M94C9. Front Microbiol 2024; 15:1416155. [PMID: 39161597 PMCID: PMC11330776 DOI: 10.3389/fmicb.2024.1416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The extremotolerant red yeast Rhodotorula mucilaginosa displays resilience to diverse environmental stressors, including cold, osmolarity, salinity, and oligotrophic conditions. Particularly, this yeast exhibits a remarkable ability to accumulate lipids and carotenoids in response to stress conditions. However, research into lipid biosynthesis has been hampered by limited genetic tools and a scarcity of studies on adaptive responses to nutrient stressors stimulating lipogenesis. This study investigated the impact of nitrogen stress on the adaptive response in Antarctic yeast R. mucilaginosa M94C9. Varied nitrogen availability reveals a nitrogen-dependent modulation of biomass and lipid droplet production, accompanied by significant ultrastructural changes to withstand nitrogen starvation. In silico analysis identifies open reading frames of genes encoding key lipogenesis enzymes, including acetyl-CoA carboxylase (Acc1), fatty acid synthases 1 and 2 (Fas1/Fas2), and acyl-CoA diacylglycerol O-acyltransferase 1 (Dga1). Further investigation into the expression profiles of RmACC1, RmFAS1, RmFAS2, and RmDGA1 genes under nitrogen stress revealed that the prolonged up-regulation of the RmDGA1 gene is a molecular indicator of lipogenesis. Subsequent fatty acid profiling unveiled an accumulation of oleic and palmitic acids under nitrogen limitation during the stationary phase. This investigation enhances our understanding of nitrogen stress adaptation and lipid biosynthesis, offering valuable insights into R. mucilaginosa M94C9 for potential industrial applications in the future.
Collapse
Affiliation(s)
- Miguel Rosas-Paz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Alberto Zamora-Bello
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Bioquímicas, Unidad de Posgrado, Ciudad Universitaria, Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Villarreal-Huerta
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados, Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Guadalajara, Mexico
| | - Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Sereti F, Alexandri M, Papadaki A, Papapostolou H, Kopsahelis N. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties. J Biotechnol 2024; 386:52-63. [PMID: 38548021 DOI: 10.1016/j.jbiotec.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
The high market potential imposed by natural carotenoids has turned the scientific interest in search for new strains, capable of synthesizing a wide spectrum of these pigments. In this study, Rhodosporidium paludigenum NCYC 2663 and 2664 were investigated for carotenoids production and lipid accumulation utilizing different carbon sources (glucose, fructose, sucrose, mixture of glucose: galactose). Strain R. paludigenum 2663 produced the highest total carotenoids titer (2.21 mg/L) when cultivated on sucrose, together with 4 g/L lipids (30% w/w content) and 7 g/L exopolysaccharides. In the case of R. paludigenum 2664, glucose favored the production of 2.93 mg/L total carotenoids and 1.57 g/L lipids (31.8% w/w content). Analysis of the chemical profile during fermentation revealed that β-carotene was the prominent carotenoid. Strain 2663 co-produced γ-carotene, torulene and torularhodin in lower amounts, whereas 2664 synthesized almost exclusively β-carotene. The produced lipids from strain 2663 were rich in oleic acid, while the presence of linoleic acid was also detected in the lipoic fraction from strain 2664. The obtained carotenoid extracts exhibited antioxidant (IC50 0.14 mg/mL) and high antimicrobial activity, against common bacterial and fungal pathogenic strains. The results of this study are promising for the utilization of biotechnologically produced carotenoids in food applications.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece.
| |
Collapse
|
7
|
Yang Q, Ran Y, Guo S, Li F, Xiang D, Cao Y, Qiao D, Xu H, Cao Y. Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Int J Biol Macromol 2023; 253:127008. [PMID: 37844810 DOI: 10.1016/j.ijbiomac.2023.127008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fazhi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dongyou Xiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
8
|
Timotheo CA, Fabricio MF, Ayub MAZ, Valente P. Evaluation of cell disruption methods in the oleaginous yeasts Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A for microbial oil extraction. AN ACAD BRAS CIENC 2023; 95:e20191256. [PMID: 38055604 DOI: 10.1590/0001-3765202320191256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/08/2023] Open
Abstract
The interest for oleaginous yeasts has grown significantly in the last three decades, mainly due to their potential use as a renewable source of microbial oil or single cell oils (SCOs). However, the methodologies for cell disruption to obtain the microbial oil are considered critical and determinant for a large-scale production. Therefore, this work aimed to evaluate different methods for cell wall disruption for the lipid extraction of Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A. The two strains were separately cultivated in 5 L batch fermenters for 120 hours, at 26 ºC and 400 rpm. Three different lipid extraction processes using Turrax homogenizer, Ultrasonicator and Braun homogenizer combined with bead milling were applied in wet, oven-dried, and freeze-dried biomass of both strains. The treatment with the highest percentage of disrupted cells and highest oil yield was the ultrasonication of oven-dried biomass (37-40% lipid content for both strains). The fact that our results point to one best extraction strategy for two different yeast strains, belonging to different species, is a great news towards the development of a unified technique that could be applied at industrial plants.
Collapse
Affiliation(s)
- Carina A Timotheo
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Micologia, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Mariana F Fabricio
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia, Laboratório de Biotecnologia e Engenharia Bioquímica, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Marco Antônio Z Ayub
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia, Laboratório de Biotecnologia e Engenharia Bioquímica, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Patricia Valente
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Micologia, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Díaz-Navarrete P, Marileo L, Madrid H, Belezaca-Pinargote C, Dantagnan P. Lipid Production from Native Oleaginous Yeasts Isolated from Southern Chilean Soil Cultivated in Industrial Vinasse Residues. Microorganisms 2023; 11:2516. [PMID: 37894174 PMCID: PMC10609240 DOI: 10.3390/microorganisms11102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In this research, six strains of oleaginous yeasts native to southern Chile were analyzed for their biotechnological potential in lipid accumulation. For this purpose, the six strains, named PP1, PP4, PR4, PR10, PR27 and PR29, were cultivated in a nitrogen-deficient synthetic mineral medium (SMM). Then, two strains were selected and cultivated in an industrial residual "vinasse", under different conditions of temperature (°C), pH and carbon/nitrogen (C/N) ratio. Finally, under optimized conditions, the growth kinetics and determination of the lipid profile were evaluated. The results of growth in the SMM indicate that yeasts PP1 and PR27 presented biomass concentrations and lipid accumulation percentages of 2.73 and 4.3 g/L of biomass and 36.6% and 45.3% lipids, respectively. Subsequently, for both strains, when cultured in the residual vinasse under optimized environmental conditions, biomass concentrations of 14.8 ± 1.51 g/L (C/N 80) and 15.83 ± 0.57 g/L (C/N 50) and lipid accumulations of 28% and 30% were obtained for PP1 and PR27, respectively. The composition of the triglycerides (TGs), obtained in the culture of the yeasts in a 2 L reactor, presented 64.25% of saturated fatty acids for strain PR27 and 47.18% for strain PP1. The saturated fatty acid compositions in both strains are mainly constituted of fatty acids, myristic C 14:0, heptadecanoic C 17:0, palmitic C 16:0 and stearic C 18:0, and the monounsaturated fatty acids constituted of oleic acid C 18:1 (cis 9) (28-46%), and in smaller amounts, palmitoleic acid and heptadecenoic acid. This work demonstrates that the native yeast strains PP1 and PR27 are promising strains for the production of microbial oils similar to conventional vegetable oils. The potential applications in the energy or food industries, such as aquaculture, are conceivable.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Iquique 1101783, Chile;
| | - Carlos Belezaca-Pinargote
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Quevedo 120501, Ecuador;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
10
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Keskin A, Ünlü AE, Takaç S. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12625-x. [PMID: 37329489 DOI: 10.1007/s00253-023-12625-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Olive mill wastewater (OMW) is a zero-cost substrate for numerous value-added compounds. Although several studies on the production of lipids and carotenoids by Rhodotorula glutinis in OMW exist, none of them has specifically focused on the conditions for a target lipid or carotenoid. This study presents cultivation conditions that selectively stimulate the cell biomass, individual carotenoids and lipids. It was found that supplemental carbon and nitrogen sources as well as illumination affected cell biomass the most. High temperature, low initial pH, illumination, lack of urea and presence of glycerol stimulated the lipid synthesis. The highest total lipid content obtained in undiluted OMW supplemented with urea was 11.08 ± 0.17% (w/w) whilst it was 41.40 ± 0.21% (w/w) when supplemented with glycerol. Moreover, the main fatty acid produced by R. glutinis in all media was oleic acid, whose fraction reached 63.94 ± 0.58%. Total carotenoid yield was significantly increased with low initial pH, high temperature, illumination, certain amounts of urea, glycerol and cultivation time. Up to 192.09 ± 0.16 μg/g cell carotenoid yield was achieved. Torularhodin could be selectively produced at high pH, low temperature and with urea and glycerol supplementation. To selectively induce torulene synthesis, cultivation conditions should have low pH, high temperature and illumination. In addition, low pH, high temperature and urea supplementation served high production of β-carotene. Up to 85.40 ± 0.76, 80.67 ± 1.40 and 39.45 ± 0.69% of torulene, torularhodin and β-carotene, respectively, were obtained under selected conditions. KEY POINTS: • Cultivation conditions selectively induced target carotenoids and lipids • 41.40 ± 0.21% (w/w) lipid content and 192.09 ± 0.16 μg/g cell carotenoid yield were achieved • Markedly high selectivity values for torularhodin and torulene were achieved.
Collapse
Affiliation(s)
- Abdulkadir Keskin
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Ankara, 06100, Tandoğan, Turkey
| | - Ayşe Ezgi Ünlü
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Ankara, 06100, Tandoğan, Turkey
| | - Serpil Takaç
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Ankara, 06100, Tandoğan, Turkey.
| |
Collapse
|
12
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
13
|
Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023; 11:microorganisms11020510. [PMID: 36838475 PMCID: PMC9959473 DOI: 10.3390/microorganisms11020510] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Lipases are versatile biocatalysts and are used in different bioconversion reactions. Microbial lipases are currently attracting a great amount of attention due to the rapid advancement of enzyme technology and its practical application in a variety of industrial processes. The current review provides updated information on the different sources of microbial lipases, such as fungi, bacteria, and yeast, their classical and modern purification techniques, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, aqueous two-phase system (ATPS), aqueous two-phase flotation (ATPF), and the use of microbial lipases in different industries, e.g., the food, textile, leather, cosmetics, paper, and detergent industries. Furthermore, the article provides a critical analysis of lipase-producing microbes, distinguished from the previously published reviews, and illustrates the use of lipases in biosensors, biodiesel production, and tea processing, and their role in bioremediation and racemization.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (M.H.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (M.H.); (I.-J.L.)
| |
Collapse
|
14
|
Crabtree Effect on Rhodosporidium toruloides Using Wood Hydrolysate as a Culture Media. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interest in microorganisms to produce microbial lipids at large-scale processes has increased during the last decades. Rhodosporidium toruloides-1588 could be an efficient option for its ability to simultaneously utilize five- and six-carbon sugars. Nevertheless, one of the most important characteristics that any strain needs to be considered or used at an industrial scale is its capacity to grow in substrates with high sugar concentrations. In this study, the effect of high sugar concentrations and the effect of ammonium sulfate were tested on R. toruloides-1588 and its capacity to grow and accumulate lipids using undetoxified wood hydrolysates. Batch fermentations showed a catabolic repression effect on R. toruloides-1588 growth at sugar concentrations of 120 g/L. The maximum lipid accumulation was 8.2 g/L with palmitic, stearic, oleic, linoleic, and lignoceric acids as predominant fatty acids in the produced lipids. Furthermore, R. toruloides-1588 was able to utilize up to 80% of the total xylose content. Additionally, this study is the first to report the effect of using high xylose concentrations on the growth, sugar utilization, and lipid accumulation by R. toruloides-1588.
Collapse
|
15
|
Angelicola MV, Fernández PM, Aybar MJ, Van Nieuwenhove CP, Figueroa LI, Viñarta SC. Bioconversion of commercial and crude glycerol to single-cell oils by the Antarctic yeast Rhodotorula glutinis R4 as a biodiesel feedstock. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Mussagy CU, Ribeiro HF, Santos-Ebinuma VC, Schuur B, Pereira JFB. Rhodotorula sp.-based biorefinery: a source of valuable biomolecules. Appl Microbiol Biotechnol 2022; 106:7431-7447. [PMID: 36255447 DOI: 10.1007/s00253-022-12221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
The development of an effective, realistic, and sustainable microbial biorefinery depends on several factors, including as one of the key aspects an adequate selection of microbial strain. The oleaginous red yeast Rhodotorula sp. has been studied as one powerful source for a plethora of high added-value biomolecules, such as carotenoids, lipids, and enzymes. Although known for over a century, the use of Rhodotorula sp. as resource for valuable products has not yet commercialized. Current interests for Rhodotorula sp. yeast have sparked from its high nutritional versatility and ability to convert agro-food residues into added-value biomolecules, two attractive characteristics for designing new biorefineries. In addition, as for other yeast-based bioprocesses, the overall process sustainability can be maximized by a proper integration with subsequent downstream processing stages, for example, by using eco-friendly solvents for the recovery of intracellular products from yeast biomass. This review intends to reflect on the current state of the art of microbial bioprocesses using Rhodotorula species. Therefore, we will provide an analysis of bioproduction performance with some insights regarding downstream separation steps for the extraction of high added-value biomolecules (specifically using efficient and sustainable platforms), providing information regarding the potential applications of biomolecules produced by Rhodotorula sp, as well as detailing the strengths and limitations of yeast-based biorefinery approaches. Novel genetic engineering technologies are further discussed, indicating some directions on their possible use for maximizing the potential of Rhodotorula sp. as cell factories. KEY POINTS: • Rhodotorula sp. are valuable source of high value-added compounds. • Potential of employing Rhodotorula sp. in a multiple product biorefinery. • Future perspectives in the biorefining of Rhodotorula sp. were discussed.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Helena F Ribeiro
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Boelo Schuur
- Sustainable Process Technology Group, Process and Catalysis Engineering Cluster, Faculty of Science and Technology, University of Twente, PO Box 217, 7500, Enschede, AE, Netherlands
| | - Jorge F B Pereira
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| |
Collapse
|
17
|
An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis. FERMENTATION 2022. [DOI: 10.3390/fermentation8100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sugarcane bagasse is a potential raw material for microbial lipid production by oleaginous yeasts. Due to the limited sugar concentrations in bagasse hydrolysate, increasing carbon the concentration is necessary in order to improve lipid production. We aimed to increase carbon concentration by incorporating glycerol as a co-substrate into unconcentrated bagasse hydrolysate in the cultivation of Rhodotorula glutinis TISTR 5159. Cultivation in hydrolysate without nitrogen supplementation (C/N = 42) resulted in 60.31% lipid accumulation with 11.45 ± 0.75 g/L biomass. Nitrogen source supplementation increased biomass to 26.29 ± 2.05 g/L without losing lipid accumulation at a C/N of 25. Yeast extract improved lipid production in the hydrolysate due to high growth without altering the lipid content of the cells. Mixing glycerol up to 10% v/v into the unconcentrated hydrolysate improved biomass and lipid production. A further increase in glycerol concentrations drastically decreased growth and lipid accumulation by the yeast. By maintaining C/N at 27 using yeast extract as the sole nitrogen source, hydrolysate mixed with 10% v/v glycerol resulted in the highest lipid yield, at 19.57 ± 0.53 g/L with 50.55% lipid content, which was a 2.8-fold increase compared to using the hydrolysate alone. In addition, yeast extracts were superior for promoting growth and lipid production compared to inorganic nitrogen sources.
Collapse
|
18
|
Optimization of agro-industrial coproducts (molasses and cassava wastewater) for the simultaneous production of lipids and carotenoids by Rhodotorula mucilaginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Bo S, Ni X, Guo J, Liu Z, Wang X, Sheng Y, Zhang G, Yang J. Carotenoid Biosynthesis: Genome-Wide Profiling, Pathway Identification in Rhodotorula glutinis X-20, and High-Level Production. Front Nutr 2022; 9:918240. [PMID: 35782944 PMCID: PMC9247606 DOI: 10.3389/fnut.2022.918240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Rhodotorula glutinis, as a member of the family Sporidiobolaceae, is of great value in the field of biotechnology. However, the evolutionary relationship of R. glutinis X-20 with Rhodosporidiobolus, Sporobolomyces, and Rhodotorula are not well understood, and its metabolic pathways such as carotenoid biosynthesis are not well resolved. Here, genome sequencing and comparative genome techniques were employed to improve the understanding of R. glutinis X-20. Phytoene desaturase (crtI) and 15-cis-phytoene synthase/lycopene beta-cyclase (crtYB), key enzymes in carotenoid pathway from R. glutinis X-20 were more efficiently expressed in S. cerevisiae INVSc1 than in S. cerevisiae CEN.PK2-1C. High yielding engineered strains were obtained by using synthetic biology technology constructing carotenoid pathway in S. cerevisiae and optimizing the precursor supply after fed-batch fermentation with palmitic acid supplementation. Genome sequencing analysis and metabolite identification has enhanced the understanding of evolutionary relationships and metabolic pathways in R. glutinis X-20, while heterologous construction of carotenoid pathway has facilitated its industrial application.
Collapse
|
20
|
Agroindustrial byproduct-based media in the production of microbial oil rich in oleic acid and carotenoids. Bioprocess Biosyst Eng 2022; 45:721-732. [DOI: 10.1007/s00449-022-02692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
|
21
|
Wu C, Hong B, Jiang S, Luo X, Lin H, Zhou Y, Wu J, Yue X, Shi H, Wu R. Recent advances on essential fatty acid biosynthesis and production: Clarifying the roles of Δ12/Δ15 fatty acid desaturase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Al-Tohamy R, Sun J, Khalil MA, Kornaros M, Ali SS. Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:229. [PMID: 34863263 PMCID: PMC8645103 DOI: 10.1186/s13068-021-02080-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. RESULTS Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. CONCLUSION The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
| | - Maha A Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 1 Karatheodori Str, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
23
|
Saini R, Osorio-Gonzalez CS, Hegde K, Brar SK, Vezina P. Effect of creating a fed-batch like condition using carbon to nitrogen ratios on lipid accumulation in Rhodosporidium toruloides-1588. BIORESOURCE TECHNOLOGY 2021; 337:125354. [PMID: 34098502 DOI: 10.1016/j.biortech.2021.125354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Utilizing the undetoxified wood hydrolysate to accumulate maximum lipids in Rhodosporidium toruloides under optimum conditions has been regarded as a renewable and cost-effective strategy. The current investigation aims to identify the best carbon to nitrogen (C/N 20, 70, and 120) ratio for maximum lipid accumulation in R. toruloides-1588 using wood hydrolysate. Additionally, a fed-batch-like condition was employed, where C/N ratios were maintained during the fermentation that inherently decreases in batch fermentation. The C/N ratio 70 has been identified as the best condition with 3 times higher lipid accumulation (43% w/w) than the control. Additionally, >95% and 70% of glucose and xylose consumption were observed, respectively. Moreover, 50% increase in polyunsaturated fatty acids compared to the control media reinforced the potential of R. toruloides-1588 to thrive on undetoxified hydrolysate, high lipid productivity (3.8 mg/g of dry weight per hour) and produce high value monosaturated and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos Saul Osorio-Gonzalez
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Pierre Vezina
- Director of Energy and the Environment, Council of the Quebec Forestry Industry, 1175 Avenue Lavigerie Suite 200, Quebec, QC G1V 4P1, Canada
| |
Collapse
|
24
|
Sanya DRA, Onésime D, Passoth V, Maiti MK, Chattopadhyay A, Khot MB. Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production. Appl Microbiol Biotechnol 2021; 105:4879-4897. [PMID: 34110474 DOI: 10.1007/s00253-021-11354-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/31/2022]
Abstract
Strains of the yeast genus Blastobotrys (subphylum Saccharomycotina) represent a valuable biotechnological resource for basic biochemistry research, single-cell protein, and heterologous protein production processes. Species of this genus are dimorphic, non-pathogenic, thermotolerant, and can assimilate a variety of hydrophilic and hydrophobic substrates. These can constitute a single-cell oil platform in an emerging bio-based economy as oleaginous traits have been discovered recently. However, the regulatory network of lipogenesis in these yeasts is poorly understood. To keep pace with the growing market demands for lipid-derived products, it is critical to understand the lipid biosynthesis in these unconventional yeasts to pinpoint what governs the preferential channelling of carbon flux into lipids instead of the competing pathways. This review summarizes information relevant to the regulation of lipid metabolic pathways and prospects of metabolic engineering in Blastobotrys yeasts for their application in food, feed, and beyond, particularly for fatty acid-based fuels and oleochemicals. KEY POINTS: • The production of biolipids by heterotrophic yeasts is reviewed. • Summary of information concerning lipid metabolism regulation is highlighted. • Special focus on the importance of diacylglycerol acyltransferases encoding genes in improving lipid production is made.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mahesh B Khot
- Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Barrio Universitario s/n, Concepcion, Chile
| |
Collapse
|
25
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
26
|
Martins LC, Palma M, Angelov A, Nevoigt E, Liebl W, Sá-Correia I. Complete Utilization of the Major Carbon Sources Present in Sugar Beet Pulp Hydrolysates by the Oleaginous Red Yeasts Rhodotorula toruloides and R. mucilaginosa. J Fungi (Basel) 2021; 7:jof7030215. [PMID: 33802726 PMCID: PMC8002571 DOI: 10.3390/jof7030215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Agro-industrial residues are low-cost carbon sources (C-sources) for microbial growth and production of value-added bioproducts. Among the agro-industrial residues available, those rich in pectin are generated in high amounts worldwide from the sugar industry or the industrial processing of fruits and vegetables. Sugar beet pulp (SBP) hydrolysates contain predominantly the neutral sugars d-glucose, l-arabinose and d-galactose, and the acidic sugar d-galacturonic acid. Acetic acid is also present at significant concentrations since the d-galacturonic acid residues are acetylated. In this study, we have examined and optimized the performance of a Rhodotorula mucilaginosa strain, isolated from SBP and identified at the molecular level during this work. This study was extended to another oleaginous red yeast species, R. toruloides, envisaging the full utilization of the C-sources from SBP hydrolysate (at pH 5.0). The dual role of acetic acid as a carbon and energy source and as a growth and metabolism inhibitor was examined. Acetic acid prevented the catabolism of d-galacturonic acid and l-arabinose after the complete use of the other C-sources. However, d-glucose and acetic acid were simultaneously and efficiently metabolized, followed by d-galactose. SBP hydrolysate supplementation with amino acids was crucial to allow d-galacturonic acid and l-arabinose catabolism. SBP valorization through the production of lipids and carotenoids by Rhodotorula strains, supported by complete catabolism of the major C-sources present, looks promising for industrial implementation.
Collapse
Affiliation(s)
- Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Margarida Palma
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Angel Angelov
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (A.A.); (W.L.)
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany;
| | - Wolfgang Liebl
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (A.A.); (W.L.)
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
27
|
Maza DD, Viñarta SC, García-Ríos E, Guillamón JM, Aybar MJ. Rhodotorula glutinis T13 as a potential source of microbial lipids for biodiesel generation. J Biotechnol 2021; 331:14-18. [PMID: 33711359 DOI: 10.1016/j.jbiotec.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/01/2021] [Indexed: 11/26/2022]
Abstract
Single cell oils (SCO) are a promising source of oils that could be exploited in different industrial areas. SCO for biodiesel production circumvents the controversy food vs. fuel, does not require large land areas for culture, and is independent of climate and seasonal variations, among other advantages in comparison to vegetable oils. In this study, a red yeast isolated from a mountain water source, identified as Rhodotorula glutinis T13, showed high potential for lipid production (40% w/w) with suitable growth parameters, yields, and fatty acids profile. Yeast lipids showed a high content of unsaturated fatty acids (56.44%; C18:1, C18:2), and the fuel properties (cetane number, iodine value, density, kinematic viscosity, etc.) of yeast oil analysed were in good agreement with international biodiesel standards. The results show that R. glutinis T13 can be used in the future as a promising microorganism for the commercial production of biodiesel.
Collapse
Affiliation(s)
- D Daniela Maza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-Universidad Nacional de Tucumán), Tucumán, Argentina
| | - Silvana C Viñarta
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina.
| | - Estéfani García-Ríos
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-Universidad Nacional de Tucumán), Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia de la Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
28
|
Ali SS, Al-Tohamy R, Koutra E, Kornaros M, Khalil M, Elsamahy T, El-Shetehy M, Sun J. Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:61. [PMID: 33685508 PMCID: PMC7938474 DOI: 10.1186/s13068-021-01906-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production. RESULTS Thirty-eight yeast strains were isolated, molecularly identified and subsequently tested for desired enzymatic activity, lipid accumulation, and tolerance to lignin-derived metabolites. The most promising species were then used for construction of a novel yeast consortium, which was further evaluated for azo dyes degradation, under various culture conditions, dye levels, as well as upon the addition of heavy metals, different carbon and nitrogen sources, and lastly agro-waste as an inexpensive and environmentally friendly substrate alternative. The novel yeast consortium, NYC-1, which was constructed included the manganese-dependent peroxidase producing oleaginous strains Meyerozyma caribbica, Meyerozyma guilliermondii, Debaryomyces hansenii, and Vanrija humicola, and showed efficient azo dyes decolorization, which was further enhanced depending on the incubation conditions. Furthermore, enzymatic activity, fatty acid profile and biodiesel properties were thoroughly investigated. Lastly, a dye degradation pathway coupled to biodiesel production was proposed, including the formation of phenol-based products, instead of toxic aromatic amines. CONCLUSION In total, this study might be the first to explore the application of MnP and lipid-accumulating yeasts for coupling dye degradation and biodiesel production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Mohamed El-Shetehy
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|
29
|
Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv 2021; 53:107722. [PMID: 33631187 DOI: 10.1016/j.biotechadv.2021.107722] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohor Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
30
|
da Cunha Abreu Xavier M, Teixeira Franco T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol Lett 2021; 43:967-979. [PMID: 33517513 DOI: 10.1007/s10529-021-03080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi. RESULTS The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w). CONCLUSION The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.
Collapse
Affiliation(s)
- Michelle da Cunha Abreu Xavier
- Department of Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Cervilha, Gurupi, TO, 77404-970, Brazil.
| | - Telma Teixeira Franco
- Department of Process Engineering (DEPro), School of Chemical Engineering, State University of Campinas (UNICAMP), Albert Einstein Avenue, 500, Zeferino Vaz University City, Campinas, SP, 13083-852, Brazil
| |
Collapse
|
31
|
González J, Romero-Aguilar L, Matus-Ortega G, Pablo Pardo J, Flores-Alanis A, Segal-Kischinevzky C. Levaduras adaptadas al frío: el tesoro biotecnológico de la Antártica. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Las levaduras son organismos microscópicos que están distribuidos en toda la Tierra, de modo que algunas han adaptado su metabolismo para proliferar en ambientes extremos. Las levaduras que habitan en la Antártica son un grupo de microorganismos adaptados al frío que han sido poco estudiadas. En esta revisión se describen algunas de las adaptaciones metabólicas que les permiten habitar en ambientes extremos, por ejemplo, el de la Antártica. También se abordan las consideraciones relevantes para saber si una levadura es extremófila, así como los criterios utilizados para clasificar a las levaduras por crecimiento y temperatura. Además, se explica el papel de las vías de biosíntesis de carotenoides y lípidos que están involucradas en contrarrestar a las especies reactivas de oxígeno generadas por estrés oxidante en levaduras pigmentadas y oleaginosas del género Rhodotorula. La revisión también considera aspectos de investigación básica y la importancia de las levaduras oleaginosas de la Antártica para el desarrollo de algunas aplicaciones biotecnológicas.
Collapse
|
32
|
Beccaria M, Siqueira ALM, Maniquet A, Giusti P, Piparo M, Stefanuto PH, Focant JF. Advanced mono- and multi-dimensional gas chromatography-mass spectrometry techniques for oxygen-containing compound characterization in biomass and biofuel samples. J Sep Sci 2020; 44:115-134. [PMID: 33185940 DOI: 10.1002/jssc.202000907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022]
Abstract
A wide variety of biomass, from triglycerides to lignocellulosic-based feedstock, are among promising candidates to possibly fulfill requirements as a substitute for crude oils as primary sources of chemical energy feedstock. During the feedstock processing carried out to increase the H:C ratio of the products, heteroatom-containing compounds can promote corrosion, thus limiting and/or deactivating catalytic processes needed to transform the biomass into fuel. The use of advanced gas chromatography techniques, in particular multi-dimensional gas chromatography, both heart-cutting and comprehensive coupled to mass spectrometry, has been widely exploited in the field of petroleomics over the past 30 years and has also been successfully applied to the characterization of volatile and semi-volatile compounds during the processing of biomass feedstock. This review intends to describe advanced gas chromatography-mass spectrometry-based techniques, mainly focusing in the period 2011-early 2020. Particular emphasis has been devoted to the multi-dimensional gas chromatography-mass spectrometry techniques, for the isolation and characterization of the oxygen-containing compounds in biomass feedstock. Within this context, the most recent advances to sample preparation, derivatization, as well as gas chromatography instrumentation, mass spectrometry ionization, identification, and data handling in the biomass industry, are described.
Collapse
Affiliation(s)
- Marco Beccaria
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Anna Luiza Mendes Siqueira
- TOTAL Marketing Services, Research Center, Solaize, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Adrien Maniquet
- TOTAL Marketing Services, Research Center, Solaize, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Pierre Giusti
- TOTAL Refining and Chemicals, Total Research and Technologies Gonfreville, Harfleur, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Marco Piparo
- TOTAL Refining and Chemicals, Total Research and Technologies Gonfreville, Harfleur, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|