1
|
Xiao R, Du C, Li H, Zhang M, Wu Y, Xing L, Bu K, Wang P. Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321. Int J Biol Macromol 2024:137012. [PMID: 39486732 DOI: 10.1016/j.ijbiomac.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL). As a first step, we screened the host and deleted the signal peptide (SPALT) of alt3796, successfully expressed secreted ALT3796 from B. subtilis WB800. Subsequently, to improve expression, we screened the dual promoter PHag-spoVG from a collection of 22 promoters, which yielded higher enzymatic activity. Finally, using a recombinant strain carrying a plasmid with the PHag-spoVG dual promoter and a genetic insulator, we obtained 40.9 U/mL of activity. Purified recombinant ALT3796 exhibited good stability and specifically degraded ulvan. In conclusion, a system for the heterologous expression of ALT3796 was constructed, and the obtained protein exhibited favorable properties, suggesting its potential for preparing novel ulvan oligosaccharides.
Collapse
Affiliation(s)
- Rui Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huawei Li
- School of Nursing, Qingdao University, Qingdao 266011, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yinglu Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaixuan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
2
|
Xiao F, Zhang Y, Zhang L, Li S, Chen W, Shi G, Li Y. Advancing Bacillus licheniformis as a Superior Expression Platform through Promoter Engineering. Microorganisms 2024; 12:1693. [PMID: 39203534 PMCID: PMC11356801 DOI: 10.3390/microorganisms12081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus licheniformis is recognised as an exceptional expression platform in biomanufacturing due to its ability to produce high-value products. Consequently, metabolic engineering of B. licheniformis is increasingly pursued to enhance its utility as a biomanufacturing vehicle. Effective B. licheniformis cell factories require promoters that enable regulated expression of target genes. This review discusses recent advancements in the characterisation, synthesis, and engineering of B. licheniformis promoters. We highlight the application of constitutive promoters, quorum sensing promoters, and inducible promoters in protein and chemical synthesis. Additionally, we summarise efforts to expand the promoter toolbox through hybrid promoter engineering, transcription factor-based inducible promoter engineering, and ribosome binding site (RBS) engineering.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lihuan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
She M, Zhou H, Dong W, Xu Y, Gao L, Gao J, Yang Y, Yang Z, Cai D, Chen S. Modular metabolic engineering of Bacillus amyloliquefaciens for high-level production of green biosurfactant iturin A. Appl Microbiol Biotechnol 2024; 108:311. [PMID: 38676716 PMCID: PMC11055739 DOI: 10.1007/s00253-024-13083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/29/2024]
Abstract
As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.
Collapse
Affiliation(s)
- Menglin She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Huijuan Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Wanrong Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yuxiang Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jiaming Gao
- Hubei Corporation of China National Tobacco Corporation, Wuhan, 430000, People's Republic of China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Liao C, Cui J, Gao M, Wang B, Ito K, Guo Y, Zhang B. Dual-sgRNA CRISPRa System for Enhanced MK-7 Production and Salmonella Infection Mitigation in Bacillus subtilis natto Applied to Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4301-4316. [PMID: 38344988 DOI: 10.1021/acs.jafc.3c08866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study optimized the menaquinone-7 (MK-7) synthetic pathways in Bacillus subtilis (B. subtilis) natto NB205, a strain that originated from natto, to enhance its MK-7 production. Utilizing mutation breeding, we developed NBMK308, a mutant strain that demonstrated a significant 117.23% increase in MK-7 production. A comprehensive transcriptome analysis identified two key genes, ispA and ispE, as being critical in MK-7 synthesis. The dual-sgRNA CRISPRa system was utilized to achieve precise regulation of ispA and ispE in the newly engineered strain, A3E3. This strategic modulation resulted in a significant enhancement of MK-7 production, achieving increases of 20.02% and 201.41% compared to traditional overexpression systems and the original strain NB205, respectively. Furthermore, the fermentation supernatant from A3E3 notably inhibited Salmonella invasion in Caco-2 cells, showcasing its potential for combating such infections. The safety of the dual-sgRNA CRISPRa system was confirmed through cell assays. The utilization of the dual-sgRNA CRISPRa system in this study was crucial for the precise regulation of key genes in MK-7 synthesis, leading to a remarkable increase in production and demonstrating additional therapeutic potential in inhibiting pathogenic infections. This approach effectively combined the advantages of microbial fermentation and biotechnology, addressing health and nutritional challenges.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 113-8654, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
5
|
Yoon S, Park S, Lee J, Kim B, Gwak W. Novel Enhanced Mammalian Cell Transient Expression Vector via Promoter Combination. Int J Mol Sci 2024; 25:2330. [PMID: 38397006 PMCID: PMC10888961 DOI: 10.3390/ijms25042330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the emergence of infectious diseases, evaluating the efficacy of newly developed vaccines requires antigen proteins. Available methods enhance antigen protein productivity; however, structural modifications may occur. Therefore, we aimed to construct a novel transient overexpression vector capable of rapidly producing large quantities of antigenic proteins in mammalian cell lines. This involved expanding beyond the exclusive use of the human cytomegalovirus (CMV) promoter, and was achieved by incorporating a transcriptional enhancer (CMV enhancer), a translational enhancer (woodchuck hepatitis virus post-transcriptional regulatory element), and a promoter based on the CMV promoter. Twenty novel transient expression vectors were constructed, with the vector containing the human elongation factor 1-alpha (EF-1a) promoter showing the highest efficiency in expressing foreign proteins. This vector exhibited an approximately 27-fold higher expression of enhanced green fluorescent protein than the control vector containing only the CMV promoter. It also expressed the highest level of severe acute respiratory syndrome coronavirus 2 receptor-binding domain protein. These observations possibly result from the simultaneous enhancement of the transcriptional activity of the CMV promoter and the human EF-1a promoter by the CMV enhancer. Additionally, the synergistic effect between the CMV and human EF-1a promoters likely contributed to the further enhancement of protein expression.
Collapse
Affiliation(s)
| | | | | | | | - WonSeok Gwak
- Division of Clinical Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28160, Chungcheongbuk-do, Republic of Korea; (S.Y.); (S.P.); (J.L.); (B.K.)
| |
Collapse
|
6
|
Chen Q, Wang B, Pan L. Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization. Appl Microbiol Biotechnol 2024; 108:149. [PMID: 38240797 DOI: 10.1007/s00253-023-12889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
In this study, we successfully applied the strategy of combining tandem promoters and tandem signal peptides with overexpressing signal peptidase to efficiently express and produce γ-glutamyl peptidase (GGT) enzymes (BsGGT, BaGGT, and BlGGT) from Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus licheniformis in Bacillus subtilis ATCC6051Δ5. In order to avoid the problem of instability caused by duplicated strong promoters, we assembled tandem promoters of different homologous genes from different species. To achieve resistance marker-free enzyme in the food industry, we first removed the replication origin and corresponding resistance marker of Escherichia coli from the expression vector. The plasmid was then transformed into the B. subtilis host, and the Kan resistance gene in the expression plasmid was directly edited and silenced using the CRISPR/Cas9n-AID base editing system. As a result, a recombinant protein expression carrier without resistance markers was constructed, and the enzyme activity of the BlGGT strain during shake flask fermentation can reach 53.65 U/mL. The recombinant BlGGT was immobilized with epoxy resin and maintained 82.8% enzyme activity after repeated use for 10 times and 87.36% enzyme activity after storage at 4 °C for 2 months. The immobilized BlGGT enzyme was used for the continuous synthesis of theanine with a conversion rate of 65.38%. These results indicated that our approach was a promising solution for improving enzyme production efficiency and achieving safe production of enzyme preparations in the food industry. KEY POINTS: • Efficient expression of recombinant proteins by a combination of dual promoter and dual signal peptide. • Construction of small vectors without resistance markers in B. subtilis using CRISPR/Cas9n-AID editing system. • The process of immobilizing BlGGT with epoxy resin was optimized.
Collapse
Affiliation(s)
- Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Zhou C, Yang G, Meng P, Qin W, Li Y, Lin Z, Hui W, Zhang H, Lu F. Identification and engineering of the aprE regulatory region and relevant regulatory proteins in Bacillus licheniformis 2709. Enzyme Microb Technol 2024; 172:110310. [PMID: 37925770 DOI: 10.1016/j.enzmictec.2023.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 11/07/2023]
Abstract
Bacillus licheniformis 2709 is the main industrial producer of alkaline protease (AprE), but its biosynthesis is strictly controlled by a highly sophisticated transcriptional network. In this study, the UP elements of aprE located 74-98, 98-119 and 140-340 bp upstream of the transcriptional start site (TSS) were identified, which presented obvious effects on the transcription of aprE. To further analyze the transcriptional mechanism, the specific proteins binding to the approximately 500-bp DNA sequences were subsequently captured by reverse-chromatin immunoprecipitation (reverse-ChIP) and DNA pull-down (DPD) assays, which captured the transcriptional factors CggR, FruR, and YhcZ. The study demonstrated that CggR, FruR and YhcZ had no significant effect on cell growth and aprE expression. Then, aprE expression was significantly enhanced by deleting a potential negative regulatory factor binding site in the genome. The AprE enzyme activity in shake flasks of the genomic mutant BL ∆1 was 47% higher than in the original strain, while the aprE transcription level increased 3.16 times. The protocol established in this study provides a valuable reference for the high-level production of proteins in other Bacillus species. At the same time, it will help reveal the molecular mechanism of the transcriptional regulatory network of aprE and provide important theoretical guidance for further enhancing the yield of AprE.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China; Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China.
| | - Panpan Meng
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Zhenxian Lin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Wei Hui
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
8
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
9
|
Li X, Zhang M, Lu Y, Wu N, Chen J, Ji Z, Zhan Y, Ma X, Chen J, Cai D, Chen S. Metabolic engineering of Bacillus amyloliquefaciens for efficient production of α-glucosidase inhibitor1-deoxynojirimycin. Synth Syst Biotechnol 2023; 8:378-385. [PMID: 37692204 PMCID: PMC10485785 DOI: 10.1016/j.synbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
Owing to the feature of strong α-glucosidase inhibitory activity, 1-deoxynojirimycin (1-DNJ) has broad application prospects in areas of functional food, biomedicine, etc., and this research wants to construct an efficient strain for 1-DNJ production, basing on Bacillus amyloliquefaciens HZ-12. Firstly, using the temperature-sensitive shuttle plasmid T2 (2)-Ori, gene ptsG in phosphotransferase system (PTS) was weakened by homologous recombination, and non-PTS pathway was strengthened by deleting its repressor gene iolR, and 1-DNJ yield of resultant strain HZ-S2 was increased by 4.27-fold, reached 110.72 mg/L. Then, to increase precursor fructose-6-phosphate (F-6-P) supply, phosphofructokinase was weaken, fructose phosphatase GlpX and 6-phosphate glucose isomerase Pgi were strengthened by promoter replacement, moreover, regulator gene nanR was deleted, 1-DNJ yield was further increased to 267.37 mg/L by 2.41-fold. Subsequently, promoter of 1-DNJ synthetase cluster was optimized, as well as 5'-UTRs of downstream genes in synthetase cluster, and 1-DNJ produced by the final strain reached 478.62 mg/L. Last but not the least, 1-DNJ yield of 1632.50 mg/L was attained in 3 L fermenter, which was the highest yield of 1-DNJ reported to date. Taken together, our results demonstrated that metabolic engineering was an effective strategy for 1-DNJ synthesis, this research laid a foundation for industrialization of functional food and drugs based on 1-DNJ.
Collapse
Affiliation(s)
- Xujie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Meng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ningyang Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian'gang Chen
- Wuhan Jun'an Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Zhixia Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junyong Chen
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai, 519000, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
10
|
Liao Y, Xiong M, Miao Z, Ishaq AR, Zhang M, Li B, Zhan Y, Cai D, Yang Z, Chen J, Chen S. Modular Engineering to Enhance Keratinase Production for Biotransformation of Discarded Feathers. Appl Biochem Biotechnol 2023; 195:1752-1769. [PMID: 36394712 DOI: 10.1007/s12010-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Biotransformation of wasted feathers via feather-degrading enzyme has gained immense popularity, low conversion efficiency hinders its scale application, and the main purpose of this study is to improve feather-degrading enzyme production in Bacillus licheniformis. Firstly, keratinase from Bacillus amyloliquefaciens K11 was attained with the best performance for feather hydrolysis, via screening several extracellular proteases from Bacillus; also, feather powder was proven as the most suitable substrate for determination of feather-degrading enzyme activity. Then, expression elements, including signal peptides and promoters, were optimized, and the combination of signal peptide SPSacC with promoter Pdual3 owned the best performance, keratinase activity aggrandized by 6.21-fold. According to amino acid compositions of keratinase and feeding assays, Ala, Val, and Ser were proven as critical precursors, and strengthening these precursors' supplies via metabolic pathway optimization resulted in a 33.59% increase in the keratinase activity. Furthermore, keratinase activity reached 2210.66 U/mL, up to 56.74-fold from the original activity under the optimized fermentation condition in 3-L fermentor. Finally, the biotransformation process of discarded feathers by the fermented keratinase was optimized, and our results indicated that 90.94% of discarded feathers (16%, w/v) were decomposed in 12 h. Our results suggested that strengthening precursor amino acids' supplies was an efficient strategy for enhanced production of keratinase, and this research provided an efficient strain as well as the biotransformation process for discarded feather re-utilization.
Collapse
Affiliation(s)
- Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhaoqi Miao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Min Zhang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Bichan Li
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Jun Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China.
| |
Collapse
|
11
|
Sri Wahyu Effendi S, Lin JY, Ng IS. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. BIORESOURCE TECHNOLOGY 2022; 363:127980. [PMID: 36137445 DOI: 10.1016/j.biortech.2022.127980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a rapid-acting zinc-metalloenzyme that catalyzes CO2 hydration reversibly, with encouraging applications in carbon capture, sequestration, and utilization (CCSU). However, biocatalyst durability is a major challenge. Herein, hCAII is emphasized in 4 different Escherichia coli strains and designated under dual promoters from sigma factor 70 (σ70) and heat shock protein (HSP70A) to suppress the usage of inducer and stimulate activity in heat environments. As a result, hCAII under high-efficient dual promoters regulation retained high residual activity in CO2 biomineralization of 68.8 % after 4 cycles at 40 °C. Moreover, co-expression of CAC9 with lysine decarboxylase (CadA) simultaneously sequestered CO2 release up to 95.7 % and increased cadaverine titer from 18.0 to 36.7 g/L by using E. coli MG1655. The remnant biomass from cadaverine synthesis sustained converting CO2 to 57.9 mg-CaCO3. Thus, the dual promoters design demonstrated the promising potential for CCSU through simultaneous CO2 utilization and cadaverine synthesis.
Collapse
Affiliation(s)
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
12
|
Gao L, She M, Shi J, Cai D, Wang D, Xiong M, Shen G, Gao J, Zhang M, Yang Z, Chen S. Enhanced production of iturin A by strengthening fatty acid synthesis modules in Bacillus amyloliquefaciens. Front Bioeng Biotechnol 2022; 10:974460. [PMID: 36159706 PMCID: PMC9500472 DOI: 10.3389/fbioe.2022.974460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Iturin A is a biosurfactant with various applications, and its low synthesis capability limits its production and application development. Fatty acids play a critical role in cellular metabolism and target product syntheses, and the relationship between fatty acid supplies and iturin A synthesis is unclear. In this study, we attempted to increase iturin A production via strengthening fatty acid synthesis pathways in Bacillus amyloliquefaciens. First, acetyl-CoA carboxylase AccAD and ACP S-malonyltransferase fabD were overexpressed via promoter replacement, and iturin A yield was increased to 1.36 g/L by 2.78-fold in the resultant strain HZ-ADF1. Then, soluble acyl-ACP thioesterase derived from Escherichia coli showed the best performance for iturin A synthesis, as compared to those derived from B. amyloliquefaciens and Corynebacterium glutamicum, the introduction of which in HZ-ADF1 further led to a 57.35% increase of iturin A yield, reaching 2.14 g/L. Finally, long-chain fatty acid-CoA ligase LcfA was overexpressed in HZ-ADFT to attain the final strain HZ-ADFTL2, and iturin A yield reached 2.96 g/L, increasing by 6.59-fold, and the contents of fatty acids were enhanced significantly in HZ-ADFTL2, as compared to the original strain HZ-12. Taken together, our results implied that strengthening fatty acid supplies was an efficient approach for iturin A production, and this research provided a promising strain for industrial production of iturin A.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Menglin She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiao Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Guoming Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jiaming Gao
- Hubei Corporation of China National Tobacco Corporation, Wuhan, China
| | - Min Zhang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- *Correspondence: Shouwen Chen, ; Zhifan Yang,
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, China
- *Correspondence: Shouwen Chen, ; Zhifan Yang,
| |
Collapse
|
13
|
Li H, Yao D, Pan Y, Chen X, Fang Z, Xiao Y. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis by promoter engineering and translation initiation efficiency optimization. Microb Cell Fact 2022; 21:127. [PMID: 35761342 PMCID: PMC9235159 DOI: 10.1186/s12934-022-01855-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background A raw starch-degrading α-amylase from Pontibacillus sp. ZY (AmyZ1), previously screened by our laboratory, showed a promising application potential for starch-processing industries. However, the AmyZ1 secretory production still under investigation, which seriously restricts its application in the starch-processing industry. On the other hand, Bacillus subtilis is widely used to achieve the extracellular expression of target proteins. Results AmyZ1 secretory production was achieved in B. subtilis and was enhanced by promoter engineering and translation initiation efficiency optimization. First, based on the different phase-dependent promoters, the dual-promoter PspoVG–PspoVG142 was constructed by combining dual-promoter engineering and promoter modification. The corresponding strain BZd34 showed an extracellular AmyZ1 activity of 1437.6 U/mL during shake flask cultivation, which was 3.11-fold higher than that of the original strain BZ1 (PgroE). Then, based on translation initiation efficiency optimization, the best strain BZd343 containing optimized 5'-proximal coding sequence (opt3) produced the highest extracellular α-amylase activity of 1691.1 U/mL, which was 3.65-fold higher than that of the strain BZ1. Finally, cultivation of BZd343 in 3-L fermenter exhibited an extracellular AmyZ1 activity of 14,012 U/mL at 48 h, with productivity of 291.9 U/mL·h. Conclusions This is the first report of recombinant expression of AmyZ1 in B. subtilis and the expression level of AmyZ1 represents the highest raw starch-degrading α-amylase level in B. subtilis to date. The high-level expression of AmyZ1 in this work provides a foundation for its industrial production. The strategies used in this study also provide a strategic reference for improving the secretory expression of other enzymes in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01855-9.
Collapse
Affiliation(s)
- He Li
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
14
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
15
|
Zhang Y, Wang Y, Yang J, Yang W, Wang X, Wu C, Song Y. Improved γ-Linolenic Acid Production from Cellulose in Mucor circinelloides via Coexpression of Cellobiohydrolase and Delta-6 Desaturase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4373-4381. [PMID: 35357816 DOI: 10.1021/acs.jafc.2c00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study was aimed at facilitating the production of γ-linolenic acid (GLA) from the cellulosic substrate with the engineered oleaginous fungus Mucor circinelloides WJ11. Here, the homologous recombination technology was used to overexpress the cellobiohydrolase (CBH2) derived from Trichoderma longibrachiatum and the original delta-6 fatty acid desaturase (D6) in M. circinelloides to construct genetically engineered strains capable of effectively using cellulose to enhance GLA synthesis. When cultivated in modified K&R medium supplemented with microcrystalline cellulose, the CBH2 and D6 coexpressing strains led to increases in the biomass (up to 12.8 g/L) and lipid yield (up to 3.7 g/L) of 87% and 2.4-fold, respectively, compared to that of the control strain. Notably, when CBH2 and D6 were coexpressed in M. circinelloides, the yield of GLA reached 608 mg/L, which was a dramatic increase of 3.9-fold compared to that of the control strain. This is the first report on promoting the GLA production from the cellulosic substrate via coexpression of CBH2 and delta-6 desaturase. This work provides a theoretical basis for efficient transformation from the cellulosic substrate to functional GLA by CBH2 and D6 coexpressing strains, which might play a positive role in promoting the sustainable development of biological industry.
Collapse
Affiliation(s)
- Yao Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Yanxia Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| |
Collapse
|
16
|
Zhang Q, Chen Y, Gao L, Chen J, Ma X, Cai D, Wang D, Chen S. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis. Synth Syst Biotechnol 2022; 7:567-573. [PMID: 35155838 PMCID: PMC8801620 DOI: 10.1016/j.synbio.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/16/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer with various applications, and its high-viscosity hinders oxygen transmission and improvement of synthesis level. Vitreoscilla hemoglobin (VHB) has been introduced into various hosts as oxygen carrier, however, its expression strength and contact efficiency with oxygen hindered efficient oxygen transfer and metabolite synthesis. Here, we want to optimize the expression cassette of VHB for γ-PGA production. Firstly, our results implied that γ-PGA yields were enhanced when introducing twin-arginine translocation (Tat) signal peptides (SPYwbN, SPPhoD and SPTorA) into VHB expression cassette, and the best performance was attained by SPYwbN from Bacillus subtilis, the γ-PGA yield of which was 18.53% higher than that of control strain, and intracellular ATP content and oxygen transfer coefficient (KLa) were increased by 29.71% and 73.12%, respectively, indicating that VHB mediated by SPYwbN benefited oxygen transfer and ATP generation for γ-PGA synthesis. Furthermore, four promoters were screened, and Pvgb was proven as the more suitable promoter for VHB expression and γ-PGA synthesis, and γ-PGA yield of attaining strain WX/pPvgb-YwbN-Vgb was further increased to 40.59 g/L by 10.18%. Finally, WX/pPvgb-YwbN-Vgb was cultivated in 3 L fermentor for fed-batch fermentation, and 46.39 g/L γ-PGA was attained by glucose feeding, increased by 49.26% compared with the initial yield (31.01 g/L). Taken together, this study has attained an efficient VHB expression cassette for oxygen transfer and γ-PGA synthesis, which could also be applied in the production of other metabolites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jian'gang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Wuhan Junan Biotechnology Co. Ltd., Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
17
|
Zhang J, Dong M, Feng Y, Zhang D, Lin M, Yuan C, Li H, Wang L, Zhang H, Liang C. Egr1/HSP70 Promoter-Driven Activation of Gene Expression for Synergistic Anti-Hepatoma Using PEI-MZF Nanoparticles and Radiation. Int J Nanomedicine 2022; 17:423-441. [PMID: 35115776 PMCID: PMC8801369 DOI: 10.2147/ijn.s334015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Spatially restricted gene expression circumvents the gene expression and gene vector problem by enabling localized amplification. The objective of this study is to construct a spatially restricted gene expression for liver cancer therapy based upon the MFH-absorbing properties of PEI- Mn0.5zn0.5Fe2o4, gene therapy and radiation. METHODS Mn0.5zn0.5Fe2O4 (MZF) magnetic nanoparticles were prepared by an improved chemical co-precipitation method, modified by polyethylene imine (PEI), and then the structure, modification characters, biocompatibility, temperature rise and control ability and binding efficiency of the plasmid were characterized. Then, the dual-promoter plasmid PCDNA3.1-EGR1-HSP70-HSVTK was constructed. The recombinant vectors were identified by enzyme digestion analysis and DNA sequencing. The TK gene expression level was detected by realtime-PCR assay in HEK293 cells. Also, the HSV-TK gene expression was detected in SMMC7721 cells with the help of PEI-Mn0.5Zn0.5Fe2O4. In vitro anti-tumor experiment, MTT assay and flow cytometry were used to evaluate the therapeutic effects of the cultured SMMC7721 cells treated by different ways. In vivo anti-tumor experiment, the xenografted mice were treated by different ways for three times to detect the antitumor effect. RESULTS The Mn0.5Zn0.5Fe2O4 magnetic nanoparticles could be successfully prepared through improved co-precipitation process and showed good biocompatibility. And PEI had been coated on MZF complex. The modified PEI-MZF presented favorable dispensability, responsibility to magnetism, good loading capability and transfect capability. Also, pCDNA3.1-Egr1-Hsp70-HSVTK plasmid had been constructed successfully and could be induced by heat and irradiation. It would be used for further target gene therapy research. The antitumor results in vitro showed: The therapeutic effects of nanosized PEI-MZF-HSV-TK complex could significantly inhibit the proliferation of cultured liver cancer cells (SMC7721), induce cell apoptosis and had a prominent cell cycle disturbance in the S phase in vitro. The results in vivo showed: The combined therapy induced by PEI-MZF-HSV-TK could inhabit the growth of hepatocellular carcinoma xenografts by killing and inhabiting the proliferation of the tumor cells. CONCLUSION The novel site-directed heat/radiation-inducible expression system based upon the hyperthermia (by MFH) and radiation possessed superior antitumor effect in vivo and in vitro.
Collapse
Affiliation(s)
- Jia Zhang
- Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People’s Republic of China
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Min Dong
- Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Feng
- Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, People’s Republic of China
| | - Dongsheng Zhang
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Mei Lin
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Chenyan Yuan
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongbo Li
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Ling Wang
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Zhang
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Chen Liang
- Imaging and Nuclear Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
18
|
Souza CCD, Guimarães JM, Pereira SDS, Mariúba LAM. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 2021; 246:2443-2453. [PMID: 34424091 PMCID: PMC8649419 DOI: 10.1177/15353702211030189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil
| | - Jander Matos Guimarães
- Centro Multiusuário de Análise de Fenômenos Biomédicos (CMABio) da Universidade do Estado do Amazonas (UEA), Manaus, AM 69065-00, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz (FIOCRUZ) Unidade de Rondônia, Porto Velho-RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia-PGBIOEXP/UNIR, Porto Velho-RO 76801-974, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro 21040-360, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| |
Collapse
|
19
|
Liao C, Ayansola H, Ma Y, Ito K, Guo Y, Zhang B. Advances in Enhanced Menaquinone-7 Production From Bacillus subtilis. Front Bioeng Biotechnol 2021; 9:695526. [PMID: 34354987 PMCID: PMC8330505 DOI: 10.3389/fbioe.2021.695526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
The production of nutraceutical compounds through biosynthetic approaches has received considerable attention in recent years. For example, Menaquinone-7 (MK-7), a sub-type of Vitamin K2, biosynthesized from Bacillus subtilis (B. subtilis), proved to be more efficiently produced than the conventional chemical synthesis techniques. This is possible due to the development of B. subtilis as a chassis cell during the biosynthesis stages. Hence, it is imperative to provide insights on the B. subtilis membrane permeability modifications, biofilm reactors, and fermentation optimization as advanced techniques relevant to MK-7 production. Although the traditional gene-editing method of homologous recombination improves the biosynthetic pathway, CRISPR-Cas9 could potentially resolve the drawbacks of traditional genome editing techniques. For these reasons, future studies should explore the applications of CRISPRi (CRISPR interference) and CRISPRa (CRISPR activation) system gene-editing tools in the MK-7 anabolism pathway.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Sun W, Jiang B, Zhao D, Pu Z, Bao Y. Integration of metabolic pathway manipulation and promoter engineering for the fine-tuned biosynthesis of malic acid in Bacillus coagulans. Biotechnol Bioeng 2021; 118:2597-2608. [PMID: 33829485 DOI: 10.1002/bit.27780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Bacillus coagulans, a thermophilic facultative anaerobe, is a favorable chassis strain for the biosynthesis of desired products. In this study, B. coagulans was converted into an efficient malic acid producer by metabolic engineering and promoter engineering. Promoter mapping revealed that the endogenous promoter Pldh was a tandem promoter. Accordingly, a promoter library was developed, covering a wide range of relative transcription efficiencies with small increments. A reductive tricarboxylic acid pathway was established in B. coagulans by introducing the genes encoding pyruvate carboxylase (pyc), malate dehydrogenase (mdh), and phosphoenolpyruvate carboxykinase (pckA). Five promoters of various strengths within the library were screened to fine-tune the expression of pyc to improve the biosynthesis of malic acid. In addition, genes involved in the competitive metabolic pathways were deleted to focus the substrate and energy flux toward malic acid. Dual-phase fed-batch fermentation was performed to increase the biomass of the strain, further improving the titer of malic acid to 25.5 g/L, with a conversion rate of 0.3 g/g glucose. Our study is a pioneer research using promoter engineering and genetically modified B. coagulans for the biosynthesis of malic acid, providing an effective approach for the industrialized production of desired products using B. coagulans.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.,School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, China
| |
Collapse
|
21
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Zhang J, Xu X, Li X, Chen X, Zhou C, Liu Y, Li Y, Lu F. Reducing the cell lysis to enhance yield of acid-stable alpha amylase by deletion of multiple peptidoglycan hydrolase-related genes in Bacillus amyloliquefaciens. Int J Biol Macromol 2020; 167:777-786. [PMID: 33278447 DOI: 10.1016/j.ijbiomac.2020.11.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
Bacillus amyloliquefaciens is a major industrial host for extracellular protein production, with great potential in the enzyme industry. However, the strain has accelerated the autolysis drawback in the process of secreting extracellular enzymes, which can significantly lower the density of cells and decrease the product yield. To identify target genes, we employed comparative transcriptome sequencing and KEGG analysis to indicate the increased expression of peptidoglycan hydrolase-regulated genes from the exponential phase to the apoptotic phase of growth; this was further confirmed by quantitative RT-PCR. By deleting lytD, lytE, and sigD genes, cell lysis was reduced and the production of acid-stable Bacillus licheniformis alpha-amylase was enhanced. After 36 h of culture, multiple deletion mutant BA ΔSDE had significantly more viable cells compared to the control strain BA Δupp, and flow cytometry analysis indicated that 48.43% and 64.03% of the cells were lysed in cultures of BA ΔSDE and BA Δupp, respectively. In a 2-L fed-batch fermenter, viable cell number of the triple deletion mutant BA ΔSDE increased by 2.79 Log/cfu/mL, and the activity of acid-stable alpha-amylase increased by 48.4%, compared to BA Δupp. Systematic multiple peptidoglycan hydrolases deletion relieved the autolysis and increased the production of industrial enzymes, and provided a useful strategy for guiding efforts to manipulate the genomes of other B. amyloliquefaciens used for chassis host.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinyue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xuejia Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|