1
|
Guan B, Sun Y, Liu X, Zhong C, Li D, Shan X, Hui X, Lu C, Huo Y, Sun R, Wei M, Zheng W. Comparative evaluation of amino acid profiles, fatty acid compositions, and nutritional value of two varieties of head water Porphyra yezoensis: "Jianghaida No. 1" and "Sutong No.1". Food Chem X 2024; 22:101375. [PMID: 38633737 PMCID: PMC11021842 DOI: 10.1016/j.fochx.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Comparative nutritional analysis of Porphyra yezoensis strains "Jianghai No. 1" and "Sutong No.1" revealed significant differences in crude protein, crude fat, crude fiber, crude ash, and total sugar. Both strains contained 16 amino acids, with alanine as the highest and histidine the lowest content. Methionine was determined to be the first limiting amino acid for both strains in both amino acid score and chemical score assessment. They also featured 24 fatty acids, differing notably in four saturated fatty acids and five unsaturated fatty acids. All 12 mineral elements were present, notably differing in sodium, magnesium, potassium, calcium, iron, and zinc. The "Jianghai No. 1" strain stands out with its nutrient-rich profile, featuring high protein content, low fat, and abundant minerals, which could potentially command higher market prices and generate greater economic benefits due to its superior nutritional, and set a strong foundation for its future large-scale promotion and cultivation.
Collapse
Affiliation(s)
- Bin Guan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yuyan Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xuxiao Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Chongyu Zhong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Desheng Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xin Shan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xingxing Hui
- Lianyungang Xiangheng Food Co., Ltd., Lianyungang, China
| | - Chaofa Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yujia Huo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Runkai Sun
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Min Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Wei Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
2
|
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int J Mol Sci 2023; 24:17369. [PMID: 38139197 PMCID: PMC10743973 DOI: 10.3390/ijms242417369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (A.A.); (A.G.A.); (H.S.); (S.S.); (M.V.P.); (F.A.); (E.-H.K.); (S.-M.K.); (Y.-J.W.); (B.-W.Y.)
| |
Collapse
|
3
|
Liu X, Gao Y, Zhao X, Zhang X, Ben L, Li Z, Dong G, Zhou J, Huang J, Yao Y. Validation of Novel Reference Genes in Different Rice Plant Tissues through Mining RNA-Seq Datasets. PLANTS (BASEL, SWITZERLAND) 2023; 12:3946. [PMID: 38068583 PMCID: PMC10708173 DOI: 10.3390/plants12233946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 09/12/2024]
Abstract
Reverse transcription quantitative real-time PCR (RT-qPCR) is arguably the most prevalent and accurate quantitative gene expression analysis. However, selection of reliable reference genes for RT-qPCR in rice (Oryza sativa) is still limited, especially for a specific tissue type or growth condition. In this study, we took the advantage of our RNA-seq datasets encompassing data from five rice varieties with diverse treatment conditions, identified 12 novel candidate reference genes, and conducted rigorous evaluations of their suitability across typical rice tissues. Comprehensive analysis of the leaves, shoots, and roots of two rice seedlings subjected to salt (30 mmol/L NaCl) and drought (air-dry) stresses have revealed that OsMED7, OsACT1, and OsOS-9 were the robust reference genes for leaf samples, while OsACT1, OsZOS3-23, and OsGDCP were recommended for shoots and OsMED7, OsOS-9, and OsGDCP were the most reliable reference genes for roots. Comparison results produced by different sets of reference genes revealed that all these newly recommended reference genes displayed less variation than previous commonly used references genes under the experiment conditions. Thus, selecting appropriate reference genes from RNA-seq datasets leads to identification of reference genes suitable for respective rice tissues under drought and salt stress. The findings offer valuable insights for refining the screening of candidate reference genes under diverse conditions through the RNA-seq database. This refinement serves to improve the accuracy of gene expression in rice under similar conditions.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Yingbo Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Xinyi Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China;
| | - Linli Ben
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Zongliang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Jianye Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.L.); (Y.G.); (X.Z.); (L.B.); (Z.L.); (G.D.); (J.Z.)
| |
Collapse
|
4
|
Shekhawat PK, Sardar S, Yadav B, Salvi P, Soni P, Ram H. Meta-analysis of transcriptomics studies identifies novel attributes and set of genes involved in iron homeostasis in rice. Funct Integr Genomics 2023; 23:336. [PMID: 37968542 DOI: 10.1007/s10142-023-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Iron (Fe) is an important micronutrient for humans as well as for plant growth and development. Rice employs multiple mechanisms to counteract the negative effects of Fe deficiency and Fe toxicity. Previously, many transcriptomics studies have identified hundreds of genes affected by Fe deficiency and/or Fe toxicity. These studies are highly valuable to identify novel genes involved in Fe homeostasis. However, in the absence of their systematic integration, they remain underutilized. A systematic meta-analysis of transcriptomics data from such ten previous studies was performed here to identify various common attributes. From this meta-analysis, it is revealed that under Fe deficiency conditions, root transcriptome is more sensitive and exhibits greater similarity across multiple studies than the shoot transcriptome. Furthermore, under Fe toxicity conditions, upregulated genes are more reliable and consistent than downregulated genes in susceptible cultivars. The integration of data from Fe deficiency and Fe toxicity conditions helped to identify key marker genes for Fe stress. As a proof-of-concept of the analysis, among the genes consistently regulated in opposite directions under Fe deficiency and toxicity conditions, two genes were selected: a proton-dependent oligopeptide transporter (POT) family protein and Vacuolar Iron Transporter (VIT)-Like (VTL) gene, and validated their expression and sub-cellular localization. Since VIT genes are known to play an important role in Fe homeostasis in plants, the entire OsVTL gene family in rice was characterized. This meta-analysis has identified many novel candidate genes that exhibit consistent expression patterns across multiple tissues, conditions, and studies. This makes them potential targets for future research aimed at developing Fe-biofortified rice varieties, as well as varieties tolerant to sub-optimal Fe levels in soil.
Collapse
Affiliation(s)
- Pooja Kanwar Shekhawat
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004, India
| | - Shaswati Sardar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Sector-81, SAS Nagar Mohali, India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India.
| |
Collapse
|
5
|
Chen M, Wang Z, Hao Z, Li H, Feng Q, Yang X, Han X, Zhao X. Screening and Validation of Appropriate Reference Genes for Real-Time Quantitative PCR under PEG, NaCl and ZnSO 4 Treatments in Broussonetia papyrifera. Int J Mol Sci 2023; 24:15087. [PMID: 37894768 PMCID: PMC10606616 DOI: 10.3390/ijms242015087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Real-time quantitative PCR (RT-qPCR) has a high sensitivity and strong specificity, and is widely used in the analysis of gene expression. Selecting appropriate internal reference genes is the key to accurately analyzing the expression changes of target genes by RT-qPCR. To find out the most suitable internal reference genes for studying the gene expression in Broussonetia papyrifera under abiotic stresses (including drought, salt, and ZnSO4 treatments), seven different tissues of B. papyrifera, as well as the roots, stems, and leaves of B. papyrifera under the abiotic stresses were used as test materials, and 15 candidate internal reference genes were screened based on the transcriptome data via RT-qPCR. Then, the expression stability of the candidate genes was comprehensively evaluated through the software geNorm (v3.5), NormFinder (v0.953), BestKeeper (v1.0), and RefFinder. The best internal reference genes and their combinations were screened out according to the analysis results. rRNA and Actin were the best reference genes under drought stress. Under salt stress, DOUB, HSP, NADH, and rRNA were the most stable reference genes. Under heavy metal stress, HSP and NADH were the most suitable reference genes. EIF3 and Actin were the most suitable internal reference genes in the different tissues of B. papyrifera. In addition, HSP, rRNA, NADH, and UBC were the most suitable internal reference genes for the abiotic stresses and the different tissues of B. papyrifera. The expression patterns of DREB and POD were analyzed by using the selected stable and unstable reference genes. This further verified the reliability of the screened internal reference genes. This study lays the foundation for the functional analysis and regulatory mechanism research of genes in B. papyrifera.
Collapse
Affiliation(s)
- Mengdi Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Zhengbo Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Ziyuan Hao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Hongying Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Qi Feng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Xue Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Xiaojiao Han
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiping Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| |
Collapse
|
6
|
Cao H, Chen D, Kuang L, Yan T, Gao F, Wu D. Metabolomic analysis reveals the molecular responses to copper toxicity in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107727. [PMID: 37150010 DOI: 10.1016/j.plaphy.2023.107727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Copper (Cu) is one of the essential microelements and widely participates in various pathways in plants, but excess Cu in plant cells could induce oxidative stress and harm plant growth. Rice (Oryza sativa) is a main crop food worldwide. The molecular mechanisms of rice in response to copper toxicity are still not well understood. In this study, two-week-old seedlings of the rice cultivar Nipponbare were treated with 100 μM Cu2+ (CuSO4) in the external solution for 10 days. Physiological analysis showed that excess Cu significantly inhibited the growth and biomass of rice seedlings. After Cu treatment, the contents of Mn and Zn were significantly reduced in the roots and shoots, while the Fe content was significantly increased in the roots. Meanwhile, the activities of antioxidant enzymes including SOD and POD were dramatically enhanced after Cu treatment. Based on metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods, 695 metabolites were identified in rice roots. Among these metabolites, 123 metabolites were up-regulated and 297 were down-regulated, respectively. The differential metabolites (DMs) include carboxylic acids and derivatives, benzene and substituted derivatives, carbonyl compounds, cinnamic acids and derivatives, fatty acyls and organ nitrogen compounds. KEGG analysis showed that these DMs were mainly enriched in TCA cycle, purine metabolism and starch and sucrose metabolism pathways. Many intermediates in the TCA cycle and purine metabolism were down-regulated, indicating a perturbed carbohydrate and nucleic acid metabolism. Taken together, the present study provides new insights into the mechanism of rice roots to Cu toxicity.
Collapse
Affiliation(s)
- Huan Cao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Evaluation of Candidate Reference Genes for Gene Expression Analysis in Wild Lamiophlomis rotata. Genes (Basel) 2023; 14:genes14030573. [PMID: 36980847 PMCID: PMC10048348 DOI: 10.3390/genes14030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lamiophlomis rotata (Benth.) Kudo is a perennial and unique medicinal plant of the Qinghai–Tibet Plateau. It has the effects of diminishing inflammation, activating blood circulation, removing blood stasis, reducing swelling, and relieving pain. However, thus far, reliable reference gene identifications have not been reported in wild L. rotata. In this study, we identified suitable reference genes for the analysis of gene expression related to the medicinal compound synthesis in wild L. rotata subjected to five different-altitude habitats. Based on the RNA-Seq data of wild L. rotata from five different regions, the stability of 15 candidate internal reference genes was analyzed using geNorm, NormFinder, BestKeeper, and RefFinder. TFIIS, EF-1α, and CYP22 were the most suitable internal reference genes in the leaves of L. rotata from different regions, while OBP, TFIIS, and CYP22 were the optimal reference genes in the roots of L. rotata. The reference genes identified here would be very useful for gene expression studies with different tissues in L. rotata from different habitats.
Collapse
|
8
|
Li Z, Yun L, Ren X, Shi F, Mi F. Analysis of controlling genes for tiller growth of Psathyrostachys juncea based on transcriptome sequencing technology. BMC PLANT BIOLOGY 2022; 22:456. [PMID: 36151542 PMCID: PMC9502641 DOI: 10.1186/s12870-022-03837-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tillering is a complicated process in plant and is a significant trait that affects biomass and seed yield of bunch grass Psathyrostachys juncea, a typical perennial forage species. To clarify the regulatory mechanisms of tillering in P. juncea and to explore related candidate genes could be helpful to improve the seed and forage yield of perennial gramineous forages. We selected the tiller node tissues of P. juncea for transcriptome sequencing to determine the differentially expressed genes (DEG) between dense and sparse tillering genotypes. The metabolic pathway was studied, candidate genes were screened, and reference genes stability were evaluated. RESULTS The results showed that approximately 5466 DEGs were identified between the two genotypes with dense and sparse tillers of P. juncea, which significantly differed in tiller number. Tillering regulation pathways analysis suggested that DEGs closely related to the biosynthesis of three plant hormones, namely auxin (IAA), cytokinin (CTK), and strigolactones (SLs), while "biosynthesis of lignin" and "nitrogen metabolism" have remarkable differences between the dense and sparse tillering genotypes. Meanwhile, the reference gene Actin1, having the best stability, was screened from twelve genes with highest expression level and was used in verification of ten tillering related candidate genes. CONCLUSIONS The tillering mechanism of perennial grass P. juncea was expounded by transcriptome analysis of tiller node tissues. We demonstrated that dense-tillering genotypes may be distinguished by their low expression patterns of genes involved in SL, IAA, and high expression patterns of genes involved in CTK biosynthesis at the tillering stage, and nitrogen metabolism and lignin biosynthesis can also affect the number of tillers. Furthermore, the expression level of ten tillering related candidate genes were verified using Actin1 as reference gene. These candidate genes provide valuable breeding resources for marker assisted selection and yield traits improvement of P. juncea.
Collapse
Affiliation(s)
- Zhen Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lan Yun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, 010018, China.
| | - Xiaomin Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
9
|
Liu Q, Yan T, Tan X, Wei Z, Li Y, Sun Z, Zhang H, Chen J. Genome-Wide Identification and Gene Expression Analysis of the OTU DUB Family in Oryza sativa. Viruses 2022; 14:v14020392. [PMID: 35215984 PMCID: PMC8878984 DOI: 10.3390/v14020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Ovarian tumor domain (OTU)-containing deubiquitinating enzymes (DUBs) are an essential DUB to maintain protein stability in plants and play important roles in plant growth development and stress response. However, there is little genome-wide identification and analysis of the OTU gene family in rice. In this study, we identified 20 genes of the OTU family in rice genome, which were classified into four groups based on the phylogenetic analysis. Their gene structures, conserved motifs and domains, chromosomal distribution, and cis elements in promoters were further studied. In addition, OTU gene expression patterns in response to plant hormone treatments, including SA, MeJA, NAA, BL, and ABA, were investigated by RT-qPCR analysis. The results showed that the expression profile of OsOTU genes exhibited plant hormone-specific expression. Expression levels of most of the rice OTU genes were significantly changed in response to rice stripe virus (RSV), rice black-streaked dwarf virus (RBSDV), Southern rice black-streaked dwarf virus (SRBSDV), and Rice stripe mosaic virus (RSMV). These results suggest that the rice OTU genes are involved in diverse hormone signaling pathways and in varied responses to virus infection, providing new insights for further functional study of OsOTU genes.
Collapse
Affiliation(s)
- Qiannan Liu
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Tingyun Yan
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Xiaoxiang Tan
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
- Correspondence: (H.Z.); (J.C.)
| | - Jianping Chen
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Q.L.); (T.Y.); (X.T.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.W.); (Y.L.); (Z.S.)
- Correspondence: (H.Z.); (J.C.)
| |
Collapse
|
10
|
Tripathi DK, Punj V, Singh NK, Guerriero G, Deshmukh R, Sharma S. Recent biotechnological avenues in crop improvement and stress management. J Biotechnol 2022; 349:21-24. [DOI: 10.1016/j.jbiotec.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|