1
|
Marx N, Otte AM, Leitner K, Sitepu R, Berger T, Schäpertöns V, Huber CG, Zhu Q, Nema S, Higgins JJ, Borth N. Characterization of large transgene integrations in Chinese hamster ovary cells using a bioengineered mammalian transposase. Biotechnol Prog 2025:e3524. [PMID: 39846713 DOI: 10.1002/btpr.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure. Transfection efficiency shows around 90% GFP-positive cells, but in control cultures GFP expression disappears after 10 days. In contrast, bMLT-treated cultures maintain stable GFP expression, with a dose-dependent integration efficiency of up to 60%. The highest GFP expression per cell is observed with lower bMLT amounts. Next-generation sequencing analysis reveals multiple integration sites, with 85% correctly integrated sequences. Next, CHO-GS-/- cells are transfected with trastuzumab and bMLT DNA or mRNA. Cells are selected in glutamine-free medium with varying methionine sulfoximine (MSX) concentrations. Recovery is faster without MSX, and no difference is observed between bMLT DNA and mRNA transfections. bMLT-treated cultures show a higher percentage of trastuzumab-secreting cells (40%-55%) compared with random integration (0.3%-0.5%). The absence of insulators in the trastuzumab plasmid likely affects selection behavior, as integration in heterochromatic regions results in gene repression. Overall, bMLT-mediated integration proves efficient, generating stable cell pools with high expression profiles without selective pressure. The integration sites' genomic location significantly impacts productivity, with favorable regions supporting higher expression. This method shows promise for the rapid and efficient generation of high-producing cell lines and for rapid evaluation of long-term effects of different cell engineering approaches.
Collapse
Affiliation(s)
- Nicolas Marx
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Maria Otte
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Klaus Leitner
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rehmadanta Sitepu
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Berger
- Bioanalytical Research Labs, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Veronika Schäpertöns
- Bioanalytical Research Labs, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Christian G Huber
- Bioanalytical Research Labs, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Quan Zhu
- SalioGen Therapeutics, Lexington, Massachusetts, USA
| | - Sandeep Nema
- SalioGen Therapeutics, Lexington, Massachusetts, USA
| | | | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Yang Z, Wang X, Luo S, Li H, Xu J, Liang L, He Z, Wang G, Wu Z, Zhong N, Xiang H, Zhang Z, Guo C, Zhang Y, Yan F. Efficient production of recombinant human FVII in CHO cells using the piggyBac transposon system. Protein Expr Purif 2025:106666. [PMID: 39848303 DOI: 10.1016/j.pep.2025.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/25/2025]
Abstract
As an important coagulation factor, activated coagulation factor VII (FVIIa) is mainly used to treat the bleeding of hemophilia patients who have developed inhibitory antibodies against FVIII and FIX conventional treatment. Recombinant human factor VII (rhFVII) produced in mammalian cell lines have been developed as the most important resource of FVIIa. However, cell lines express rhFVII protein derived from an exogenous expression vector at a lower level than most other proteins. In the current study, we have shown efficient rhFVII production in CHO cell lines using piggyBac (PB) transposon system. rhFVII is successfully expressed in fed-batch culture of CHO cells, and the expression of rhFVII up to 100 mg/L. Moreover, the purified secreted rhFVII was determined by SDS-PAGE and Western Blot. The coagulation activity was determined by the chromogenic Activity ELISA kit. In conclusion, this study has demonstrated that the piggyBac transposon system can be used for an efficient production of recombinant FVII.
Collapse
Affiliation(s)
- Zhen Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China, 518055; Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Xueyun Wang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Shan Luo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Hui Li
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Jiangbo Xu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Linlin Liang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Zhimin He
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Guangyuan Wang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Zhuobin Wu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Nan Zhong
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Haijun Xiang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Zhan Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China.
| | - Yunjia Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107; Shenzhen Innovation Pharmaceutical Engineering Laboratory for Recombinant Plasma Proteins, Shenzhen 518107, China.
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China, 518055; Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107.
| |
Collapse
|
3
|
Gonzalez-Rivera JC, Galvan A, Ryder T, Milman M, Agarwal K, Kandari L, Khetan A. A high-titer scalable Chinese hamster ovary transient expression platform for production of biotherapeutics. Biotechnol Bioeng 2024; 121:3454-3470. [PMID: 39101569 DOI: 10.1002/bit.28817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells offers a route to accelerate biologics development by delivering material weeks to months earlier than what is possible with conventional cell line development. However, low productivity, inconsistent product quality profiles, and scalability challenges have prevented its broader adoption. In this study, we develop a scalable CHO-based TGE system achieving 1.9 g/L of monoclonal antibody in an unmodified host. We integrated continuous flow-electroporation and alternate tangential flow (ATF) perfusion to enable an end-to-end closed system from N-1 perfusion to fed-batch 50-L bioreactor production. Optimization of both the ATF operation for three-in-one application-cell growth, buffer exchange, and cell mass concentration-and the flow-electroporation process, led to a platform for producing biotherapeutics using transiently transfected cells. We demonstrate scalability up to 50-L bioreactor, maintaining a titer over 1 g/L. We also show comparable quality between both transiently and stably produced material, and consistency across batches. The results confirm that purity, charge variants and N-glycan profiles are similar. Our study demonstrates the potential of CHO-based TGE platforms to accelerate biologics process development timelines and contributes evidence supporting its feasibility for manufacturing early clinical material, aiming to strengthen endorsement for TGE's wider implementation.
Collapse
Affiliation(s)
| | - Alberto Galvan
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Todd Ryder
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Monica Milman
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Kitty Agarwal
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Lakshmi Kandari
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Anurag Khetan
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Kunzelmann M, Wittmann A, Presser B, Brosig P, Marhoffer PK, Haider MA, Martin J, Berger M, Wucherpfennig T. Lifecycle DoE-The Companion for a Holistic Development Process. Bioengineering (Basel) 2024; 11:1089. [PMID: 39593749 PMCID: PMC11591819 DOI: 10.3390/bioengineering11111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Within process development, numerous experimental studies are undertaken to establish, optimize and characterize individual bioprocess unit operations. These studies pursue diverse objectives such as enhancing titer or minimizing impurities. Consequently, Design of Experiment (DoE) studies are planned and analyzed independently from each other, making it challenging to interlink individual data sets to form a comprehensive overview at the conclusion of the development process. This paper elucidates the methodology for constructing a Life-Cycle-DoE (LDoE), which integrates data-driven process knowledge through design augmentations. It delves into the strategy, highlights the challenges encountered and provides solutions for overcoming them. The LDoE approach facilitates the augmentation of an existing model with new experiments in a unified design. It allows for flexible design adaptations as per the requirements of subject matter experts (SME) during process development, concurrently enhancing model predictions by utilizing all available data. The LDoE boasts a broad application spectrum as it consolidates all data generated within bioprocess development into a single file and model. The study demonstrates that the LDoE approach enables a process characterization study (PCS) to be performed solely with development data. Furthermore, it identifies potentially critical process parameters (pCPPs) early, allowing for timely adaptations in process development to address these challenges.
Collapse
Affiliation(s)
- Marco Kunzelmann
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Anja Wittmann
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Beate Presser
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Philipp Brosig
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Pia Kristin Marhoffer
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Marlene Antje Haider
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Julia Martin
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| | - Martina Berger
- HP BioP Operations Network Mammalian, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Thomas Wucherpfennig
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany (B.P.); (T.W.)
| |
Collapse
|
5
|
Zeh N, Schmidt M, Schulz P, Fischer S. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Biotechnol Adv 2024; 75:108402. [PMID: 38950872 DOI: 10.1016/j.biotechadv.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Cell line development represents a crucial step in the development process of a therapeutic glycoprotein. Chinese hamster ovary (CHO) cells are the most frequently employed mammalian host cell system for the industrial manufacturing of biologics. The predominant application of CHO cells for heterologous recombinant protein expression lies in the relative simplicity of stably introducing ectopic DNA into the CHO host cell genome. Since CHO cells were first used as expression host for the industrial production of biologics in the late 1980s, stable genomic transgene integration has been achieved almost exclusively by random integration. Since then, random transgene integration had become the gold standard for generating stable CHO production cell lines due to a lack of viable alternatives. However, it was eventually demonstrated that this approach poses significant challenges on the cell line development process such as an increased risk of inducing cell line instability. In recent years, significant discoveries of new and highly potent (semi)-targeted transgene integration systems have paved the way for a technological revolution in the cell line development sector. These advanced methodologies comprise the application of transposase-, recombinase- or Cas9 nuclease-mediated site-specific genomic integration techniques, which enable a scarless transfer of the transgene expression cassette into transcriptionally active loci within the host cell genome. This review summarizes recent advancements in the field of transgene integration technologies for CHO cell line development and compare them to the established random integration approach. Moreover, advantages and limitations of (semi)-targeted integration techniques are discussed, and benefits and opportunities for the biopharmaceutical industry are outlined.
Collapse
Affiliation(s)
- Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany.
| |
Collapse
|
6
|
Hew BE, Gupta S, Sato R, Waller DF, Stoytchev I, Short JE, Sharek L, Tran CT, Badran AH, Owens JB. Directed evolution of hyperactive integrases for site specific insertion of transgenes. Nucleic Acids Res 2024; 52:e64. [PMID: 38953167 DOI: 10.1093/nar/gkae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
The ability to deliver large transgenes to a single genomic sequence with high efficiency would accelerate biomedical interventions. Current methods suffer from low insertion efficiency and most rely on undesired double-strand DNA breaks. Serine integrases catalyze the insertion of large DNA cargos at attachment (att) sites. By targeting att sites to the genome using technologies such as prime editing, integrases can target safe loci while avoiding double-strand breaks. We developed a method of phage-assisted continuous evolution we call IntePACE, that we used to rapidly perform hundreds of rounds of mutagenesis to systematically improve activity of PhiC31 and Bxb1 serine integrases. Novel hyperactive mutants were generated by combining synergistic mutations resulting in integration of a multi-gene cargo at rates as high as 80% of target chromosomes. Hyperactive integrases inserted a 15.7 kb therapeutic DNA cargo containing von Willebrand Factor. This technology could accelerate gene delivery therapeutics and our directed evolution strategy can easily be adapted to improve novel integrases from nature.
Collapse
Affiliation(s)
- Brian E Hew
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Sabranth Gupta
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ryuei Sato
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - David F Waller
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ilko Stoytchev
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - James E Short
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Lisa Sharek
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Christopher T Tran
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ahmed H Badran
- Department of Chemistry, Department of Integrative Structural and Computational Biology, Beckman Center for Chemical Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesse B Owens
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| |
Collapse
|
7
|
Tu B, Lin Z, Moore J, Krishnan Sekaran A, Wesley MJ, Mao DY, Gibson M, Lai WC, Boggs J, Slowik T, Perez-Gelvez YNC, Bonn R, Rae T, Minshull J, Boldog F, Sitaraman V, Muerhoff S, Hemken P. Recombinant Antibody-Producing Stable CHOK1 Pool Stability Study. Monoclon Antib Immunodiagn Immunother 2024; 43:119-126. [PMID: 39034896 DOI: 10.1089/mab.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mammalian cell line stability is an important consideration when establishing a biologics manufacturing process in the biopharmaceutical and in vitro diagnostics (IVD) industries. Traditional Chinese hamster ovary (CHO) cell line development methods use a random integration approach that requires transfection, selection, optional amplification, screenings, and single-cell cloning to select clones with acceptable productivity, product quality, and genetic stability. Site-specific integration reduces these disadvantages, and new technologies have been developed to mitigate risks associated with genetic instability. In this study, we applied the Leap-In® transposase-mediated expression system from ATUM to generate stable CHOK1 pools for the production of four recombinant antibody reagents for IVD immunoassays. CHO cell line stability is defined by consistent antibody production over time. Three of the CHOK1 pools maintained productivity suitable for manufacturing, with high antibody yields. The productivity of the remaining CHOK1 pool decreased over time; however, derivative clones showed acceptable stability. l-glutamine had variable effects on CHOK1 cell line or stable pool stability and significantly affected antibody product titer. Compared with traditional random integration methods, the ATUM Leap-In system can reduce the time needed to develop new immunoassays by using semi site-specific integration to generate high-yield stable pools that meet manufacturing stability requirements.
Collapse
Affiliation(s)
- Bailin Tu
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Zhihong Lin
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Jeff Moore
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Archana Krishnan Sekaran
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Miranda J Wesley
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - De Yu Mao
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Mark Gibson
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Wan-Ching Lai
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - John Boggs
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Thomas Slowik
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Yeni Natalia C Perez-Gelvez
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Ryan Bonn
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Tracey Rae
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | | | | | | | - Scott Muerhoff
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Philip Hemken
- Biologics Discovery and Design, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
| |
Collapse
|
8
|
Clarke H, Mayer-Bartschmid A, Zheng C, Masterjohn E, Patel F, Moffat M, Wei Q, Liu R, Emmins R, Fischer S, Rieder S, Kelly T. When will we have a clone? An industry perspective on the typical CLD timeline. Biotechnol Prog 2024; 40:e3449. [PMID: 38477447 DOI: 10.1002/btpr.3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Cell line development (CLD) represents a complex but highly critical process during the development of a biological drug. To shed light on this crucial workflow, a team of BioPhorum members (authors) has developed and executed surveys focused on the activities and effort involved in a typical CLD campaign. An average of 27 members from different companies that participate in the BioPhorum CLD working group answered surveys covering three distinguishable stages of a standard CLD process: (1) Pre-transfection, including vector design and construction; (2) Transfection, spanning the initial introduction of vector into cells and subsequent selection and analysis of the pools; and (3) Single Cell Cloning and Lead Clone Selection, comprising methods of isolating single cells and confirming clonal origin, subsequent expansion and screening processes, and methods for identifying and banking lead clones. The surveys were very extensive, including a total of 341 questions split between antibody and complex molecule CLD processes. In this survey review, the authors interpret and highlight responses for antibody development and, where relevant, contrast complex molecule development challenges to provide a comprehensive industry perspective on the typical time and effort required to develop a CHO production cell line.
Collapse
Affiliation(s)
- Howard Clarke
- Seagen Inc., Cell Line Development, Bothell, Washington, USA
| | | | - Chenxing Zheng
- Incyte Corporation, Cell Line Development, Wilmington, Delaware, USA
| | | | - Falguni Patel
- AbbVie Inc., S&T Biologics Development & Launch, Worcester, Massachusetts, USA
| | - Mark Moffat
- Pfizer, Cell Line Development, Chesterfield, Missouri, USA
| | - Qingxiang Wei
- Incyte Corporation, Cell Line Development, Wilmington, Delaware, USA
| | - Ren Liu
- Merck & Co., Inc., Process Cell Sciences, Rahway, New Jersey, USA
| | - Robyn Emmins
- GSK Medicines and Research Centre, Cell Line Development, Stevenage, UK
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cell Line Development, Biberach, Germany
| | - Stephanie Rieder
- AbbVie Inc., S&T Biologics Development & Launch, Worcester, Massachusetts, USA
| | - Thomas Kelly
- Janssen R&D, Cell Engineering & Analytical Sciences, Spring House, Pennsylvania, USA
| |
Collapse
|
9
|
Barnard GC, Zhou M, Shen A, Yuk IH, Laird MW. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies. Biotechnol Prog 2024; 40:e3399. [PMID: 37874920 DOI: 10.1002/btpr.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Monoclonal antibodies (mAbs) are effective therapeutic agents against many acute infectious diseases including COVID-19, Ebola, RSV, Clostridium difficile, and Anthrax. mAbs can therefore help combat a future pandemic. Unfortunately, mAb development typically takes years, limiting its potential to save lives during a pandemic. Therefore "pandemic mAb" timelines need to be shortened. One acceleration tool is "deferred cloning" and leverages new Chinese hamster ovary (CHO) technology based on targeted gene integration (TI). CHO pools, instead of CHO clones, can be used for Phase I/II clinical material production. A final CHO clone (producing the mAb with a similar product quality profile and preferably with a higher titer) can then be used for Phase III trials and commercial manufacturing. This substitution reduces timelines by ~3 months. We evaluated our novel CHO TI platform to enable deferred cloning. We created four unique CHO pools expressing three unique mAbs (mAb1, mAb2, and mAb3), and a bispecific mAb (BsAb1). We then performed single-cell cloning for mAb1 and mAb2, identifying three high-expressing clones from each pool. CHO pools and clones were inoculated side-by-side in ambr15 bioreactors. CHO pools yielded mAb titers as high as 10.4 g/L (mAb3) and 7.1 g/L (BsAb1). Subcloning yielded CHO clones expressing higher titers relative to the CHO pools while yielding similar product quality profiles. Finally, we showed that CHO TI pools were stable by performing a 3-month cell aging study. In summary, our CHO TI platform can increase the speed to clinic for a future "pandemic mAb."
Collapse
Affiliation(s)
- Gavin C Barnard
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michelle Zhou
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michael W Laird
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| |
Collapse
|
10
|
Heinzelmann D, Lindner B, Renner B, Fischer S, Schulz P, Schmidt M. Droplet digital PCR: A comprehensive tool for genetic analysis and prediction of bispecific antibody assembly during cell line development. N Biotechnol 2023; 78:42-51. [PMID: 37797917 DOI: 10.1016/j.nbt.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Molecular biological methods have emerged as inevitable tools to accompany the process of cell line development for the generation of stable and highly productive manufacturing cell lines in the biopharmaceutical industry. PCR-based methods are especially useful for screening and characterization of cell lines due to their low cost, scalability, precision and propensity for multidimensional read-outs. In this study, the diverse applications of droplet digital PCR (ddPCR) as a molecular biological tool for cell line development are demonstrated. Specifically, it is shown that ddPCR can be used to enable precise, sensitive and reproducible absolute quantification of genomically integrated transgene copies during cell line development and cell bank characterization. Additionally, an amplitude multiplexing approach is applied to simultaneously run multiple assays on different genetic targets in a single reaction and advance clonal screening by measuring gene expression profiles to predict the assembly and homogeneity of difficult-to-express (DTE) proteins. The implementation of ddPCR-based assays during cell line development allows for early screening at a transcriptional level, particularly for complex, multidomain proteins, where balanced polypeptide chain ratios are of primary importance. Moreover, it is demonstrated that ddPCR-based genomic characterization improves the robustness, efficiency and comparability of absolute transgene copy number quantification, an essential genetic parameter that must be demonstrated to regulatory authorities during clinical trial and market authorization application submissions to support genetic stability and consistency of the selected cell substrate.
Collapse
Affiliation(s)
- Daniel Heinzelmann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Benjamin Renner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| |
Collapse
|
11
|
Maltais JS, Lord-Dufour S, Morasse A, Stuible M, Loignon M, Durocher Y. Repressing expression of difficult-to-express recombinant proteins during the selection process increases productivity of CHO stable pools. Biotechnol Bioeng 2023; 120:2840-2852. [PMID: 37232536 DOI: 10.1002/bit.28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
More than half of licensed therapeutic recombinant proteins (r-proteins) are manufactured using constitutively-expressing, stably-transfected Chinese hamster ovary (CHO) clones. While constitutive CHO expression systems have proven their efficacy for the manufacturing of monoclonal antibodies, many next-generation therapeutics such as cytokines and bispecific antibodies as well as biological targets such as ectodomains of transmembrane receptors remain intrinsically challenging to produce. Herein, we exploited a cumate-inducible CHO platform allowing reduced expression of various classes of r-proteins during selection of stable pools. Following stable pool generation, fed-batch productions showed that pools generated without cumate (OFF-pools) were significantly more productive than pools selected in the presence of cumate (ON-pools) for 8 out of the 10 r-proteins tested, including cytokines, G-protein coupled receptors (GPCRs), the HVEM membrane receptor ectodomain, the multifunctional protein High Mobility Group protein B1 (HMGB1), as well as monoclonal and bispecific T-cell engager antibodies. We showed that OFF-pools contain a significantly larger proportion of cells producing high levels of r-proteins and that these cells tend to proliferate faster when expression is turned off, suggesting that r-protein overexpression imposes a metabolic burden on the cells. Cell viability was lower and pool recovery was delayed during selection of ON-pools (mimicking constitutive expression), suggesting that high producers were likely lost or overgrown by faster-growing, low-producing cells. We also observed a correlation between the expression levels of the GPCRs with Binding immunoglobulin Protein, an endoplasmic reticulum (ER) stress marker. Taken together, these data suggest that using an inducible system to minimize r-protein expression during stable CHO pool selection reduces cellular stresses, including ER stress and metabolic burden, leading to pools with greater frequency of high-expressing cells, resulting in improved volumetric productivity.
Collapse
Affiliation(s)
- Jean-Sébastien Maltais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Simon Lord-Dufour
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Audrey Morasse
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
13
|
Leitner K, Motheramgari K, Borth N, Marx N. Nanopore Cas9-targeted sequencing enables accurate and simultaneous identification of transgene integration sites, their structure and epigenetic status in recombinant Chinese hamster ovary cells. Biotechnol Bioeng 2023; 120:2403-2418. [PMID: 36938677 DOI: 10.1002/bit.28382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
The integration of a transgene expression construct into the host genome is the initial step for the generation of recombinant cell lines used for biopharmaceutical production. The stability and level of recombinant gene expression in Chinese hamster ovary (CHO) can be correlated to the copy number, its integration site as well as the epigenetic context of the transgene vector. Also, undesired integration events, such as concatemers, truncated, and inverted vector repeats, are impacting the stability of recombinant cell lines. Thus, to characterize cell clones and to isolate the most promising candidates, it is crucial to obtain information on the site of integration, the structure of integrated sequence and the epigenetic status. Current sequencing techniques allow to gather this information separately but do not offer a comprehensive and simultaneous resolution. In this study, we present a fast and robust nanopore Cas9-targeted sequencing (nCats) pipeline to identify integration sites, the composition of the integrated sequence as well as its DNA methylation status in CHO cells that can be obtained simultaneously from the same sequencing run. A Cas9-enrichment step during library preparation enables targeted and directional nanopore sequencing with up to 724× median on-target coverage and up to 153 kb long reads. The data generated by nCats provides sensitive, detailed, and correct information on the transgene integration sites and the expression vector structure, which could only be partly produced by traditional Targeted Locus Amplification-seq data. Moreover, with nCats the DNA methylation status can be analyzed from the same raw data without prior DNA amplification.
Collapse
Affiliation(s)
- Klaus Leitner
- Austrian Center of Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Nicole Borth
- Austrian Center of Industrial Biotechnology GmbH, Vienna, Austria
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicolas Marx
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
14
|
Castellanos MM, Gressard H, Li X, Magagnoli C, Moriconi A, Stranges D, Strodiot L, Tello Soto M, Zwierzyna M, Campa C. CMC Strategies and Advanced Technologies for Vaccine Development to Boost Acceleration and Pandemic Preparedness. Vaccines (Basel) 2023; 11:1153. [PMID: 37514969 PMCID: PMC10386492 DOI: 10.3390/vaccines11071153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review reports on an overview of key enablers of acceleration/pandemic and preparedness, covering CMC strategies as well as technical innovations in vaccine development. Considerations are shared on implementation hurdles and opportunities to drive sustained acceleration for vaccine development and considers learnings from the COVID pandemic and direct experience in addressing unmet medical needs. These reflections focus on (i) the importance of a cross-disciplinary framework of technical expectations ranging from target antigen identification to launch and life-cycle management; (ii) the use of prior platform knowledge across similar or products/vaccine types; (iii) the implementation of innovation and digital tools for fast development and innovative control strategies.
Collapse
Affiliation(s)
- Maria Monica Castellanos
- Drug Product Development, Vaccines Technical R&D, GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Hervé Gressard
- Project & Digital Sciences, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Xiangming Li
- Drug Substance Development, Vaccines Technical R&D, GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Claudia Magagnoli
- Analytical Research & Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Alessio Moriconi
- Drug Product Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Daniela Stranges
- Drug Product Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Laurent Strodiot
- Drug Product Development, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Monica Tello Soto
- Drug Substance Development, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Magdalena Zwierzyna
- Project & Digital Sciences, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Cristiana Campa
- Vaccines Global Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
15
|
Joubert S, Stuible M, Lord-Dufour S, Lamoureux L, Vaillancourt F, Perret S, Ouimet M, Pelletier A, Bisson L, Mahimkar R, Pham PL, L Ecuyer-Coelho H, Roy M, Voyer R, Baardsnes J, Sauvageau J, St-Michael F, Robotham A, Kelly J, Acel A, Schrag JD, El Bakkouri M, Durocher Y. A CHO stable pool production platform for rapid clinical development of trimeric SARS-CoV-2 spike subunit vaccine antigens. Biotechnol Bioeng 2023. [PMID: 36987713 DOI: 10.1002/bit.28387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.
Collapse
Affiliation(s)
- Simon Joubert
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Simon Lord-Dufour
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Linda Lamoureux
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - François Vaillancourt
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Manon Ouimet
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Louis Bisson
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Rohan Mahimkar
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Helene L Ecuyer-Coelho
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Marjolaine Roy
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Janelle Sauvageau
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Frank St-Michael
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Majida El Bakkouri
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Clappier C, Böttner D, Heinzelmann D, Stadermann A, Schulz P, Schmidt M, Lindner B. Deciphering integration loci of CHO manufacturing cell lines using long read nanopore sequencing. N Biotechnol 2023; 75:31-39. [PMID: 36925062 DOI: 10.1016/j.nbt.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Despite advances in genetic characterization of Chinese hamster ovary (CHO) cell lines regarding identification of integration sites using next generation sequencing, e.g. targeted locus amplification sequencing (TLA-seq), the concatemer structure of the integrated vectors remains elusive. Here, the entire integration locus of two CHO manufacturing cell lines was reconstructed combining CRISPR/Cas9 target enrichment, nanopore sequencing and the Canu de novo assembly pipeline. An IgG producing CHO cell line integrated 3 vector copies, which were near full-length and contained all relevant vector elements such as transgenes and their promoters on each of the vector copies. In contrast, a second CHO cell line producing a bivalent bispecific antibody integrated 7 highly fragmented vector copies in different orientations leading to head-to-head and tail-to-tail fusions. The size of the vector fragments ranged from 3.0 to 11.4 kbp each carrying 1-3 transgenes. The breakpoints of the genome-vector and vector-vector junctions were validated using Sanger sequencing and Southern blotting. A comparison to TLA-seq data confirmed the genomic breakpoints, but most of the breakpoints of the vector-vector fusions were missed by TLA-seq. For the first time, the complete transgene locus of CHO manufacturing cell lines could be deciphered. Strikingly, the application of the nanopore long-read sequencing technology led to novel insights into the complexity of genomic transgene integrations of CHO manufacturing cell lines generated via random integration.
Collapse
Affiliation(s)
- Christian Clappier
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Dennis Böttner
- Research, Cardiometabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Daniel Heinzelmann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| |
Collapse
|
17
|
Wang Y, Quan Q, Gleason C, Yu H, Peng L, Kang Y, Jiang L, Wu K, Pan J, Bao M, Zhu Q, Yi M, Fang M, Zheng Y, Qiu L, Xu B, Li X, Song J, Sun J, Zhang Z, Su Z, Lin J, Xie Y, Xu A, Song X, Huang C, Shen Z, Wang L, Song J. Accelerating the speed of innovative anti-tumor drugs to first-in-human trials incorporating key de-risk strategies. MAbs 2023; 15:2292305. [PMID: 38095560 DOI: 10.1080/19420862.2023.2292305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Pharmaceutical companies have recently focused on accelerating the timeline for initiating first-in-human (FIH) trials to allow quick assessment of biologic drugs. For example, a stable cell pool can be used to produce materials for the toxicology (Tox) study, reducing time to the clinic by 4-5 months. During the coronavirus disease 2019 (COVID-19) pandemic, the anti-COVID drugs timeline from DNA transfection to the clinical stage was decreased to 6 months using a stable pool to generate a clinical drug substrate (DS) with limited stability, virus clearance, and Tox study package. However, a lean chemistry, manufacturing, and controls (CMC) package raises safety and comparability risks and may leave extra work in the late-stage development and commercialization phase. In addition, whether these accelerated COVID-19 drug development strategies can be applied to non-COVID projects and established as a standard practice in biologics development is uncertain. Here, we present a case study of a novel anti-tumor drug in which application of "fast-to-FIH" approaches in combination with BeiGene's de-risk strategy achieved successful delivery of a complete CMC package within 10 months. A comprehensive comparability study demonstrated that the DS generated from a stable pool and a single-cell-derived master cell bank were highly comparable with regards to process performance, product quality, and potency. This accomplishment can be a blueprint for non-COVID drug programs that approach the pace of drug development during the pandemic, with no adverse impact on the safety, quality, and late-stage development of biologics.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Quan Quan
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Camille Gleason
- Department of Regulatory Affairs CMC, BeiGene USA, Inc, San Mateo, CA, USA
| | - Helin Yu
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Lujia Peng
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Yanshen Kang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Ling Jiang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Kailun Wu
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Jie Pan
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Moxiyele Bao
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Qing Zhu
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Meiqi Yi
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Ming Fang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Yue Zheng
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Ling Qiu
- Department of Technical Operation and Manufacturing, BeiGene (Guangzhou) Co. Ltd, Guangzhou, China
| | - Bin Xu
- Department of Technical Operation and Manufacturing, BeiGene (Guangzhou) Co. Ltd, Guangzhou, China
| | - Xiang Li
- Department of Technical Operation and Manufacturing, BeiGene (Guangzhou) Co. Ltd, Guangzhou, China
| | - Jinfeng Song
- Department of Technical Operation and Manufacturing, BeiGene (Guangzhou) Co. Ltd, Guangzhou, China
| | - Jiamu Sun
- Department of Regulatory Affairs CMC, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Zheng Zhang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Zijun Su
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Jara Lin
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Yuanyuan Xie
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - April Xu
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Xiling Song
- Department of Regulatory Affairs CMC, BeiGene USA, Inc, San Mateo, CA, USA
| | - Chichi Huang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Zhirong Shen
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Lai Wang
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Jing Song
- Department of Research and Development, BeiGene (Beijing) Co. Ltd, Beijing, China
| |
Collapse
|
18
|
Mieczkowski C, Zhang X, Lee D, Nguyen K, Lv W, Wang Y, Zhang Y, Way J, Gries JM. Blueprint for antibody biologics developability. MAbs 2023; 15:2185924. [PMID: 36880643 PMCID: PMC10012935 DOI: 10.1080/19420862.2023.2185924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Large-molecule antibody biologics have revolutionized medicine owing to their superior target specificity, pharmacokinetic and pharmacodynamic properties, safety and toxicity profiles, and amenability to versatile engineering. In this review, we focus on preclinical antibody developability, including its definition, scope, and key activities from hit to lead optimization and selection. This includes generation, computational and in silico approaches, molecular engineering, production, analytical and biophysical characterization, stability and forced degradation studies, and process and formulation assessments. More recently, it is apparent these activities not only affect lead selection and manufacturability, but ultimately correlate with clinical progression and success. Emerging developability workflows and strategies are explored as part of a blueprint for developability success that includes an overview of the four major molecular properties that affect all developability outcomes: 1) conformational, 2) chemical, 3) colloidal, and 4) other interactions. We also examine risk assessment and mitigation strategies that increase the likelihood of success for moving the right candidate into the clinic.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Xuejin Zhang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Dana Lee
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Khanh Nguyen
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Wei Lv
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Yanling Wang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Yue Zhang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Jackie Way
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Jean-Michel Gries
- President, Discovery Research, Hengenix Biotech, Inc, Milpitas, CA, USA
| |
Collapse
|
19
|
Hall CA, Kravitz RH, Johnson KF, Sanek NA, Maiti P, Ziemba KR, Liu J, Andreev DO, Chrostowski VL, Collins IJ, Bleck GT. Shortening the biologics clinical timeline with a novel method for generating stable, high-producing cell pools and clones. Biotechnol Bioeng 2022. [PMID: 36582005 DOI: 10.1002/bit.28323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Reducing drug development timelines is an industry-wide goal to bring medicines to patients in need more quickly. This was exemplified in the coronavirus disease 2019 pandemic where reducing development timelines had a direct impact on the number of lives lost to the disease. The use of drug substances produced using cell pools, as opposed to clones, has the potential to shorten development timelines. Toward this goal, we have developed a novel technology, GPEx® Lightning, that allows for rapid, reproducible, targeted recombination of transgenes into more than 200 Dock sites in the Chinese hamster ovary cell line genome. This allows for rapid production of high-expressing stable cell pools and clones that reach titers of 4-12 g/l in generic fed-batch production. These pools and clones are highly stable in both titer and glycosylation, showing strong similarities in glycosylation profiles.
Collapse
Affiliation(s)
- Chad A Hall
- Catalent Pharma Solutions, Somerset, New Jersey, USA
| | | | | | | | - Payel Maiti
- Catalent Pharma Solutions, Somerset, New Jersey, USA
| | | | - Jia Liu
- Catalent Pharma Solutions, Somerset, New Jersey, USA
| | | | | | - Ian J Collins
- Catalent Pharma Solutions, Somerset, New Jersey, USA
| | | |
Collapse
|
20
|
Tan KW, Ji P, Qian Z, Gao Q, Wang S, Li Q, Gu M, Zhang Q, Hou C, Huang Y, Lian D, Wang J, Zhang Z, Zhang S, Wu J, Zhou W. Rapidly accelerated development of neutralizing COVID-19 antibodies by reducing cell line and CMC development timelines. Biotechnol Bioeng 2022:10.1002/bit.28302. [PMID: 36482495 PMCID: PMC9877800 DOI: 10.1002/bit.28302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Since the Coronavirus Disease 2019 (COVID-19) outbreak, unconventional cell line development (CLD) strategies have been taken to enable development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies at expedited speed. We previously reported a novel chemistry, manufacturing, and control (CMC) workflow and demonstrated a much-shortened timeline of 3-6 months from DNA to investigational new drug (IND) application. Hereafter, we have incorporated this CMC strategy for many SARS-CoV-2-neutralizing antibody programs at WuXi Biologics. In this paper, we summarize the accelerated development of a total of seven antibody programs, some of which have received emergency use authorization approval in less than 2 years. Stable pools generated under good manufacturing practice (GMP) conditions consistently exhibited similar productivity and product quality at different scales and batches, enabling rapid initiation of phase I clinical trials. Clones with comparable product quality as parental pools were subsequently screened and selected for late-stage development and manufacturing. Moreover, a preliminary stability study plan was devised to greatly reduce the time required for final clone determination and next-generation sequencing-based viral testing was implemented to support rapid conditional release of the master cell bank for GMP production. The successful execution of these COVID-19 programs relies on our robust, fit for purpose, and continuously improving CLD platform. The speed achieved for pandemic-related biologics development may innovate typical biologics development timelines and become a new standard in the industry.
Collapse
Affiliation(s)
- Kee Wee Tan
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Pengfei Ji
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Zichen Qian
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Qiao Gao
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Shuai Wang
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Qin Li
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Mingzhu Gu
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Qi Zhang
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Chengjian Hou
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Yang Huang
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Dujuan Lian
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Junghao Wang
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Zheng Zhang
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Sam Zhang
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Jiansheng Wu
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| | - Weichang Zhou
- WuXi Biologics, Waigaoqiao Free Trade ZoneShanghaiChina
| |
Collapse
|
21
|
Wang Y, Qiu H, Minshull J, Tam W, Hu X, Mieczkowski C, Zheng W, Chu C, Liu W, Boldog F, Gustafsson C, Gries JM, Xu W. An innovative platform to improve asymmetric bispecific antibody assembly, purity, and expression level in stable pool and cell line development. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|