1
|
Wei D, Liang X, Huang M, Wang C, Ye Z, Zhang T, Zhang J. Targeting histone deacetylase 1 (HDAC1) in the bone marrow stromal cells revers imatinib resistance by modulating IL-6 in Ph + acute lymphoblastic leukemia. Ann Hematol 2024; 103:3015-3027. [PMID: 38847852 DOI: 10.1007/s00277-024-05830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.
Collapse
Affiliation(s)
- Danna Wei
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Xiaoling Liang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Meiling Huang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Caili Wang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Zhangmin Ye
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Jingrong Zhang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China.
| |
Collapse
|
2
|
Zhou J, Ottewell PD. The role of IL-1B in breast cancer bone metastasis. J Bone Oncol 2024; 46:100608. [PMID: 38800348 PMCID: PMC11127524 DOI: 10.1016/j.jbo.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Interleukin-1B (IL-1B) is a potent pro-inflammatory cytokine that plays multiple, pivotal roles, in the complex interplay between breast cancer cells and the bone microenvironment. IL-1B is involved in the growth of the primary tumours, regulation of inflammation within the tumour microenvironment, promotion of epithelial to mesenchymal transition (EMT), migration and invasion. Moreover, when breast cancer cells arrive in the bone microenvironment there is an upregulation of IL-1B which promotes the creation of a conducive niche for metastatic breast cancer cells as well as stimulating initiation of the vicious cycle of bone metastasis. Pre-clinical studies have demonstrated that inhibition of IL-1 signalling reduces bone metastasis from oestrogen receptor positive/triple-negative breast cancers in various mouse models. However, effects on primary tumours and soft tissue metastasis remain controversial with some studies showing increased tumour growth in these sites, whilst others show no effects. Notably, combining anti-IL-1 therapy with standard-of-care treatments, such as chemotherapy and immunotherapy, has been demonstrated to reduce the growth of primary tumours, bone metastasis, as well as metastatic outgrowth in other organs. This review focuses on the mechanisms by which IL-1B promotes breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jiabao Zhou
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Penelope D. Ottewell
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| |
Collapse
|
3
|
Nair SG, Benny S, Jose WM, Aneesh T P. Beta-blocker adjunct therapy as a prospective anti-metastatic with cardio-oncologic regulation. Clin Exp Metastasis 2024; 41:9-24. [PMID: 38177715 DOI: 10.1007/s10585-023-10258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The prevailing treatment stratagem in cancer therapy still challenges the dilemma of a probable metastatic spread following an initial diagnosis. Including an anti-metastatic agent demands a significant focus to overrule the incidence of treatment failures. Adrenergic stimulation underlying the metastatic spread paved the way for beta blockers as a breakthrough in repurposing as an anti-metastatic agent. However, the current treatment approach fails to fully harness the versatile potential of the drug in inhibiting probable metastasis. The beta blockers were seen to show a myriad of grip over the pro-metastatic and prognostic parameters of the patient. Novel interventions in immune therapy, onco-hypertension, surgery-induced stress, induction of apoptosis and angiogenesis inhibition have been used as evidence to interpret our objective of discussing the potential adjuvant role of the drug in the existing anti-cancer regimens. Adding weight to the relative incidence of onco-hypertension as an unavoidable side effect from chemotherapy, the slot for an anti-hypertensive agent is necessitated, and we try to suggest beta-blockers to fill this position. However, pointing out the paucity in the clinical study, we aim to review the current status of beta blockers under this interest to state how the drug should be included as a drug of choice in every patient undergoing cancer treatment.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi, Kerala, 682041, India.
| | - Aneesh T P
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
4
|
Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential. Int J Mol Sci 2023; 24:ijms24087087. [PMID: 37108248 PMCID: PMC10138870 DOI: 10.3390/ijms24087087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood-brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential.
Collapse
Affiliation(s)
- Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xueyi Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yufan Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
5
|
Conceição F, Sousa DM, Tojal S, Lourenço C, Carvalho-Maia C, Estevão-Pereira H, Lobo J, Couto M, Rosenkilde MM, Jerónimo C, Lamghari M. The Secretome of Parental and Bone Metastatic Breast Cancer Elicits Distinct Effects in Human Osteoclast Activity after Activation of β2 Adrenergic Signaling. Biomolecules 2023; 13:biom13040622. [PMID: 37189370 DOI: 10.3390/biom13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
The sympathetic nervous system (SNS), particularly through the β2 adrenergic receptor (β2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting β2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under β2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under β-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.
Collapse
Affiliation(s)
- Francisco Conceição
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Tojal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Lourenço
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Helena Estevão-Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Marina Couto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Meriem Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Lourenço C, Conceição F, Jerónimo C, Lamghari M, Sousa DM. Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers (Basel) 2022; 14:1881. [PMID: 35454788 PMCID: PMC9028241 DOI: 10.3390/cancers14081881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and β-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.
Collapse
Affiliation(s)
- Catarina Lourenço
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology—ICBAS-UP, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 2022; 237:2107-2127. [PMID: 35243626 DOI: 10.1002/jcp.30707] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of β2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by β2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Mater Today Bio 2022; 13:100219. [PMID: 35243294 PMCID: PMC8857466 DOI: 10.1016/j.mtbio.2022.100219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.
Collapse
|
9
|
Liu HM, Ma LL, Li C, Cao B, Jiang Y, Han L, Xu R, Lin J, Zhang D. The molecular mechanism of chronic stress affecting the occurrence and development of breast cancer and potential drug therapy. Transl Oncol 2021; 15:101281. [PMID: 34875482 PMCID: PMC8652015 DOI: 10.1016/j.tranon.2021.101281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
According to the 2020 data released by the International Agency for Research on Cancer, breast cancer has surpassed lung cancer as the world's most newly diagnosed first-time cancer. Compared with patients with other types of cancer, those with breast cancer experience greater mental stress and more severe psychological impacts because of the life-threatening diagnosis, physical changes, treatment side effects, and family and social life dysfunctions. These usually manifest as anxiety, depression, nervousness, and insomnia, all of which elicit stress responses. Particularly under chronic stress, the continuous release of neurotransmitters from the neuroendocrine system can have a highly profound impact on the occurrence and prognosis of breast cancer. However, because of the complex mechanisms underlying chronic stress and the variability in individual tolerance, evidence of the role of chronic stress in the occurrence and evolution of breast cancer remains unclear. This article reviewed previous research on the correlation between chronic stress and the occurrence and development of breast cancer, particularly the molecular mechanism through which chronic stress promotes breast cancer via neurotransmitters secreted by the nervous system. We also review the progress in the development of potential drugs or blockers for the treatment of breast cancer by targeting the neuroendocrine system.
Collapse
Affiliation(s)
- Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Le-le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Chunyu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China; National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Road Shierqiao, Chengdu 610072, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Road Shierqiao, Chengdu 610072, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China.
| |
Collapse
|
10
|
Othman A, Winogradzki M, Lee L, Tandon M, Blank A, Pratap J. Bone Metastatic Breast Cancer: Advances in Cell Signaling and Autophagy Related Mechanisms. Cancers (Basel) 2021; 13:cancers13174310. [PMID: 34503118 PMCID: PMC8431094 DOI: 10.3390/cancers13174310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is a frequent complication of breast cancer with nearly 70% of metastatic breast cancer patients developing bone metastasis during the course of their disease. The bone represents a dynamic microenvironment which provides a fertile soil for disseminated tumor cells, however, the mechanisms which regulate the interactions between a metastatic tumor and the bone microenvironment remain poorly understood. Recent studies indicate that during the metastatic process a bidirectional relationship between metastatic tumor cells and the bone microenvironment begins to develop. Metastatic cells display aberrant expression of genes typically reserved for skeletal development and alter the activity of resident cells within the bone microenvironment to promote tumor development, resulting in the severe bone loss. While transcriptional regulation of the metastatic process has been well established, recent findings from our and other research groups highlight the role of the autophagy and secretory pathways in interactions between resident and tumor cells during bone metastatic tumor growth. These reports show high levels of autophagy-related markers, regulatory factors of the autophagy pathway, and autophagy-mediated secretion of matrix metalloproteinases (MMP's), receptor activator of nuclear factor kappa B ligand (RANKL), parathyroid hormone related protein (PTHrP), as well as WNT5A in bone metastatic breast cancer cells. In this review, we discuss the recently elucidated mechanisms and their crosstalk with signaling pathways, and potential therapeutic targets for bone metastatic disease.
Collapse
|
11
|
Chandore H, Raj AK, Lokhande KB, Swamy KV, Pal JK, Sharma NK. An Intracellular Tripeptide Arg-His-Trp of Serum Origin Detected in MCF-7 Cells Is A Possible Agonist to β2 Adrenoceptor. Protein Pept Lett 2021; 28:1191-1202. [PMID: 34397320 DOI: 10.2174/0929866528666210816114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The need of agonists and antagonists of β2 adrenoceptor (β2AR) is warranted in various human disease conditions including cancer, cardiovascular and other metabolic disorders. However, the sources of agonists of β2AR are diverse in nature. Interestingly, there is a complete gap in the exploration of agonists of β2AR from serum that is a well-known component of culture media which supports growth and proliferation of normal and cancer cells in vitro. METHODS In this paper, we employed a novel vertical tube gel electrophoresis (VTGE)-assisted purification of intracellular metabolites of MCF-7 cells grown in vitro in complete media with fetal bovine serum (FBS). Intracellular metabolites of MCF-7 cells were then analyzed by LC-HRMS. Identified intracellular tripeptides of FBS origin were evaluated for their molecular interactions with various extracellular and intracellular receptors including β2AR (PDB ID: 2RH1) by employing molecular docking and molecular dynamics simulations (MDS). A known agonist of β2AR, isoproterenol was used as a positive control in molecular docking and MDS analyses. RESULTS We report here identification of a few novel intracellular tripeptides, namely Arg-His-Trp, (PubChem CID-145453842), Pro-Ile-Glu, (PubChem CID-145457492), Cys-Gln-Gln, (PubChem CID-71471965), Glu-Glu-Lys, (PubChem CID-11441068) and Gly-Cys-Leu (PubChem CID-145455600) of FBS origin in MCF-7 cells. Molecular docking and MDS analyses revealed that among these molecules, the tripeptide Arg-His-Trp shows a favorable binding affinity with β2AR (-9.8 Kcal/mol). The agonistic effect of Arg-His-Trp is significant and comparable with that of a known agonist of β2AR, isoproterenol. CONCLUSION In conclusion, we identified a unique Arg-His-Trp tripeptide of FBS origin in MCF-7 cells by employing a novel approach. This unique tripeptide Arg-His-Trp is suggested to be a potential agonist of β2AR and it may have applications in the context of various human diseases like bronchial asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hritik Chandore
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
12
|
Costa A, Vale N. Strategies for the treatment of breast cancer: from classical drugs to mathematical models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6328-6385. [PMID: 34517536 DOI: 10.3934/mbe.2021316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.
Collapse
Affiliation(s)
- Ana Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Madel MB, Elefteriou F. Mechanisms Supporting the Use of Beta-Blockers for the Management of Breast Cancer Bone Metastasis. Cancers (Basel) 2021; 13:cancers13122887. [PMID: 34207620 PMCID: PMC8228198 DOI: 10.3390/cancers13122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bone represents the most common site of metastasis for breast cancer and the establishment and growth of metastatic cancer cells within the skeleton significantly reduces the quality of life of patients and their survival. The interplay between sympathetic nerves and bone cells, and its influence on the process of breast cancer bone metastasis is increasingly being recognized. Several mechanisms, all dependent on β-adrenergic receptor signaling in stromal bone cells, were shown to promote the establishment of disseminated cancer cells into the skeleton. This review provides a summary of these mechanisms in support of the therapeutic potential of β-blockers for the early management of breast cancer metastasis. Abstract The skeleton is heavily innervated by sympathetic nerves and represents a common site for breast cancer metastases, the latter being the main cause of morbidity and mortality in breast cancer patients. Progression and recurrence of breast cancer, as well as decreased overall survival in breast cancer patients, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. Preclinical studies have demonstrated that sympathetic stimulation of β-adrenergic receptors in osteoblasts increases bone vascular density, adhesion of metastatic cancer cells to blood vessels, and their colonization of the bone microenvironment, whereas β-blockade prevented these events in mice with high endogenous sympathetic activity. These findings in preclinical models, along with clinical data from breast cancer patients receiving β-blockers, support the pathophysiological role of excess sympathetic nervous system activity in the formation of bone metastases, and the potential of commonly used, safe, and low-cost β-blockers as adjuvant therapy to improve the prognosis of bone metastases.
Collapse
Affiliation(s)
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
14
|
Bhatti FUR, Dadwal UC, Valuch CR, Tewari NP, Awosanya OD, de Andrade Staut C, Sun S, Mendenhall SK, Perugini AJ, Nagaraj RU, Battina HL, Nazzal MK, Blosser RJ, Maupin KA, Childress PJ, Li J, Kacena MA. The effects of high fat diet, bone healing, and BMP-2 treatment on endothelial cell growth and function. Bone 2021; 146:115883. [PMID: 33581374 PMCID: PMC8009863 DOI: 10.1016/j.bone.2021.115883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs.
Collapse
Affiliation(s)
- Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Kevin A Maupin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
15
|
Lorenz MR, Brazill JM, Beeve AT, Shen I, Scheller EL. A Neuroskeletal Atlas: Spatial Mapping and Contextualization of Axon Subtypes Innervating the Long Bones of C3H and B6 Mice. J Bone Miner Res 2021; 36:1012-1025. [PMID: 33592122 PMCID: PMC8252627 DOI: 10.1002/jbmr.4273] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Nerves in bone play well-established roles in pain and vasoregulation and have been associated with progression of skeletal disorders, including osteoporosis, fracture, arthritis, and tumor metastasis. However, isolation of the region-specific mechanisms underlying these relationships is limited by our lack of quantitative methods for neuroskeletal analysis and precise maps of skeletal innervation. To overcome these limitations, we developed an optimized workflow for imaging and quantitative analysis of axons in and around the bone, including validation of Baf53b-Cre in concert with R26R-tdTomato (Ai9) as a robust pan-neuronal reporter system for use in musculoskeletal tissues. In addition, we created comprehensive maps of sympathetic adrenergic and sensory peptidergic axons within and around the full length of the femur and tibia in two strains of mice (B6 and C3H). In the periosteum, these maps were related to the surrounding musculature, including entheses and myotendinous attachments to bone. Three distinct patterns of periosteal innervation (termed type I, II, III) were defined at sites that are important for bone pain, bone repair, and skeletal homeostasis. For the first time, our results establish a gradient of bone marrow axon density that increases from proximal to distal along the length of the tibia and define key regions of interest for neuroskeletal studies. Lastly, this information was related to major nerve branches and local maps of specialized mechanoreceptors. This detailed mapping and contextualization of the axonal subtypes innervating the skeleton is intended to serve as a guide during the design, implementation, and interpretation of future neuroskeletal studies and was compiled as a resource for the field as part of the NIH SPARC consortium. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Madelyn R Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer M Brazill
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alec T Beeve
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ivana Shen
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
16
|
Haider MT, Ridlmaier N, Smit DJ, Taipaleenmäki H. Interleukins as Mediators of the Tumor Cell-Bone Cell Crosstalk during the Initiation of Breast Cancer Bone Metastasis. Int J Mol Sci 2021; 22:2898. [PMID: 33809315 PMCID: PMC7999500 DOI: 10.3390/ijms22062898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced breast cancer are at high risk of developing bone metastasis. Despite treatment advances for primary breast cancer, metastatic bone disease remains incurable with a low relative survival. Hence, new therapeutic approaches are required to improve survival and treatment outcome for these patients. Bone is among the most frequent sites of metastasis in breast cancer. Once in the bone, disseminated tumor cells can acquire a dormant state and remain quiescent until they resume growth, resulting in overt metastasis. At this stage the disease is characterized by excessive, osteoclast-mediated osteolysis. Cells of the bone microenvironment including osteoclasts, osteoblasts and endothelial cells contribute to the initiation and progression of breast cancer bone metastasis. Direct cell-to-cell contact as well as soluble factors regulate the crosstalk between disseminated breast cancer cells and bone cells. In this complex signaling network interleukins (ILs) have been identified as key regulators since both, cancer cells and bone cells secrete ILs and express corresponding receptors. ILs regulate differentiation and function of bone cells, with several ILs being reported to act pro-osteoclastogenic. Consistently, the expression level of ILs (e.g., in serum) has been associated with poor prognosis in breast cancer. In this review we discuss the role of the most extensively investigated ILs during the establishment of breast cancer bone metastasis and highlight their potential as therapeutic targets in preventing metastatic outgrowth in bone.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| | - Nicole Ridlmaier
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
- Department of Life Sciences, IMC FH Krems University of Applied Sciences, 3500 Krems, Austria
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| |
Collapse
|
17
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Osteocyte Vegf-a contributes to myeloma-associated angiogenesis and is regulated by Fgf23. Sci Rep 2020; 10:17319. [PMID: 33057033 PMCID: PMC7560700 DOI: 10.1038/s41598-020-74352-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) induces bone destruction, decreases bone formation, and increases marrow angiogenesis in patients. We reported that osteocytes (Ocys) directly interact with MM cells to increase tumor growth and expression of Ocy-derived factors that promote bone resorption and suppress bone formation. However, the contribution of Ocys to enhanced marrow vascularization in MM is unclear. Since the MM microenvironment is hypoxic, we assessed if hypoxia and/or interactions with MM cells increases pro-angiogenic signaling in Ocys. Hypoxia and/or co-culture with MM cells significantly increased Vegf-a expression in MLOA5-Ocys, and conditioned media (CM) from MLOA5s or MM-MLOA5 co-cultured in hypoxia, significantly increased endothelial tube length compared to normoxic CM. Further, Vegf-a knockdown in MLOA5s or primary Ocys co-cultured with MM cells or neutralizing Vegf-a in MM-Ocy co-culture CM completely blocked the increased endothelial activity. Importantly, Vegf-a-expressing Ocy numbers were significantly increased in MM-injected mouse bones, positively correlating with tumor vessel area. Finally, we demonstrate that direct contact with MM cells increases Ocy Fgf23, which enhanced Vegf-a expression in Ocys. Fgf23 deletion in Ocys blocked these changes. These results suggest hypoxia and MM cells induce a pro-angiogenic phenotype in Ocys via Fgf23 and Vegf-a signaling, which can promote MM-induced marrow vascularization.
Collapse
|
20
|
Sympathetic and parasympathetic innervation in cancer: therapeutic implications. Clin Auton Res 2020; 31:165-178. [PMID: 32926324 DOI: 10.1007/s10286-020-00724-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The autonomic nervous system, consisting of sympathetic and parasympathetic/vagal nerves, is known to control the functions of any organ, maintaining whole-body homeostasis under physiological conditions. Recently, there has been increasing evidence linking sympathetic and parasympathetic/vagal nerves to cancers. The present review aimed to summarize recent developments from studies addressing the relationship between sympathetic and parasympathetic/vagal nerves and cancer behavior. METHODS Literature review. RESULTS Human and animal studies have revealed that sympathetic and parasympathetic/vagal nerves innervate the cancer microenvironment and alter cancer behavior. The sympathetic nerves have cancer-promoting effects on prostate cancer, breast cancer, and melanoma. On the other hand, while the parasympathetic/vagal nerves have cancer-promoting effects on prostate, gastric, and colorectal cancers, they have cancer-suppressing effects on breast and pancreatic cancers. These neural effects may be mediated by β-adrenergic or muscarinic receptors and can be explained by changes in cancer cell behavior, angiogenesis, tumor-associated macrophages, and adaptive antitumor immunity. CONCLUSIONS Sympathetic nerves innervating the tumor microenvironment promote cancer progression and are related to stress-induced cancer behavior. The parasympathetic/vagal nerves have variable (promoting or suppressing) effects on different cancer types. Approaches directed toward the sympathetic and parasympathetic/vagal nerves can be developed as a new cancer therapy. In addition to existing pharmacological, surgical, and electrical approaches, a recently developed virus vector-based genetic local neuroengineering technology is a powerful approach that selectively manipulates specific types of nerve fibers innervating the cancer microenvironment and leads to the suppression of cancer progression. This technology will enable the creation of "cancer neural therapy" individually tailored to different cancer types.
Collapse
|
21
|
Shatz-Azoulay H, Vinik Y, Isaac R, Kohler U, Lev S, Zick Y. The Animal Lectin Galectin-8 Promotes Cytokine Expression and Metastatic Tumor Growth in Mice. Sci Rep 2020; 10:7375. [PMID: 32355198 PMCID: PMC7193594 DOI: 10.1038/s41598-020-64371-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/10/2020] [Indexed: 01/15/2023] Open
Abstract
Secreted animal lectins of the galectin family are key players in cancer growth and metastasis. Here we show that galectin-8 (gal-8) induces the expression and secretion of cytokines and chemokines such as SDF-1 and MCP-1 in a number of cell types. This involves gal-8 binding to a uPAR/LRP1/integrin complex that activates JNK and the NFkB pathway. Cytokine and chemokine secretion, induced by gal-8, promotes migration of cancer cells toward cells treated with this lectin. Indeed, immune-competent gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for gal-8 transgenic animals. Accordingly, gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These results suggest the existence of a 'vicious cycle' whereby gal-8 secreted by the tumor microenvironment, promotes secretion of chemoattractants at the metastatic niche that promote further recruitment of tumor cells to that site. This study further implicate gal-8 in control of cancer progression and metastasis through its effects on the production of immunoregulatory cytokines.
Collapse
Affiliation(s)
- Hadas Shatz-Azoulay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulrike Kohler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
22
|
Shiozawa Y. The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:57-72. [PMID: 32030676 DOI: 10.1007/978-3-030-36214-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been appreciated that the cross talk between bone metastatic cancer cells and bone marrow microenvironment influence one another to worsen bone metastatic disease progression. Bone marrow contains various cell types, including (1) cells of mesenchymal origin (e.g., osteoblasts, osteocytes, and adipocytes), (2) cells of hematopoietic origin (e.g., osteoclast and immune cells), and (3) others (e.g., endothelial cells and nerves). The recent studies have enabled us to discover many important cancer-derived factors responsible for the development of bone metastasis. However, many critical questions regarding the roles of bone microenvironment in bone metastatic progression remain elusive. To answer these questions, a deeper understanding of the cross talk between bone metastatic cancer and bone marrow microenvironment is clearly warranted.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
23
|
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res 2019; 34:1393-1406. [PMID: 31247122 PMCID: PMC6697229 DOI: 10.1002/jbmr.3822] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022]
Abstract
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Alec T Beeve
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L Scheller
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
24
|
Effects of VEGFR1 + hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J Cancer Res Clin Oncol 2018; 145:411-427. [PMID: 30483898 PMCID: PMC6373264 DOI: 10.1007/s00432-018-2802-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche has been shown to play a critical role in tumor metastasis, and its formation is closely related to the tumor microenvironment. However, the underlying molecular mechanisms remain unclear. In the present study, we successfully established a mouse model of lung metastasis using luciferase-expressing MDA-MB-435s cells. In this model, recruitment of vascular endothelial growth factor receptor-1 (VEGFR1)+CD133+ hematopoietic progenitor cells (HPCs) was gradually increased in lung but gradually decreased after the formation of tumor colonies in lung. We also established a highly metastatic MDA-MB-435s (MDA-MB-435s-HM) cell line from the mouse model. Changes in protein profiles in different culture conditions were investigated by protein microarray analysis. The levels of CXC chemokine ligand 16, interleukin (IL)-2Rα, IL-2Rγ, matrix metalloproteinase (MMP)-1, MMP-9, platelet-derived growth factor receptor (PDGFR)-α, stromal cell-derived factor (SDF)-1α, transforming growth factor (TGF)-β, platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial (VE)-cadherin were significantly greater (> fivefold) in the culture medium from MDA-MB-435s-HM cells than in that from MDA-MB-435s cells. Moreover, the levels of MMP-9, PDGFR-α, and PECAM-1 were significantly greater in the co-culture medium of MDA-MB-435s-HM cells and CD133+ HPCs than in that from MDA-MB-435s-HM cells. Differentially expressed proteins were validated by enzyme-linked immunosorbent assay, and expression of their transcripts was confirmed by quantitative real-time polymerase chain reaction. Moreover, inhibition of MMP-9, PDGFR-α, and PECAM-1 by their specific inhibitors or antibodies significantly decreased cell migration, delayed lung metastasis, and decreased recruitment of VEGFR1+CD133+ HPCs into lung. Intra-hepatic growth of HPCs enhanced the invasive growth of MDA-MB-435s-HM cells in the liver. Our data indicate that VEGFR1+CD133+ HPCs contribute to lung metastasis.
Collapse
|