1
|
Popa LG, Dumitras I, Giurcaneanu C, Berghi O, Radaschin DS, Vivisenco CI, Popescu MN, Beiu C. Mechanisms of Resistance to Rituximab Used for the Treatment of Autoimmune Blistering Diseases. Life (Basel) 2024; 14:1223. [PMID: 39459523 PMCID: PMC11508628 DOI: 10.3390/life14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune blistering diseases represent a group of chronic severe, disabling, and potentially fatal disorders of the skin and/or mucous membranes, primarily mediated by pathogenic auto-antibodies. Despite their rarity, these diseases are associated with significant morbidity and mortality and profound negative impact on the patient's quality of life and impose a considerable economic burden. Rituximab, an anti-CD-20 monoclonal antibody, represents the first line of therapy for pemphigus, regardless of severity and a valuable off-label therapeutic alternative for subepidermal autoimmune blistering diseases as it ensures high rates of rapid, long-lasting complete remission. Nevertheless, disease recurrence is the rule, all patients requiring maintenance therapy with rituximab eventually. While innate resistance to rituximab in pemphigus patients is exceptional, acquired resistance is frequent and may develop even in patients with initial complete response to rituximab, representing a real challenge for physicians. We discuss the various resistance mechanisms and their complex interplay, as well as the numerous therapeutic alternatives that may be used to circumvent rituximab resistance. As no therapeutic measure is universally efficient, individualization of rituximab treatment regimen and tailored adjuvant therapies in refractory autoimmune blistering diseases are mandatory.
Collapse
Affiliation(s)
- Liliana Gabriela Popa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Dermatology, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| | - Ioana Dumitras
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Dermatology, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| | - Ovidiu Berghi
- Department of Allergy and Clinical Immunology, Colentina Clinical Hospital, 19-21 Stefan cel Mare Bd., District 2, 020125 Bucharest, Romania
| | - Diana Sabina Radaschin
- Department of Dermatology, Dunarea de Jos University of Medicine and Pharmacy, 25 Otelarilor Bd., 800008 Galati, Romania
| | - Cristina Iolanda Vivisenco
- Department of Paediatrics, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Physical and Rehabilitation Medicine, Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Dermatology, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| |
Collapse
|
2
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Lim SH, Kim K, Choi CI. Pharmacogenomics of Monoclonal Antibodies for the Treatment of Rheumatoid Arthritis. J Pers Med 2022; 12:jpm12081265. [PMID: 36013214 PMCID: PMC9410311 DOI: 10.3390/jpm12081265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Precision medicine refers to a highly individualized and personalized approach to patient care. Pharmacogenomics is the study of how an individual’s genomic profile affects their drug response, enabling stable and effective drug selection, minimizing side effects, and maximizing therapeutic efficacy. Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation in the joints. It mainly starts in peripheral joints, such as the hands and feet, and progresses to large joints, which causes joint deformation and bone damage due to inflammation of the synovial membrane. Here, we review various pharmacogenetic studies investigating the association between clinical response to monoclonal antibody therapy and their target genetic polymorphisms. Numerous papers have reported that some single nucleotide polymorphisms (SNPs) are related to the therapeutic response of several monoclonal antibody drugs including adalimumab, infliximab, rituximab, and tocilizumab, which target tumor necrosis factor (TNF), CD20 of B-cells, and interleukin (IL)-6. Additionally, there are some pharmacogenomic studies reporting on the association between the clinical response of monoclonal antibodies having various mechanisms, such as IL-1, IL-17, IL-23, granulocyte-macrophage colony-stimulating factor (GM-CSF) and the receptor activator of nuclear factor-kappa B (RANK) inhibition. Biological therapies are currently prescribed on a “trial and error” basis for RA patients. If appropriate drug treatment is not started early, joints may deform, and long-term treatment outcomes may worsen. Pharmacogenomic approaches that predict therapeutic responses for RA patients have the potential to significantly improve patient quality of life and reduce treatment costs.
Collapse
Affiliation(s)
- Sung Ho Lim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
| | - Khangyoo Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
- Correspondence: ; Tel.: +82-31-961-5230
| |
Collapse
|
4
|
Aluko A, Ranganathan P. Pharmacogenetics of Drug Therapies in Rheumatoid Arthritis. Methods Mol Biol 2022; 2547:527-567. [PMID: 36068476 DOI: 10.1007/978-1-0716-2573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder that can lead to severe joint damage and is often associated with a high morbidity and disability. Disease-modifying anti-rheumatic drugs (DMARDs) are the mainstay of treatment in RA. DMARDs not only relieve the clinical signs and symptoms of RA but also inhibit the radiographic progression of disease and reduce the effects of chronic systemic inflammation. Since the introduction of biologic DMARDs in the late 1990s, the therapeutic range of options for the management of RA has significantly expanded. However, patients' response to these agents is not uniform with considerable variability in both efficacy and toxicity. There are no reliable means of predicting an individual patient's response to a given DMARD prior to initiation of therapy. In this chapter, the current published literature on the pharmacogenetics of traditional DMARDS and the newer biologic DMARDs in RA is highlighted. Pharmacogenetics may help individualize drug therapy in patients with RA by providing reliable biomarkers to predict medication toxicity and efficacy.
Collapse
Affiliation(s)
- Atinuke Aluko
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabha Ranganathan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Wang Z, Huang J, Xie D, He D, Lu A, Liang C. Toward Overcoming Treatment Failure in Rheumatoid Arthritis. Front Immunol 2021; 12:755844. [PMID: 35003068 PMCID: PMC8732378 DOI: 10.3389/fimmu.2021.755844] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation and bone erosion. The exact mechanism of RA is still unknown, but various immune cytokines, signaling pathways and effector cells are involved. Disease-modifying antirheumatic drugs (DMARDs) are commonly used in RA treatment and classified into different categories. Nevertheless, RA treatment is based on a "trial-and-error" approach, and a substantial proportion of patients show failed therapy for each DMARD. Over the past decades, great efforts have been made to overcome treatment failure, including identification of biomarkers, exploration of the reasons for loss of efficacy, development of sequential or combinational DMARDs strategies and approval of new DMARDs. Here, we summarize these efforts, which would provide valuable insights for accurate RA clinical medication. While gratifying, researchers realize that these efforts are still far from enough to recommend specific DMARDs for individual patients. Precision medicine is an emerging medical model that proposes a highly individualized and tailored approach for disease management. In this review, we also discuss the potential of precision medicine for overcoming RA treatment failure, with the introduction of various cutting-edge technologies and big data.
Collapse
Affiliation(s)
- Zhuqian Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Duoli Xie
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Yoo DH, Suh CH, Shim SC, Lee SJ, Kim SH, Park W. A pharmacokinetic evaluation of the rituximab biosimilar CT-P10 in the treatment of rheumatoid arthritis. Expert Opin Drug Metab Toxicol 2020; 16:1125-1132. [PMID: 33012214 DOI: 10.1080/17425255.2020.1832082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION CT-P10 is the first biosimilar of rituximab (RTX) for the treatment of rheumatoid arthritis (RA). The application of valuable biosimilar for the treatment of RA may decrease economic burden of society, and disease activity of RA. Thus, it is worthwhile to identify the economic advantage and further requirement for the proper use of CT-P10 in real world. AREAS COVERED Literature searching was performed to identify suitable references written in English for this review article. Rituximab, biosimilar, CT-P10, and rheumatoid arthritis were used as keywords. Current state of RA treatment, position of RTX in the recommendations for the treatment of RA, current status of RTX biosimilar development were assessed before evaluating CT-P10 itself. Physicochemical property, pharmacokinetic profile through phase I to phase III studies, pharmacodynamics, toxicology data, clinical efficacy, and safety were reviewed. EXPERT OPINION As the first biosimilar to originator RTX, CT-P10 may be a useful alternative for the treatment of RA in all indications for originator RTX. In addition, more studies are required to identify long-term effectiveness and safety of CT-P10 in real world. It is also important to find out new indications of CT-P10 and effective mechanisms to lessen nocebo effect against biosimilar including CT-P10.
Collapse
Affiliation(s)
- Dae Hyun Yoo
- Hanyang University Hospital for Rheumatic Diseases, Hanyang University , Seoul, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital , Daejeon, Republic of Korea
| | - Sang Joon Lee
- Clinical Development, Celltrion, Co. Ltd , Incheon, Republic of Korea
| | - Sung Hyun Kim
- Clinical Development, Celltrion, Co. Ltd , Incheon, Republic of Korea
| | - Won Park
- Division of Rheumatology, Inha University, School of Medicine , Incheon, Republic of Korea
| |
Collapse
|
7
|
Pallio G, Mannino F, Irrera N, Eid AH, Squadrito F, Bitto A. Polymorphisms Involved in Response to Biological Agents Used in Rheumatoid Arthritis. Biomolecules 2020; 10:biom10091203. [PMID: 32825059 PMCID: PMC7565539 DOI: 10.3390/biom10091203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic disease that leads to joint destruction. During the last decade, the therapy of RA has been principally based on biological drugs. Although the efficacy of biological therapy has been established, patients demonstrated a high heterogeneity in clinical response to treatment. Several genetic polymorphisms play a part in the different response to biological drugs. This review summarizes the pharmacogenetics of biological agents approved for clinical RA treatment. We reviewed PubMed papers published over the past 20 years (2000-2020), inserting as the search term "rheumatoid arthritis and polymorphisms". Despite some studies showing important correlations between genetic polymorphisms and response to biological therapy in RA patients, most of these findings are still lacking and inconsistent. The personalized treatment according to a pharmacogenetics approach is promising but the available pharmacogenetics data on biological treatment in RA are not adequate and reliable to recommend pharmacogenetic tests before starting biological therapy in RA patients.
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (F.M.); (N.I.); (F.S.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (F.M.); (N.I.); (F.S.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (F.M.); (N.I.); (F.S.)
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Bliss Street, Riad El Solh, 1107-2020 Beirut, Lebanon;
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (F.M.); (N.I.); (F.S.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (F.M.); (N.I.); (F.S.)
- Correspondence: ; Tel.: +39-090-2213086; Fax: +39-090-2213300
| |
Collapse
|
8
|
Exploring and characterizing a novel combination of paeoniflorin and talatizidine for the treatment of rheumatoid arthritis. Pharmacol Res 2020; 153:104658. [PMID: 32001347 DOI: 10.1016/j.phrs.2020.104658] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Wutou Decoction (WTD) achieves favorable therapeutic response in treating rheumatoid arthritis (RA), especially for wind-cold-dampness stimulating RA. However, its material basis and molecular mechanisms remain unclear. To address this problem, the main bioactive compounds (BACs) of WTD against RA and the candidate targets were identified in the current study via transcriptional regulatory network analysis, computational structure-based methods, as well as in vivo and in vitro experimental validations. As a result, we successfully established a RA rat model named AIA-S, which simulated the clinical manifestations and pathological changes of wind-cold-dampness stimulating RA, and also displayed the distinctive characteristics and biological basis of inflammatory-immune system imbalance and abnormal energy metabolism changes. In addition, ALOX15B-PPAR-γ-PTGS2-FGF2-IL-1β-c-JUN-MMP13-TGF-β1 signal axis, involved into thermogenesis and energy metabolism, as well as maintaining the balance of inflammation-immune system, was identified as a candidate target of WTD against RA, according to the transcriptional regulatory network analysis on "RA-related gene-WTD-effective gene interaction network". Moreover, Paeoniflorin (PAE) and Talatizidine (TLT) were demonstrated to be the main BACs of WTD against RA for the following reasons: firstly, both PAE and TLT were the BACs of WTD according to ADME analysis in silico and the pharmacokinetics analysis in vivo. Secondly, both PAE and TLT were able to bind with PPAR-γ, c-JUN, MMP13 and TGF-β1, which were the candidate targets of WTD against RA, with the strong binding affinity. Thirdly, the PAE and TLT combination exerted significant therapeutic effects on AIA-S rats through reversing the imbalance of inflammatory-immune system, and the disturbance of thermogenesis and energy metabolism, which were similar to WTD. More importantly, the administration of TLT or PAE alone didn't exert as prominently therapeutic effects as that of the two-BAC-combination did. Fourthly, the PAE and TLT combination promoted adipogenesis and lipogenesis by upregulating the PPAR-γ-induced lipogenic proteins. In conclusion, this study identified PAE and TLT as the main BACs of WTD in alleviating the severity of RA, and also developed a novel combination of PAE and TLT as a promising candidate drug for RA therapy.
Collapse
|
9
|
Tavakolpour S, Alesaeidi S, Darvishi M, GhasemiAdl M, Darabi-Monadi S, Akhlaghdoust M, Elikaei Behjati S, Jafarieh A. A comprehensive review of rituximab therapy in rheumatoid arthritis patients. Clin Rheumatol 2019; 38:2977-2994. [PMID: 31367943 DOI: 10.1007/s10067-019-04699-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Rituximab (RTX) is an approved treatment for rheumatoid arthritis (RA) patients that do not respond adequately to disease-modifying antirheumatic drugs. However, different new concerns, such as efficacy, optimum dose, safety issues, prediction of response to RTX, and pregnancy outcomes have attracted a lot of attention. The PubMed database was systematically reviewed for the last published articles, new findings, and controversial issues regarding RTX therapy in RA using "Rheumatoid arthritis" AND "rituximab" keywords, last updated on June 18, 2019. From 1812 initial recorders, 162 studies met the criteria. Regarding the optimum dose, low-dose RTX therapy (2 × 500 mg) seems as effective as standard dose (2 × 1000 mg), safer, and more cost-effective. The most common reported safety challenges included de novo infections, false negative serologic tests of viral infections, reactivation of chronic infections, interfering with vaccination outcome, and development of de novo psoriasis. Other less reported side effects are infusion reactions, nervous system disorders, and gastrointestinal disorders. Lower exposure to other biologics, presence of some serological markers (e.g., anti-RF, anti-CCP, IL-33, ESR), specific variations in FCGR3A, FCGR2A, TGFβ1, IL6, IRF5, BAFF genes, and also EBV-positivity could be used to predict response to RTX. Although there is no evidence of the teratogenic effect of RTX, it is recommended that women do not expose themselves to RTX at least 6 months before the conception. Only a reversible reduction of B cell-count in the offspring may be the pregnancy-related outcome. Although RTX is an effective therapeutic option for RA, more studies on optimum doses, prevention of RTX-related side effects, prediction of RTX response, and safety during the pregnancy are required.
Collapse
Affiliation(s)
- Soheil Tavakolpour
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Rheumatology and Internal Medicine, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Samira Alesaeidi
- Rheumatology and Internal Medicine, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), department of aerospace and subaquatic medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba GhasemiAdl
- Rheumatology and Internal Medicine, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Meisam Akhlaghdoust
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Jafarieh
- Amir'Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Mahmoudi H, Ebrahimi E, Daneshpazhooh M, Balighi K, Mirzazadeh A, Elikaei Behjati S, Tavakolpour S. Single-nucleotide polymorphisms associated with pemphigus vulgaris: Potent markers for better treatment and personalized medicine. Int J Immunogenet 2019; 47:41-49. [PMID: 31342641 DOI: 10.1111/iji.12451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
Pemphigus vulgaris (PV) is a rare autoimmune blistering disorder, which could affect both skin and mucosal surfaces. There is increasing evidence that genetics plays a critical role in PV development, severity and prognosis. Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation among people and have been widely evaluated in most diseases. However, there are few studies regarding the roles of SNPs in the PV. Here, we reviewed both pathogenic and protective roles of the SNPs in non-HLA genes regarding the PV. Among the large number of studied SNPs, it was found that several SNPs in different genes might control the susceptibility of PV, including TNFA (rs361525, rs1800629, rs1800629), IL10 (rs1800871, rs1800896, rs1800871, and rs1800872), IL6 (rs1800795), CTLA4 (rs231775), ICOS (rs10932029), CD86 (rs1129055), DSG3 (rs8085532, rs3911655, rs3848485, rs3794925, rs1466379), ST18 (rs2304365, rs17315309) and TAP2 (rs7454108), probably in a population-specific manner. Moreover, SNPs in glucocorticoid receptor, also known as nuclear receptor subfamily 3 group C member 1 (NR3C1) gene, including rs11745958, rs17209237, rs33388, rs7701443 as well as rs116855232 at NUDT15, seem to be associated with therapeutic outcomes in PV patients. Additionally, variations in the other genes involved in the drugs' metabolisms, pharmacokinetics and pharmacodynamics such as rs396991 in FCGR3A gene could be used for the prediction of clinical response to drugs and side effects. Taken together, SNPs seem to be valuable tools for better management of PV patients. Further studies need to be conducted to evaluate SNPs in genes that control immune responses and apoptosis.
Collapse
Affiliation(s)
- HamidReza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Ebrahimi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Balighi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Mirzazadeh
- Joint Bioinformatics graduate Program, University of Arkansas Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Somayeh Elikaei Behjati
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Tavakolpour
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
The association between multiple sclerosis and genetic variations of TGFβ1 and IL2 genes in Iraqi patients. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Carmona FD, Martín J. The potential of PTPN22 as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2018; 22:879-891. [PMID: 30251905 DOI: 10.1080/14728222.2018.1526924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION PTPN22 encodes a lymphoid-specific tyrosine phosphatase (LYP) that is a master regulator of the immune response. This gene is a major susceptibility factor for a wide range of autoimmune conditions, including rheumatoid arthritis (RA) for which it represents the strongest non-HLA contributor to disease risk. A missense PTPN22 allele (R620W) affecting the protein-protein interaction of LYP with other relevant players was described as the functional variant of the association. This review will focus on the role of PTPN22 in the pathogenic mechanisms underlying RA predisposition and discuss the possibility of developing LYP-based treatment strategies with a potential application in clinical practice. Areas covered: This review covers the literature showing how PTPN22 is implicated in signalling pathways involved in the autoimmune and autoinflammatory processes underlying RA. Insights obtained from studies aimed at developing novel selective LYP suppressors for treating RA are summarized. Expert opinion: Targeting key risk factors during the early steps of the disease may represent a good strategy to accomplish complete disease remission. As cumulating evidences suggest that PTPN22 R620W is a gain-of-function variant, a growing interest in developing LYP inhibitors has arisen. The potential efficacy and possible application of such compounds are discussed.
Collapse
Affiliation(s)
- F David Carmona
- a Departamento de Genética e Instituto de Biotecnología , Universidad de Granada , Granada , Spain
| | - Javier Martín
- b Instituto de Parasitología y Biomedicina López-Neyra , Consejo Superior de Investigaciones Científicas, IPBLN-CSIC , Granada , Spain
| |
Collapse
|
13
|
Wijbrandts CA, Tak PP. Prediction of Response to Targeted Treatment in Rheumatoid Arthritis. Mayo Clin Proc 2017; 92:1129-1143. [PMID: 28688467 DOI: 10.1016/j.mayocp.2017.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 04/30/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
Abstract
Rheumatoid arthritis is an autoimmune syndrome presenting with chronic inflammation of the joints. Patients with the same diagnosis can present with different phenotypes. In some patients severe joint inflammation and early joint destruction are observed, whereas a milder phenotype can be seen in others. Conversely, patients with the same signs and symptoms may exhibit different immunological and molecular abnormalities. Since the introduction of early treatment in clinical practice, the treat to target principle, and new medicines such as biologic disease-modifying antirheumatic drugs, clinical remission can be achieved early in the disease course, albeit not in all patients. The clinical response and efficacy of biologic disease-modifying antirheumatic drugs vary among different individuals. Therefore, there is a need to develop a more personalized approach toward treatment to achieve rapid remission in every patient to prevent disability and restore and maintain quality of life, without unnecessary adverse effects, in a cost-effective manner. The latest data from explorative studies of predictive markers of response are discussed here, together with a preliminary treatment algorithm based on currently available knowledge.
Collapse
Affiliation(s)
- C A Wijbrandts
- Rheumatology Department, Medical Center Slotervaart, Amsterdam, The Netherlands.
| | - P P Tak
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Cambridge University, Cambridge, United Kingdom; University of Ghent, Ghent, Belgium; GlaxoSmithKline Research & Development, Stevenage, United Kingdom
| |
Collapse
|
14
|
Madanchi N, Bitzan M, Takano T. Rituximab in Minimal Change Disease: Mechanisms of Action and Hypotheses for Future Studies. Can J Kidney Health Dis 2017; 4:2054358117698667. [PMID: 28540057 PMCID: PMC5433659 DOI: 10.1177/2054358117698667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Treatment with rituximab, a monoclonal antibody against the B-lymphocyte surface protein CD20, leads to the depletion of B cells. Recently, rituximab was reported to effectively prevent relapses of glucocorticoid-dependent or frequently relapsing minimal change disease (MCD). MCD is thought to be T-cell mediated; how rituximab controls MCD is not understood. In this review, we summarize key clinical studies demonstrating the efficacy of rituximab in idiopathic nephrotic syndrome, mainly MCD. We then discuss immunological features of this disease and potential mechanisms of action of rituximab in its treatment based on what is known about the therapeutic action of rituximab in other immune-mediated disorders. We believe that studies aimed at understanding the mechanisms of action of rituximab in MCD will provide a novel approach to resolve the elusive immune pathophysiology of MCD.
Collapse
Affiliation(s)
- Nima Madanchi
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Awdishu L, Joy MS. Role of Pharmacogenomics in Kidney Disease and Injury. Adv Chronic Kidney Dis 2016; 23:106-19. [PMID: 26979149 DOI: 10.1053/j.ackd.2016.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 12/29/2022]
Abstract
There has been considerable excitement in the kidney community surrounding the research findings on the genetic contributions to kidney diseases. However, positive outcomes of personalized therapeutic interventions can be circumvented by unpredictable pharmacokinetics of prescribed drugs. Furthermore, unpredictable drug disposition can result in toxicities such as kidney injury. Patient covariates, disease covariates, and pharmacogenetics all contribute to variability in drug disposition. Further treatment personalization and avoidance of drug- and biologic- induced kidney injury will require extensive knowledge and expertise in renal clinical pharmacology. The current review will focus on the pharmacogenetics of drugs and biologics used in the treatment of glomerular kidney diseases and drugs implicated in inducing kidney injury phenotypes.
Collapse
|
16
|
Genetic data: The new challenge of personalized medicine, insights for rheumatoid arthritis patients. Gene 2016; 583:90-101. [PMID: 26869316 DOI: 10.1016/j.gene.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/18/2016] [Accepted: 02/05/2016] [Indexed: 01/15/2023]
Abstract
Rapid advances in genotyping technology, analytical methods, and the establishment of large cohorts for population genetic studies have resulted in a large new body of information about the genetic basis of human rheumatoid arthritis (RA). Improved understanding of the root pathogenesis of the disease holds the promise of improved diagnostic and prognostic tools based upon this information. In this review, we summarize the nature of new genetic findings in human RA, including susceptibility loci and gene-gene and gene-environment interactions, as well as genetic loci associated with sub-groups of patients and those associated with response to therapy. Possible uses of these data are discussed, such as prediction of disease risk as well as personalized therapy and prediction of therapeutic response and risk of adverse events. While these applications are largely not refined to the point of clinical utility in RA, it seems likely that multi-parameter datasets including genetic, clinical, and biomarker data will be employed in the future care of RA patients.
Collapse
|
17
|
Cuppen BVJ, Welsing PMJ, Sprengers JJ, Bijlsma JWJ, Marijnissen ACA, van Laar JM, Lafeber FPJG, Nair SC. Personalized biological treatment for rheumatoid arthritis: a systematic review with a focus on clinical applicability. Rheumatology (Oxford) 2015; 55:826-39. [PMID: 26715775 DOI: 10.1093/rheumatology/kev421] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES To review studies that address prediction of response to biologic treatment in RA and to explore the clinical utility of the studied (bio)markers. METHODS A search for relevant articles was performed in PubMed, Embase and Cochrane databases. Studies that presented predictive values or in which these could be calculated were selected. The added value was determined by the added value on prior probability for each (bio)marker. Only an increase/decrease in chance of response ⩾15% was considered clinically relevant, whereas in oncology values >25% are common. RESULTS Of the 57 eligible studies, 14 (bio)markers were studied in more than one cohort and an overview of the added predictive value of each marker is presented. Of the replicated predictors, none consistently showed an increase/decrease in probability of response ⩾15%. However, positivity of RF and ACPA in case of rituximab and the presence of the TNF-α promoter 308 GG genotype for TNF inhibitor therapy were consistently predictive, yet low in added predictive value. Besides these, 65 (bio)markers studied once showed remarkably high (but not validated) predictive values. CONCLUSION We were unable to address clinically useful baseline (bio)markers for use in individually tailored treatment. Some predictors are consistently predictive, yet low in added predictive value, while several others are promising but await replication. The challenge now is to design studies to validate all explored and promising findings individually and in combination to make these (bio)markers relevant to clinical practice.
Collapse
Affiliation(s)
- Bart V J Cuppen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paco M J Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan J Sprengers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes W J Bijlsma
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne C A Marijnissen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandhya C Nair
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Tarnowski M, Paradowska-Gorycka A, Dąbrowska-Zamojcin E, Czerewaty M, Słuczanowska-Głąbowska S, Pawlik A. The effect of gene polymorphisms on patient responses to rheumatoid arthritis therapy. Expert Opin Drug Metab Toxicol 2015; 12:41-55. [PMID: 26609565 DOI: 10.1517/17425255.2016.1121233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a systemic disease leading to joint destruction. The therapy of RA is mainly based on disease-modifying anti-rheumatic drugs (DMARDs) and biological drugs. The response to treatment is different among patients. Therefore, we have searched for factors that may predict the efficacy and toxicity during therapy in individual patients. AREAS COVERED This review presents the role of genetic polymorphisms as predictors of the efficacy and toxicity during the therapy of RA patients with DMARDs (methotrexate, leflunomide, sulfasalazine) and biological drugs (anti-TNF-alpha antagonists, Tocilizumab, Rituximab). EXPERT OPINION Despite studies having shown an association between genetic polymorphisms and response to therapy in RA patients, the majority of these findings are still inconclusive and inconsistent. We are still far from applying pharmacogenetic tests in routine clinical practice that can predict the outcome of treatment. Several factors, such as small sample size with low statistical power, variability in the outcome definitions and the heterogeneity of the cohorts, limited number of tested single nucleotide polymorphisms (SNPs), small effect for the selected variant, and a lack of consideration of epigenetic factors, may contribute to the inconsistency observed and may lead to limited success in personalizing therapy.
Collapse
Affiliation(s)
- Maciej Tarnowski
- a Department of Physiology , Pomeranian Medical University , 70-111 Szczecin , Poland
| | - Agnieszka Paradowska-Gorycka
- b Department of Biochemistry and Molecular Biology , National Institute of Geriatrics, Rheumatology and Rehabilitation , 02-637 Warszawa , Poland
| | | | - Michal Czerewaty
- a Department of Physiology , Pomeranian Medical University , 70-111 Szczecin , Poland
| | | | - Andrzej Pawlik
- a Department of Physiology , Pomeranian Medical University , 70-111 Szczecin , Poland
| |
Collapse
|
19
|
Abstract
Transforming growth factor-β (TGF-β) functions as an immune suppressor by influencing immune cells' development, differentiation, tolerance induction and homeostasis. In human diseases, TGF-β has been revealed as an essential regulator of both innate and adaptive functions in autoimmune diseases. Furthermore, it plays a significant role in cancer by inhibiting immunosurveillance in the tumor-bearing host. A variety of TGF-β neutralizing anti-cancer therapies have been investigated based on the role of TGF-β in immunosuppression. New studies are focusing on combining TGF-β blockade with tumor vaccinations and immunogene therapies.
Collapse
Affiliation(s)
- Jingyi Sheng
- Department of Surgery (RMH), The University of Melbourne , Parkville, Victoria , Australia and
| | | | | |
Collapse
|
20
|
Abstract
PTPN22 encodes a tyrosine phosphatase that is expressed by haematopoietic cells and functions as a key regulator of immune homeostasis by inhibiting T-cell receptor signalling and by selectively promoting type I interferon responses after activation of myeloid-cell pattern-recognition receptors. A single nucleotide polymorphism of PTPN22, 1858C>T (rs2476601), disrupts an interaction motif in the protein, and is the most important non-HLA genetic risk factor for rheumatoid arthritis and the second most important for juvenile idiopathic arthritis. PTPN22 exemplifies a shared autoimmunity gene, affecting the pathogenesis of systemic lupus erythematosus, vasculitis and other autoimmune diseases. In this Review, we explore the role of PTPN22 in autoimmune connective tissue disease, with particular emphasis on candidate-gene and genome-wide association studies and clinical variability of disease. We also propose a number of PTPN22-dependent functional models of the pathogenesis of autoimmune diseases.
Collapse
|
21
|
Pers YM, Cadart D, Rittore C, Ravel P, Daïen V, Fabre S, Jorgensen C, Touitou I. TNFRII polymorphism is associated with response to TNF blockers in rheumatoid arthritis patients seronegative for ACPA. Joint Bone Spine 2014; 81:370-2. [DOI: 10.1016/j.jbspin.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
|
22
|
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory arthritis leading to severe joint damage and associated with high morbidity and mortality. Disease-modifying antirheumatic drugs (DMARDs) are the mainstay of treatment in RA. DMARDs not only relieve the clinical signs and symptoms of RA but also inhibit the radiographic progression of disease. In the last decade, a new class of disease-modifying medications, the biologic agents, has been added to the existing spectrum of DMARDs in RA. However, patients' response to these agents is not uniform with considerable variability in both efficacy and toxicity. There are no reliable means of predicting an individual patient's response to a given DMARD prior to initiation of therapy. In this chapter, the current published literature on the pharmacogenetics of traditional DMARDS and the newer biologic DMARDs in RA is highlighted. Pharmacogenetics may help individualize drug therapy in patients with RA in the near future.
Collapse
Affiliation(s)
- Deepali Sen
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8045, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
23
|
IL2/IL21 region polymorphism influences response to rituximab in systemic lupus erythematosus patients. Mol Biol Rep 2013; 40:4851-6. [DOI: 10.1007/s11033-013-2583-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/29/2013] [Indexed: 01/09/2023]
|
24
|
Curtis JR, McVie T, Mikuls TR, Reynolds RJ, Navarro-Millán I, O'Dell J, Moreland LW, Bridges SL, Ranganath VK, Cofield SS. Clinical response within 12 weeks as a predictor of future low disease activity in patients with early RA: results from the TEAR Trial. J Rheumatol 2013; 40:572-8. [PMID: 23588939 DOI: 10.3899/jrheum.120715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rapidly predicting future outcomes based on short-term clinical response would be helpful to optimize rheumatoid arthritis (RA) management in early disease. Our aim was to derive and validate a clinical prediction rule to predict low disease activity (LDA) at 1 year among patients participating in the Treatment of Early Aggressive Rheumatoid Arthritis (TEAR) trial escalating RA therapy by adding either etanercept or sulfasalazine + hydroxychloroquine [triple therapy (TT)] after 6 months of methotrexate (MTX) therapy. METHODS Eligible subjects included in the derivation cohort (used for model building, n = 186) were participants with moderate or higher disease activity [Disease Activity Score 28-erythrocyte sedimentation rate (DAS-ESR) > 3.2] despite 24 weeks of MTX monotherapy who added either etanercept or sulfasalazine + hydroxychloroquine. Clinical characteristics measured within the next 12 weeks were used to predict LDA 1 year later using multivariable logistic regression. Validation was performed in the cohort of TEAR patients randomized to initially receive either MTX + etanercept or TT. RESULTS The derivation cohort yielded 3 prediction models of varying complexity that included age, DAS28 at various timepoints, body mass index, and ESR (area under the receiver-operator characteristic curve up to 0.83). Accuracy of the prediction models ranged between 80% and 95% in both derivation and validation cohorts, depending on the complexity of the model and the cutpoints chosen for response and nonresponse. About 80% of patients could be predicted to be responders or nonresponders at Week 12. CONCLUSION Clinical data collected early after starting or escalating disease-modifying antirheumatic drug/biologic treatment could accurately predict LDA at 1 year in patients with early RA. For patients predicted to be nonresponders, treatment could be changed at 12 weeks to optimize outcomes.
Collapse
Affiliation(s)
- Jeffrey R Curtis
- From the University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Umićević Mirkov M, Coenen MJH. Pharmacogenetics of disease-modifying antirheumatic drugs in rheumatoid arthritis: towards personalized medicine. Pharmacogenomics 2013; 14:425-44. [DOI: 10.2217/pgs.13.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rheumatoid arthritis is a disease showing considerable heterogeneity in all its aspects, including response to therapy. The efficacy of disease-modifying antirheumatic drugs (DMARDs), with or without biological activity, has been unambiguously established. DMARDs improve the symptoms associated with the disease, and, even more importantly, are capable of stagnating the joint damage associated with the disease. Nonetheless, a considerable proportion of patients fail to achieve an adequate response and/or experience toxicity. This variability in treatment response between individuals has given rise to an extensive search for prognostic markers in order to personalize and optimize therapy in rheumatoid arthritis patients. Pharmacogenetics, the study of genetic variation underlying differential responses to drugs, is a rapidly progressing field in rheumatology that might enable personalized therapy in rheumatic diseases. This review will summarize the pharmacogenetics of commonly used synthetic and biological DMARDs.
Collapse
Affiliation(s)
- Maša Umićević Mirkov
- Department of Human Genetics, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marieke JH Coenen
- Department of Human Genetics, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|