1
|
Dalix E, Marotte H. From a better knowledge of periodontal disease to Porphyromonas gingivalis target for rheumatoid arthritis disease activity. Joint Bone Spine 2025; 92:105822. [PMID: 39551151 DOI: 10.1016/j.jbspin.2024.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Periodontal disease (PD) and rheumatoid arthritis (RA) are both inflammatory diseases affecting the tooth and joint, with local inflammation associated with bone loss. Bacterial infections by oral bacteria are involved in periodontal inflammation, and the best known to be associated with PD is Porphyromonas gingivalis (Pg). A large body of recent data suggests a strong involvement of this specific bacteria, Pg, in PD outcomes, but also in RA. The aim of this review is to discuss the association between PD and Pg, RA and its mechanisms, and to determine whether targeting Pg bacteria could improve RA. Numerous epidemiological studies have already confirmed the association between PD and Pg, as well as between PD and RA, which is mainly associated with a common genetic background, the shared epitope. The involvement of Pg in pathogenesis of RA is supported by the induction of gingival citrullinated proteins and therefore of anti-citrullinated proteins antibodies, which constitute the most specific biomarker of RA. The prevalence of Pg in RA is still controversial, but studies should include patients with preclinical and early RA. Finally, recent data confirmed that targeting Pg is highly effective in improving RA.
Collapse
Affiliation(s)
- Elisa Dalix
- Inserm, SAINBIOSE U1059, Mines Saint-Étienne, Université Jean-Monnet Saint-Étienne, 42023 Saint-Étienne, France.
| | - Hubert Marotte
- Inserm, SAINBIOSE U1059, Rheumatology Departement, Mines Saint-Étienne, Université Jean-Monnet Saint-Étienne, CHU de Saint-Etienne, 42023 Saint-Étienne, France.
| |
Collapse
|
2
|
Waghmare PS, Kaushik D, Oz E, Proestos C, Oz F, Kumar M. Unraveling the hormonal approaches for the treatment of rheumatoid arthritis and its complementary interventions. Inflammopharmacology 2025; 33:443-460. [PMID: 39754003 DOI: 10.1007/s10787-024-01633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune, chronic, systemic inflammatory disease that causes redness, swelling, stiffness, and joint pain. It is a long-lasting disease that can have a widespread impact on the body, often affecting the hands, feet, and wrists. The immune cells, such as dendritic cells, T cells, B cells, macrophages, and neutrophils, play a significant role in bone degradation and inflammation. Several cytokines, including TNF-α and IL-17A, play a significant role in causing bone erosion, cartilage deterioration, and joint inflammation. Progesterone and estrogen have a crucial impact on the pathophysiology of RA, influencing the immune system. Research has demonstrated that hormone replacement therapy (HRT) can effectively reduce inflammation, improve disease activity, enhance joint health, alleviate pain, and promote bone strength. Treatments such as tamoxifen and raloxifene, known as selective estrogen receptor modulators (SERMs), are effective against chronic inflammatory illnesses like RA. The treatment with Gonadotropin-releasing hormone (GnRH) has an impact on the hypothalamic-pituitary-gonadal axis, which in turn affects the activity of RA illness. These alternative treatments hold promise in enhancing well-being and alleviating joint pain for individuals with RA.
Collapse
Affiliation(s)
- Priya Sharad Waghmare
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP, 173229, India.
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 157 84, Athens, Greece
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Türkiye
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Korzeniowska A, Daca A, Szarecka M, Bykowska M, Witkowski J, Bryl E. Differences in Salivary Cytokinome and Pathogen Load Between Rheumatoid Arthritis and Other Rheumatic Disease Patients. Int J Mol Sci 2024; 26:197. [PMID: 39796056 PMCID: PMC11719770 DOI: 10.3390/ijms26010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease with complex pathogenesis, is characterized by an immune imbalance reflected, e.g., in the disturbed cytokines' profile. Various viruses and bacteria can cause the upregulation of pro-inflammatory cytokines influencing RA development. In particular, oral cavity dysbiosis, observed in multiple chronic diseases including periodontitis, may be linked to RA. The cytokine profile (IL-1β, IP-10, IL-29, GM-CSF, IFN-α2, IFN-β, TGF-β1, MPC-1, TNF-α, IFN-γ, IL-6, IL-10, IL-17A, IL-12p70, IL-2, and IL-4) of RA patients' saliva was evaluated using flow cytometry and benchmarked with their levels in saliva of healthy controls and patients with other rheumatic diseases. The levels of IL-1β, IP-10, IL-2, and IL-4 were significantly elevated in RA patients' saliva compared to other studied groups. To define the potential role of the most suspicious microbial agents (Epstein-Barr Virus (EBV), Cytomegalovirus, Parvovirus B19, Porphyromonas gingivalis, and Segatella copri) for RA pathogenesis, the amounts of their DNA in the saliva of patients with RA were assessed in all the groups mentioned above. The EBV and P. gingivalis DNA levels measured by qRT-PCR were significantly higher in RA patients' saliva than in other groups, indicating either the important role of these agents in RA pathogenesis or the higher susceptibility of RA patients for those infectious factors. The comprehension of the association of specific cytokine profiles in RA and the occurrence of specific viral and/or bacterial infections can be a key to a better understanding of RA pathogenesis. These results illustrate the complexity of the immunological profile of RA, show the high diagnostic potential of saliva, and provide insight into how various infections can contribute to RA development.
Collapse
Affiliation(s)
- Aleksandra Korzeniowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.D.); (J.W.)
| | - Agnieszka Daca
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.D.); (J.W.)
| | - Maria Szarecka
- Pomeranian Rheumatology Center, 81-759 Sopot, Poland; (M.S.); (M.B.)
| | | | - Jacek Witkowski
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.D.); (J.W.)
- Department of Embryology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ewa Bryl
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.D.); (J.W.)
| |
Collapse
|
4
|
Vivas AJ, Boumediene S, Tobón GJ. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun Rev 2024; 23:103611. [PMID: 39209014 DOI: 10.1016/j.autrev.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.
Collapse
Affiliation(s)
| | - Synda Boumediene
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America
| | - Gabriel J Tobón
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America; Department of Internal Medicine, Division of Rheumatology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America.
| |
Collapse
|
5
|
Kumar AS, Venkatesalu S, Dilliyappan S, Pasupulla AP, Prathap L, Palaniyandi T, Baskar G, Ravi M, Sugumaran A. Microfluidics as diagnostic tools. Clin Chim Acta 2024; 556:117841. [PMID: 38395126 DOI: 10.1016/j.cca.2024.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The challenges in the management of human diseases are largely determined by the precision, speed and ease of diagnostic procedures available. Developments in biomedical engineering technologies have greatly helped in transforming human health care, especially for disease diagnosis which in turn lead to better patient outcomes. One such development is in the form of microfluidic chip technology which has transformed various aspects of human health care. We present in this review, a comprehensive account on the utility of microfluidic chip technologies for the diagnosis of autoimmune disorders, cardiovascular diseases (CVDs), infectious diseases, and neurodegenerative conditions. We have included the diseases posing global threat such as rheumatoid arthritis, diabetes, pernicious anemia, tuberculosis, COVID-19, influenza, alzheimer's, multiple sclerosis, and epilepsy. Apart from discussing the ways of microfluidic chip in diagnosis, we included a section presenting electrochemical, electrical, optical, and acoustic detection technologies for the precise diagnosis of CVDs. Microfluidics platforms have thus revolutionized novel capabilities in addressing the requirements of point-of-care diagnostics enabling miniaturization by integrating multiple laboratory functions into a single chip resulting in "one flow - one solution" systems. Hence, the precision and early diagnoses of diseases are now possible due to the advancements of microfluidics-based technology.
Collapse
Affiliation(s)
- Avanthika Satish Kumar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Sneha Venkatesalu
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathologist, School of Medicine, College of Health Sciences, Nigist Eleni Comprehensive Specialized Hospital, Wachemo University, Hossana, Ethiopia, East Africa
| | - Lavanya Prathap
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India
| |
Collapse
|