1
|
Wen ZP, Sha C, Nawab S, Lu ZJ, Yong YC. One-step transformation of CO 2 to methane by Escherichia coli with a synthetic biomethanation module. Biochem Biophys Res Commun 2025; 746:151284. [PMID: 39761619 DOI: 10.1016/j.bbrc.2024.151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time. The nif-related gene cluster with methanogenic capability from Rhodopseudomonas palustris was systematically analyzed, cloned, and integrated into a synthetic biomethanation module. As a result, E. coli BL21 (DE3) and Rosetta (DE3) carrying this synthetic biomethanation module exhibited significant methane production activity, with methane yields reaching 50 nmol/mL and 159 nmol/mL, respectively. This finding provided a simple route to construct synthetic strain for biomethanation, which would advance the fundamental research and be beneficial to further harness the power of biomethanation for practical application.
Collapse
Affiliation(s)
- Ze-Peng Wen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Chong Sha
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Said Nawab
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zi-Jie Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Behera D, Priyadarshini P, Parida K. ZIF-8 metal-organic frameworks and their hybrid materials: emerging photocatalysts for energy and environmental applications. Dalton Trans 2025. [PMID: 39810599 DOI: 10.1039/d4dt02662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability. However, its application as a standalone photocatalyst is limited by issues such as particle aggregation, poor water stability, and insufficient visible light absorption. By integrating ZIF-8 with various photoactive materials to form composite catalysts, these drawbacks can be mitigated, leading to enhanced photocatalytic efficiency. The review discusses the synthesis, properties, and applications of ZIF-8-based photocatalysts in light-driven H2 evolution, H2O2 evolution, CO2 reduction, and dye and drug degradation. It also highlights the challenges and future research directions in developing cost-effective, scalable, and environmentally friendly ZIF-8 composites for industrial applications. The potential of ZIF-8 composites to contribute to sustainable global energy solutions and environmental cleanup is significant, yet further exploration is required to harness their capabilities thoroughly.
Collapse
Affiliation(s)
- Diptirani Behera
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Priyanka Priyadarshini
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
3
|
Amin S, Krishnamurty S, Ahmad Dar M, Joshi K. Size and Morphology Dependent Activity of Cu Clusters for CO 2 Activation and Reduction: A First Principles Investigation. Chemphyschem 2024; 25:e202400442. [PMID: 39261277 DOI: 10.1002/cphc.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Various Cu-based materials in diverse forms have been investigated as efficient catalysts for electrochemical reduction of CO2; however, they suffer from issues such as higher over potential and poor selectivity. The activity and selectivity of CO2 electro reduction have been shown to change significantly when the surface morphology (steps, kinks, and edges) of these catalysts is altered. In light of this, size and morphology dependent activity of selected copper clusters, Cun (n=2-20) have been evaluated for the activation and reduction of CO2 molecule. The phase-space of these copper clusters is rich in conformations of distinct morphologies starting from planar, 2D geometries to prolate-shaped geometries and also high-symmetry structures. The binding efficiency and the activation of CO2 are highest for medium sized clusters (n=9-17) with prolate-morphologies as compared to small or larger sized CunCO2 clusters that are existing mainly as planar (triangular, tetragonal etc.) or highly-symmetric geometries (icosahedron, capped-icosahedron etc.), respectively. The best performing (prolate-shaped) CunCO2 conformations are quite fluxional and also they are thermally stable, as demonstrated by the molecular dynamics simulations. Furthermore, on these CunCO2 conformations, the step-by-step hydrogenation pathways of CO2 to produce value-added products like methanol, formic acid, and methane are exceptionally favorable and energy-efficient.
Collapse
Affiliation(s)
- Seerat Amin
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, 192122, India
| | - Krati Joshi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India
| |
Collapse
|
4
|
Kshirsagar SD, Shelake SP, Biswas B, Ramesh K, Gaur R, Abraham BM, Sainath AVS, Pal U. Emerging ZnO Semiconductors for Photocatalytic CO 2 Reduction to Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407318. [PMID: 39367556 DOI: 10.1002/smll.202407318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Carbon recycling is poised to emerge as a prominent trend for mitigating severe climate change and meeting the rising demand for energy. Converting carbon dioxide (CO2) into green energy and valuable feedstocks through photocatalytic CO2 reduction (PCCR) offers a promising solution to global warming and energy needs. Among all semiconductors, zinc oxide (ZnO) has garnered considerable interest due to its ecofriendly nature, biocompatibility, abundance, exceptional semiconducting and optical properties, cost-effectiveness, easy synthesis, and durability. This review thoroughly discusses recent advances in mechanistic insights, fundamental principles, experimental parameters, and modulation of ZnO catalysts for direct PCCR to C1 products (methanol). Various ZnO modification techniques are explored, including atomic size regulation, synthesis strategies, morphology manipulation, doping with cocatalysts, defect engineering, incorporation of plasmonic metals, and single atom modulation to boost its photocatalytic performance. Additionally, the review highlights the importance of photoreactor design, reactor types, geometries, operating modes, and phases. Future research endeavors should prioritize the development of cost-effective catalyst immobilization methods for solid-liquid separation and catalyst recycling, while emphasizing the use of abundant and non-toxic materials to ensure environmental sustainability and economic viability. Finally, the review outlines key challenges and proposes novel directions for further enhancing ZnO-based photocatalytic CO2 conversion processes.
Collapse
Affiliation(s)
- Switi Dattatraya Kshirsagar
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sandip Prabhakar Shelake
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bapan Biswas
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Kanaparthi Ramesh
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - Rashmi Gaur
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - B Moses Abraham
- A.J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Annadanam V Sesha Sainath
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
García-Santos L, Fernández-Catalá J, Berenguer-Murcia Á, Cazorla-Amorós D. Exploring Pt-Impregnated CdS/TiO 2 Heterostructures for CO 2 Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1809. [PMID: 39591050 PMCID: PMC11597567 DOI: 10.3390/nano14221809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This work focuses on the production of methane through the photocatalytic reduction of carbon dioxide using Pt-doped CdS/TiO2 heterostructures. The photocatalysts were prepared using P25 commercial titania and CdS synthesized through a solvothermal methodology, followed by the impregnation of Pt onto the surface to enhance the physicochemical properties of the resulting photocatalysts. The pure and heterostructure-based materials were characterized using X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). The obtained results show the successful synthesis of the heterostructure impregnated with Pt. Moreover, the observed key role of CdS and Pt nanoparticles in the final semiconductor is to reduce the electron-hole pair recombination rate by acting as an electron sink, which slows down the recombination process and increases the photocatalyst efficiency. Thus, Pt-doped CdS/TiO2 heterostructures with the best observed composition presents better catalytic activity than P25 titania with methane production values being 460 and 397 µmol CH4/g·h, respectively.
Collapse
Affiliation(s)
| | | | - Ángel Berenguer-Murcia
- Inorganic Chemistry Department, Materials Science Institute, University of Alicante, Ap. 99, 03080 Alicante, Spain; (L.G.-S.); (J.F.-C.); (D.C.-A.)
| | | |
Collapse
|
6
|
Luo H, Liu X. Catalytic conversion of carbon dioxide (CO 2) using coal-based nano-carbon materials. RSC Adv 2024; 14:27298-27309. [PMID: 39193278 PMCID: PMC11348782 DOI: 10.1039/d4ra03407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Carbon dioxide (CO2) is a prominent greenhouse gas and a widely available carbon resource. The chemical conversion of CO2 into high-value chemicals and fuels is a significant approach for mitigating carbon emissions and attaining carbon neutrality. However, enhancing CO2 adsorption and conversion rates remains a primary challenge in CO2 recycling. The development of high-performance catalysts is pivotal for the catalytic conversion of CO2. In this context, coal-based carbon materials, characterized by their extensive specific surface area and adaptable chemical composition, can offer more reactive active sites and have robust CO2 adsorption capabilities. They can function as either standalone catalysts or as components of composite catalysts, making them promising materials for CO2 reduction. The use of affordable and abundant coal as a precursor for carbon materials represents a crucial avenue for achieving clean and efficient coal utilization. This paper reviews the progress of research on coal-based carbon materials and examines their advantages and challenges as catalysts for CO2 reduction.
Collapse
Affiliation(s)
- Hongchao Luo
- School of Chemistry and Materials Engineering, Liupanshui Normal University 553004 Guizhou Province China
| | - Xinjuan Liu
- School of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning Province China
| |
Collapse
|
7
|
Toh-Ae P, Timasart N, Tumnantong D, Bovornratanaraks T, Poompradub S. Utilization of waste tire derived activated carbon as CO 2 capture and photocatalyst for CO 2 conversion. Sci Rep 2024; 14:17100. [PMID: 39048643 PMCID: PMC11269617 DOI: 10.1038/s41598-024-67631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
The aims of this research were to prepare activated carbon (AC) impregnated with tetraethylenepentamine (TEPA) for use in carbon dioxide (CO2) capture and to then develop the AC-TEPA sorbent with titanium dioxide (TiO2) as a catalyst for photocatalytic reduction. The AC was impregnated with TEPA at three loading levels (2.5, 5, and 10% [w/w]) and then examined for its CO2 adsorption capacity under an ambient temperature and atmospheric pressure. The use of 5% (w/w) TEPA-impregnated AC (AC_5T) provided the highest CO2 adsorption capacity and long-term operation with a regeneration ability for up to 10 cycles. Then, AC_5T-doped TiO2 (AC_5T-TiO2) was prepared as a photocatalytic reduction catalyst, since the presence of carbon and nitrogen in AC_5T could reduce the band gap energy and so enhance the photocatalytic reduction. In addition, the CO2-saturated AC_5T was used as a CO2 source that could be directly converted to valuable chemicals using the AC_5T-TiO2 catalyst under photocatalytic reduction. Products were obtained in both the liquid (methanol) and gaseous (methane, carbon monoxide, and hydrogen) phases. Accordingly, the challenge of this research was to make valuable products from CO2 and to manage waste tires, following the circular economy concept.
Collapse
Affiliation(s)
- Pornsiri Toh-Ae
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napatsorn Timasart
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dusadee Tumnantong
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thiti Bovornratanaraks
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence On Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
9
|
Hu Q, Li M, Zhu J, Zhang Z, He D, Zheng K, Wu Y, Fan M, Zhu S, Yan W, Hu J, Zhu J, Chen Q, Jiao X, Xie Y. Nitrogen Doping-Roused Synergistic Active Sites in Perovskite Enabling Highly Selective CO 2 Photoreduction into CH 4. NANO LETTERS 2024; 24:4610-4617. [PMID: 38564191 DOI: 10.1021/acs.nanolett.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 μL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.
Collapse
Affiliation(s)
- Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengqian Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhixing Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Sarkar M, Chakrabortty P, Sengupta M, Kothari AC, Islam MS, Islam SM. Light-Mediated Sustainable Conversion of Carbon Dioxide to Valuable Methanol by Highly Efficient Covalent Organic Framework g-C 3N 4 Composites as a Reusable Photocatalyst. Ind Eng Chem Res 2024; 63:5573-5590. [DOI: 10.1021/acs.iecr.3c03572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Mainak Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Manideepa Sengupta
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Anil Chandra Kothari
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| |
Collapse
|
11
|
Mathew MS, Krishnan G, Mathews AA, Sunil K, Mathew L, Antoine R, Thomas S. Recent Progress on Ligand-Protected Metal Nanoclusters in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1874. [PMID: 37368304 DOI: 10.3390/nano13121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The reckless use of non-replenishable fuels by the growing population for energy and the resultant incessant emissions of hazardous gases and waste products into the atmosphere have insisted that scientists fabricate materials capable of managing these global threats at once. In recent studies, photocatalysis has been employed to focus on utilizing renewable solar energy to initiate chemical processes with the aid of semiconductors and highly selective catalysts. A wide range of nanoparticles has showcased promising photocatalytic properties. Metal nanoclusters (MNCs) with sizes below 2 nm, stabilized by ligands, show discrete energy levels and exhibit unique optoelectronic properties, which are vital to photocatalysis. In this review, we intend to compile information on the synthesis, true nature, and stability of the MNCs decorated with ligands and the varying photocatalytic efficiency of metal NCs concerning changes in the aforementioned domains. The review discusses the photocatalytic activity of atomically precise ligand-protected MNCs and their hybrids in the domain of energy conversion processes such as the photodegradation of dyes, the oxygen evolution reaction (ORR), the hydrogen evolution reaction (HER), and the CO2 reduction reaction (CO2RR).
Collapse
Affiliation(s)
- Meegle S Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
- Research and Post Graduate Department of Chemistry, Mar Athanasius College, Kothamangalam 686666, India
| | - Greeshma Krishnan
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Amita Aanne Mathews
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Kevin Sunil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Leo Mathew
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
12
|
Adamu A, Isaacs M, Boodhoo K, Abegão FR. Investigation of Cu/TiO2 synthesis methods and conditions for CO2 photocatalytic reduction via conversion of bicarbonate/carbonate to formate. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Almazán F, Lafuente M, Echarte A, Imizcoz M, Pellejero I, Gandía LM. UiO-66 MOF-Derived Ru@ZrO2 Catalysts for Photo-Thermal CO2 Hydrogenation. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The use of metal–organic frameworks (MOFs) as templates or precursors in the manufacture of heterogeneous catalysts is highly attractive due to the transfer of MOFs’ inherent porosity and homogeneous metallic distribution to the derived structure. Herein, we report on the preparation of MOF-derived Ru@ZrO2 catalysts by controlled thermal treatment of zirconium-based MOF UiO-66 with ruthenium moieties. Ru3+ (3 or 10 mol%) precursor was added to UiO-66 synthesis and, subsequently, the as-synthesized hybrid structure was calcined in flowing air at different temperatures (400–600 °C) to obtain ZrO2-derived oxides doped with highly dispersed Ru metallic clusters. The materials were tested for the catalytic photo-thermal conversion of CO2 to CH4. Methanation experiments were conducted in a continuous flow (feed flow rate of 5 sccm and 1:4 CO2 to H2 molar ratio) reactor at temperatures from 80 to 300 °C. Ru0.10@ZrO2 catalyst calcined at 600 °C was able to hydrogenate CO2 to CH4 with production rates up to 65 mmolCH4·gcat.–1·h–1, CH4 yield of 80% and nearly 100% selectivity at 300 °C. The effect of the illumination was investigated with this catalyst using a high-power visible LED. A CO2 conversion enhancement from 18% to 38% was measured when 24 sun of visible LED radiation was applied, mainly due to the increase in the temperature as a result of the efficient absorption of the radiation received. MOF-derived Ru@ZrO2 catalysts have resulted to be noticeably active materials for the photo-thermal hydrogenation of CO2 for the purpose of the production of carbon-neutral methane. A remarkable effect of the ZrO2 crystalline phase on the CH4 selectivity has been found, with monoclinic zirconia being much more selective to CH4 than its cubic allotrope.
Collapse
|
14
|
Hu Y, Wu T, Li Y, Zhang Y, Lin W. Mechanism of CO 2 photoreduction by selenium-doped carbon nitride with cobalt clusters as cocatalysts. Phys Chem Chem Phys 2023; 25:8705-8713. [PMID: 36896660 DOI: 10.1039/d2cp05872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Doping is an efficient strategy for improving the photocatalytic activity and tuning the electronic structure of carbon nitride. Selenium-doped melon carbon nitride (Se-doped melon CN) as a promising photocatalyst for CO2 reduction is investigated using density functional theory calculations. In addition, considering the special role of a cocatalyst in CO2 reduction, we have explored the electronic and optical properties of Co4 clusters loaded on the Se-doped melon CN surface. After loading cobalt clusters, CO2 activation is significantly improved, with preference for the 8-electron product CH4, as the 2-electron products have higher desorption energies. Overall, this work provides a microscopic understanding of the CO2 reduction mechanism on Se-doped melon CN with cobalt as the co-catalyst.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Ting Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
15
|
Chen C, Liu F, Zhang Q, Zhang Z, Liu Q, Fang X. Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
16
|
Kamari V, Sharma A, Kumar N, Sillanpää M, Makgwane PR, Ahmaruzzaman M, Hosseini-Bandegharaei A, Rani M, Chinnumuthu P. TiO2-CeO2 assisted heterostructures for photocatalytic mitigation of environmental pollutants: A comprehensive study on band gap engineering and mechanistic aspects. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Ball-flower like CoS/g-C3N4 heterojunction photocatalyst for efficient and selective reduction of CO2 to CH4. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Chen Y, Guan B, Wu X, Guo J, Ma Z, Zhang J, Jiang X, Bao S, Cao Y, Yin C, Ai D, Chen Y, Lin H, Huang Z. Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO 2 photocatalytic reduction conversion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11246-11271. [PMID: 36517610 DOI: 10.1007/s11356-022-24686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In recent years, with global climate change, the utilization of carbon dioxide as a resource has become an important goal of human society to achieve carbon peaking and carbon neutrality. Among them, the catalytic conversion of carbon dioxide to generate renewable fuels has received great attention. As one of these methods, photocatalysis has its unique properties and mechanism, which can only rely on sunlight without inputting other energy. It is an emerging discipline with great development prospects. The core of photocatalysis lies in the development of photocatalysts with high activity, high selectivity, low cost, and high durability. This review first introduces the background and mechanism of photocatalysis, then introduces various types of photocatalysts based on different substrates, and analyzes the methods and mechanisms to improve the activity and selectivity of photocatalysts. Finally, combining the plasmon effect with photocatalysis, the review analyzes the promoting effect of the plasmon effect on the photocatalytic carbon dioxide synthesis of renewable fuels, which provides a new idea for it.
Collapse
Affiliation(s)
- Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240.
| | - Xingze Wu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Jiangfeng Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Xing Jiang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Shibo Bao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Yiyan Cao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Chengdong Yin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Di Ai
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Yuxuan Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - He Lin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| |
Collapse
|
19
|
Wang Y, Shi X, Oshikiri T, Misawa H. Improved water splitting efficiency of Au-NP-loaded Ga 2O 3 thin films in the visible region under strong coupling conditions. NANOSCALE ADVANCES 2022; 5:119-123. [PMID: 36605794 PMCID: PMC9765426 DOI: 10.1039/d2na00768a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
We fabricate a novel photoanode consisting of TiO2/Au nanoparticles (Au-NPs)/Ga2O3/TiN/Au-film (TAGA), efficiently increasing light absorption and electron transfer from Au-NPs to Ga2O3 under modal strong coupling. A TiN thin layer deposited on an Au film enables stable high-temperature deposition of Ga2O3 onto the reflective Au film mirror. Modal strong coupling is observed when the resonance wavelength of the Ga2O3/TiN/Au-film Fabry-Pérot cavity overlaps with the plasmon resonance wavelength of Au-NPs partially inlaid in a thin TiO2 layer. Under strong coupling conditions, the light absorption and photoelectrochemical conversion efficiency in the visible region increased more than in the samples without coupling. In this structure, the TiO2 layer partially inlaying Au-NPs plays a vital role in effectively enhancing the coupling strength. We accomplish water splitting at zero bias potential by taking advantage of the intrinsically negative conduction band potential of Ga2O3.
Collapse
Affiliation(s)
- Yaguang Wang
- Research Institute for Electronic Science, Hokkaido University Sapporo Japan
| | - Xu Shi
- Creative Research Institution, Hokkaido University Sapporo Japan
| | - Tomoya Oshikiri
- Research Institute for Electronic Science, Hokkaido University Sapporo Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University Sapporo Japan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Taiwan
| |
Collapse
|
20
|
Two-dimensional oxalamide based isostructural MOFs for CO2 capture. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Maarisetty D, Mary R, Hang DR, Mohapatra P, Baral SS. The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Yu S, Tan L, Bai S, Ning C, Liu G, Wang H, Liu B, Zhao Y, Song YF. Rational Regulation of Electronic Structure in Layered Double Hydroxide Via Vanadium Incorporation to Trigger Highly Selective CO 2 Photoreduction to CH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202334. [PMID: 35934816 DOI: 10.1002/smll.202202334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
To realize excellent selectivity of CH4 in CO2 photoreduction (CO2 PR) is highly desirable, yet which is challenging due to the limited active sites for CH4 generation and severe electron-hole recombination on photocatalysts. Herein, based on the theoretically calculated effects of vanadium incorporation into the laminate of layered double hydroxides (LDHs), V into NiAl-LDH to synthesize a series of LDHs with various V contents is introduced. NiV-LDH is revealed to afford a high CH4 selectivity (78.9%), and extremely low H2 selectivity (only 0.4%) under λ > 400 nm irradiation. By further tuning the molar ratio of Ni to V, a CH4 selectivity of as high as 90.1% is achieved on Ni4 V-LDH, and H2 is completely prohibited on Ni2 V-LDH. Fine structural characterizations and comprehensive optical and electrochemical studies uncover V incorporation creates the lower-valence Ni species as active sites for generating CH4 , and enhances the generation, separation, and transfer of photogenerated carriers.
Collapse
Affiliation(s)
- Sha Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ling Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenjun Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huijuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
24
|
Khan M, Assal ME, Nawaz Tahir M, Khan M, Ashraf M, Rafe Hatshan M, Khan M, Varala R, Mohammed Badawi N, Farooq Adil S. Graphene/Inorganic Nanocomposites: Evolving Photocatalysts for Solar Energy Conversion for Environmental Remediation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Rassu P, Ma X, Wang B. Engineering of catalytically active sites in photoactive metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Chen L, Yang J, Yang W, Xian J, Li G. Nickel metal-organic frameworks for visible-light CO 2 reduction under mild reaction conditions. Dalton Trans 2022; 51:7950-7956. [PMID: 35543568 DOI: 10.1039/d2dt01022d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical CO2 conversion into carbon fuel is a promising route to explore renewable energy and relieve climate change. However, it is still a key challenge to achieve high selectivity to CO and simultaneously achieve high conversion efficiency in photochemical CO2 reduction. Herein, we demonstrate the effect of Ni metal centers as catalytic active sites for the photocatalytic conversion of CO2 to CO by designing and constructing Ni metal-organic framework (Ni-MOF) materials. In pure CO2, Ni-MOF catalyst exhibits outstanding performance for visible-light-driven reductive CO2 deoxygenation with a high CO evolution rate of 19.13 μmol h-1 (per 1 mg of catalyst) and CO selectivity of 91.4%, which exceeds those of most reported systems. Upon using isostructural Co-MOF as the catalyst to replace Ni-MOF, a moderate performance towards CO2 photoreduction and low CO selectivity (40.1%) were observed, implying that the performance of CO2 photoreduction and CO selectivity are dependent on unsaturated metal centers.
Collapse
Affiliation(s)
- Liuyong Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Wenqian Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
27
|
Ma Y, Yi X, Wang S, Li T, Tan B, Chen C, Majima T, Waclawik ER, Zhu H, Wang J. Selective photocatalytic CO 2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO 2. Nat Commun 2022; 13:1400. [PMID: 35301319 PMCID: PMC8930982 DOI: 10.1038/s41467-022-29102-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Direct photocatalytic CO2 reduction from primary sources, such as flue gas and air, into fuels, is highly desired, but the thermodynamically favored O2 reduction almost completely impedes this process. Herein, we report on the efficacy of a composite photocatalyst prepared by hyper-crosslinking porphyrin-based polymers on hollow TiO2 surface and subsequent coordinating with Pd(II). Such composite exhibits high resistance against O2 inhibition, leading to 12% conversion yield of CO2 from air after 2-h UV-visible light irradiation. In contrast, the CO2 reduction over Pd/TiO2 without the polymer is severely inhibited by the presence of O2 ( ≥ 0.2 %). This study presents a feasible strategy, building Pd(II) sites into CO2-adsorptive polymers on hollow TiO2 surface, for realizing CO2 reduction with H2O in an aerobic environment by the high CO2/O2 adsorption selectivity of polymers and efficient charge separation for CO2 reduction and H2O oxidation on Pd(II) sites and hollow TiO2, respectively.
Collapse
Affiliation(s)
- Yajuan Ma
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoxuan Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaolei Wang
- Key Laboratory of Polyoxometalate Science of Education Institution, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tetsuro Majima
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Eric R Waclawik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Huaiyong Zhu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
28
|
Behera A, Kar AK, Srivastava R. Challenges and prospects in the selective photoreduction of CO 2 to C1 and C2 products with nanostructured materials: a review. MATERIALS HORIZONS 2022; 9:607-639. [PMID: 34897343 DOI: 10.1039/d1mh01490k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar fuel generation through CO2 hydrogenation is the ultimate strategy to produce sustainable energy sources and alleviate global warming. The photocatalytic CO2 conversion process resembles natural photosynthesis, which regulates the ecological systems of the earth. Currently, most of the work in this field has been focused on boosting efficiency rather than controlling the distribution of products. The structural architecture of the semiconductor photocatalyst, CO2 photoreduction process, product analysis, and elucidating the CO2 photoreduction mechanism are the key features of the photoreduction of CO2 to generate C1 and C2 based hydrocarbon fuels. The selectivity of C1 and C2 products during the photocatalytic CO2 reduction have been ameliorated by suitable photocatalyst design, co-catalyst, defect states, and the impacts of the surface polarisation state, etc. Monitoring product selectivity allows the establishment of an appropriate strategy to generate a more reduced state of a hydrocarbon, such as CH4 or higher carbon (C2) products. This article concentrates on studies that demonstrate the production of C1 and C2 products during CO2 photoreduction using H2O or H2 as an electron and proton source. Finally, it highlights unresolved difficulties in achieving high selectivity and photoconversion efficiency of CO2 in C1 and C2 products over various nanostructured materials.
Collapse
Affiliation(s)
- Arjun Behera
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Ashish Kumar Kar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| |
Collapse
|
29
|
Continuous-Flow Sunlight-Powered CO2 Methanation Catalyzed by γ-Al2O3-Supported Plasmonic Ru Nanorods. Catalysts 2022. [DOI: 10.3390/catal12020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasmonic CO2 methanation using γ-Al2O3-supported Ru nanorods was carried out under continuous-flow conditions without conventional heating, using mildly concentrated sunlight as the sole and sustainable energy source (AM 1.5, irradiance 5.5–14.4 kW·m−2 = 5.5–14.4 suns). Under 12.5 suns, a CO2 conversion exceeding 97% was achieved with complete selectivity towards CH4 and a stable production rate (261.9 mmol·gRu−1·h−1) for at least 12 h. The CH4 production rate showed an exponential increase with increasing light intensity, suggesting that the process was mainly promoted by photothermal heating. This was confirmed by the apparent activation energy of 64.3 kJ·mol−1, which is very similar to the activation energy obtained for reference experiments in dark (67.3 kJ·mol−1). The flow rate influence was studied under 14.4 suns, achieving a CH4 production plateau of 264 µmol min−1 (792 mmol·gRu−1·h−1) with a constant catalyst bed temperature of approximately 204 °C.
Collapse
|
30
|
Visible Light Mediated Photocatalytic Reduction of CO2 to Non-fossil Fuel and Valuable Products by Polyaniline-TiO2 Nanocomposites. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06450-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Huang W, Zhang L, Li Z, Zhang X, Dong X, Zhang Y. Efficient CO2 reduction with H2O via photothermal chemical reaction based on Au-MgO dual catalytic site on TiO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Zhao H, Duan J, Zhang Z, Wang W. S‐Scheme Heterojunction and Defect Site Engineering on Cu
x
In
5
S
8
−Cu
2‐y
Se for Highly Efficient Photoreduction of CO
2
to methanol. ChemCatChem 2021. [DOI: 10.1002/cctc.202101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Zhao
- State Key Laboratory Base of Eco-Chemical Engineering Department of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Jihai Duan
- State Key Laboratory Base of Eco-Chemical Engineering Department of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Zisheng Zhang
- State Key Laboratory Base of Eco-Chemical Engineering Department of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Weiwen Wang
- State Key Laboratory Base of Eco-Chemical Engineering Department of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| |
Collapse
|
33
|
Das R, Sarkar S, Kumar R, D. Ramarao S, Cherevotan A, Jasil M, Vinod CP, Singh AK, Peter SC. Noble-Metal-Free Heterojunction Photocatalyst for Selective CO2 Reduction to Methane upon Induced Strain Relaxation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ritesh Kumar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Seethiraju D. Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Arjun Cherevotan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohammed Jasil
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Chathakudath. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 410008, India
| | | | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
34
|
Kozlova EA, Lyulyukin MN, Kozlov DV, Parmon VN. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the current knowledge about heterogeneous semiconductor photocatalysts that are active towards photocatalytic reduction of carbon dioxide and molecular nitrogen under visible and near-UV light. The main classes of these photocatalysts and characteristic features of their application in the target processes are considered. Primary attention is given to photocatalysts based on titanium dioxide, which have high activity and stability in the carbon dioxide reduction. For the first time, the photofixation of nitrogen under irradiation in the presence of various semiconductor materials is considered in detail.
The bibliography includes 264 references.
Collapse
|
35
|
Nasrallah H, Lyu P, Maurin G, El-Roz M. Highly efficient CO2 reduction under visible-light on non-covalent Ru⋯Re assembled photocatalyst: Evidence on the electron transfer mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Zhu J, Shao W, Li X, Jiao X, Zhu J, Sun Y, Xie Y. Asymmetric Triple-Atom Sites Confined in Ternary Oxide Enabling Selective CO 2 Photothermal Reduction to Acetate. J Am Chem Soc 2021; 143:18233-18241. [PMID: 34677975 DOI: 10.1021/jacs.1c08033] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Light-induced heat is largely neglected in traditional photocatalytic systems, especially for the thermodynamically and kinetically challenging CO2 reduction to C2 fuels. Herein, we first design asymmetric Metal1-O-Metal2 triple-atom sites confined in phenakite to facilitate C-C coupling and employ photoinduced heat to increase molecular thermal vibration and accelerate CO2 reduction to C2 fuels. Using O-vacancy-rich Zn2GeO4 nanobelts as prototypes, quasi in situ Raman spectra disclose the Zn-O-Ge triatomic sites are likely the reactive sites. Density functional theory calculations reveal that the asymmetric Zn-O-Ge sites could promote C-C coupling through inducing distinct charge distributions of neighboring C1 intermediates, whereas the created O vacancies could lower the energy barrier of the rate-determining hydrogenation step from 1.46 to 0.67 eV. Catalytic performances under different testing conditions demonstrate that light initiates the CO2 reduction reaction. In situ Fourier-transform infrared spectra and D2O kinetic isotopic effect experiments disclose that light-induced heat kinetically triggers C-C coupling and accelerates OCCO* hydrogenation via providing abundant hydrogen species. Consequently, in a simulated air atmosphere under 0.1 W/cm2 illumination at 348 K, the O-vacancy-rich Zn2GeO4 nanobelts demonstrate an acetate output of 12.7 μmol g-1 h-1, a high acetate selectivity of 66.9%, a considerable CO2-to-CH3COOH conversion ratio of 29.95%, and a stability of up to 220 h.
Collapse
Affiliation(s)
- Juncheng Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xingchen Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
37
|
Wang R, Wang Z, Wan S, Ding J, Zhong Q. Enhanced light-driven CO 2 reduction on metal-free rich terminal oxygen-defects carbon nitride nanosheets. J Colloid Interface Sci 2021; 608:2505-2514. [PMID: 34750006 DOI: 10.1016/j.jcis.2021.10.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/26/2023]
Abstract
Exploiting highly-efficient and metal-free photocatalyst for CO2 conversion into useful chemicals is a promising pathway to solve the energy and environmental crises. In this work, through a facile exfoliation process, an ultra-thin and short-range order g-C3N4 nanosheet with rich terminal oxygen defects is successfully constructed, which presents total electron yield of 36.30 μmol g-1h-1, 3.05 times higher than that of bulk one. The results affirms that both the van der Waals forces between the C3N4 layers and the CN bonds on the periodic heptazine units could be disrupted during the sonication process, thus achieving the ultra-thin and ultra-small g-C3N4 nanosheet, which enables the improvement of optical absorption and carrier separation abilities. The π-conjugated triazine rings structure is still remained but the terminal active C radicals tend to transform into oxygen defects which become the sites to bind and activate CO2. The in-situ DRIFTS provides the direct evidence that the size regulation and oxygen-defects design strategy can effectively promote the CO2 adsorption and activation process upon the photocatalyst, thus turning out to boost the reactivity toward CO2.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Zhen Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Shipeng Wan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jie Ding
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
| |
Collapse
|
38
|
Martínez Molina P, Meulendijks N, Xu M, Verheijen MA, Hartog T, Buskens P, Sastre F. Low Temperature Sunlight‐Powered Reduction of CO
2
to CO Using a Plasmonic Au/TiO
2
Nanocatalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pau Martínez Molina
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656AE Eindhoven (The Netherlands
| | - Nicole Meulendijks
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656AE Eindhoven (The Netherlands
| | - Man Xu
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656AE Eindhoven (The Netherlands
- Optics Research Group Delft University of Technology Lorentzweg 1 (Building 22) 2628CJ Delft (The Netherlands
| | - Marcel A. Verheijen
- Eurofins Materials Science High Tech Campus 11 5656AE Eindhoven (The Netherlands
- Department of Applied Physics Eindhoven University of Technology PO Box 513 5600MB Eindhoven (The Netherlands
| | - Tim Hartog
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656AE Eindhoven (The Netherlands
- Zuyd University of Applied Sciences Nieuw Eyckholt 300 6400AN Heerlen (The Netherlands
| | - Pascal Buskens
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656AE Eindhoven (The Netherlands
- Institute for Materials Research Design and Synthesis of Inorganic Materials (DESINe) Hasselt University Agoralaan Building D B-3590 Diepenbeek Belgium
| | - Francesc Sastre
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656AE Eindhoven (The Netherlands
| |
Collapse
|
39
|
Lu S, Huynh HL, Lou F, Guo M, Yu Z. Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene: First-principles study. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat Catal 2021. [DOI: 10.1038/s41929-021-00665-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Peng Y, Szeto KC, Santini CC, Daniele S. Study of the Parameters Impacting the Photocatalytic Reduction of Carbon Dioxide in Ionic Liquids. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yulan Peng
- Université Lyon 1 CNRS-UMR 5265 C2P2-CPE Lyon 69616 Villeurbanne cedex France
| | - Kai C. Szeto
- Université Lyon 1 CNRS-UMR 5265 C2P2-CPE Lyon 69616 Villeurbanne cedex France
| | | | - Stéphane Daniele
- Université Lyon 1 CNRS-UMR 5265 C2P2-CPE Lyon 69616 Villeurbanne cedex France
| |
Collapse
|
42
|
Wang HN, Zou YH, Sun HX, Chen Y, Li SL, Lan YQ. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Mora-Hernandez J, González-Suárez WI, Manzo-Robledo A, Luna-Trujillo M. A comparative differential electrochemical mass spectrometry (DEMS) study towards the CO2 reduction on Pd, Cu, and Sn -based electrocatalyst. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Li K, Teng C, Wang S, Min Q. Recent Advances in TiO 2-Based Heterojunctions for Photocatalytic CO 2 Reduction With Water Oxidation: A Review. Front Chem 2021; 9:637501. [PMID: 33937191 PMCID: PMC8082425 DOI: 10.3389/fchem.2021.637501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Photocatalytic conversion of CO2 into solar fuels has gained increasing attention due to its great potential for alleviating the energy and environmental crisis at the same time. The low-cost TiO2 with suitable band structure and high resistibility to light corrosion has proven to be very promising for photoreduction of CO2 using water as the source of electrons and protons. However, the narrow spectral response range (ultraviolet region only) as well as the rapid recombination of photo-induced electron-hole pairs within pristine TiO2 results in the low utilization of solar energy and limited photocatalytic efficiency. Besides, its low selectivity toward photoreduction products of CO2 should also be improved. Combination of TiO2 with other photoelectric active materials, such as metal oxide/sulfide semiconductors, metal nanoparticles and carbon-based nanostructures, for the construction of well-defined heterostructures can enhance the quantum efficiency significantly by promoting visible light adsorption, facilitating charge transfer and suppressing the recombination of charge carriers, resulting in the enhanced photocatalytic performance of the composite photocatalytic system. In addition, the adsorption and activation of CO2 on these heterojunctions are also promoted, therefore enhancing the turnover frequency (TOF) of CO2 molecules, so as to the improved selectivity of photoreduction products. This review focus on the recent advances of photocatalytic CO2 reduction via TiO2-based heterojunctions with water oxidation. The rational design, fabrication, photocatalytic performance and CO2 photoreduction mechanisms of typical TiO2-based heterojunctions, including semiconductor-semiconductor (S-S), semiconductor-metal (S-M), semiconductor-carbon group (S-C) and multicomponent heterojunction are reviewed and discussed. Moreover, the TiO2-based phase heterojunction and facet heterojunction are also summarized and analyzed. In the end, the current challenges and future prospects of the TiO2-based heterostructures for photoreduction of CO2 with high efficiency, even for practical application are discussed.
Collapse
Affiliation(s)
- Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, China
| | - Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, China.,College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Yu Y, Bian Z, Wang J, Wang Z, Tan W, Zhong Q, Kawi S. CO2 hydrogenation to CH4 over hydrothermal prepared ceria-nickel catalysts: Performance and mechanism study. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Nemiwal M, Subbaramaiah V, Zhang TC, Kumar D. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144101. [PMID: 33360464 DOI: 10.1016/j.scitotenv.2020.144101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising materials and have attracted researchers due to their unique chemical and physical properties-design flexibility, tuneable pore channels, a high surface-to-volume ratio that allow their distinct application in diverse research fields-gas storage, gas separation, catalysis, adsorption, drug delivery, ion exchange, sensing, etc. The rapidly growing CO2 in the atmosphere is a global concern due to the excessive use of fossil fuels in the current era. CO2 is the prime cause of global warming and should be ameliorated either through adsorption or conversion into value-added products to protect the environment and mankind. Nowadays, MOFs are exploited as a photocatalyst for applications of CO2 reduction. Since the use of semiconductors limits the use of visible light for photocatalytic reduction of CO2, MOFs are promising options. The current review describes recent development in the application of MOFs as host, composites, and their derivatives in photocatalytic reduction of CO2 to CO and different organic chemicals (HCOOH, CH3OH, CH4). Efficient charge separation and visible light absorption by incorporation of active sites for efficient photocatalysis have been discussed. The selection of material for high CO2 uptake and potential strategies for the rational design and development of high-performance catalysts are outlined. Major challenges and future perspectives have also been discussed at the last of the review.
Collapse
Affiliation(s)
- Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Verraboina Subbaramaiah
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, USA
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
47
|
Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0730-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J. Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003521. [PMID: 33458902 DOI: 10.1002/adma.202003521] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Solving energy and environmental problems through solar-driven photocatalysis is an attractive and challenging topic. Hence, various types of photocatalysts have been developed successively to address the demands of photocatalysis. Graphene-based materials have elicited considerable attention since the discovery of graphene. As a derivative of graphene, nitrogen-doped graphene (NG) particularly stands out. Nitrogen atoms can break the undifferentiated structure of graphene and open the bandgap while endowing graphene with an uneven electron density distribution. Therefore, NG retains nearly all the advantages of original graphene and is equipped with several novel properties, ensuring infinite possibilities for NG-based photocatalysis. This review introduces the atomic and band structures of NG, summarizes in situ and ex situ synthesis methods, highlights the mechanism and advantages of NG in photocatalysis, and outlines its applications in different photocatalysis directions (primarily hydrogen production, CO2 reduction, pollutant degradation, and as photoactive ingredient). Lastly, the central challenges and possible improvements of NG-based photocatalysis in the future are presented. This study is expected to learn from the past and achieve progress toward the future for NG-based photocatalysis.
Collapse
Affiliation(s)
- Chuanbiao Bie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Huogen Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N. T., Hong Kong, 999077, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
49
|
Huo Y, Zhang J, Wang Z, Dai K, Pan C, Liang C. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. J Colloid Interface Sci 2021; 585:684-693. [DOI: 10.1016/j.jcis.2020.10.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
|
50
|
Kumar A, Raizada P, Kumar Thakur V, Saini V, Aslam Parwaz Khan A, Singh N, Singh P. An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction: Strategically manoeuvring solar to fuel conversion efficiency. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116219] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|