1
|
Qi S, Zheng H, Niu Y, Zhai H. A novel fluorescence sensor based on Al 3+-mediated aggregation of gold nanoclusters for determination of citric acid in beverages. ANAL SCI 2024; 40:1489-1498. [PMID: 38720021 DOI: 10.1007/s44211-024-00587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 07/26/2024]
Abstract
This paper revealed a new strategy for citric acid (CA) detection using aggregation-induced emission (AIE)-based fluorescent gold nanoclusters (AuNCs). AuNCs was synthesized using glutathione (GSH) as the template and reducing agent and used as the fluorescent probe to detect CA under aluminum ion (Al3+) mediation. The fluorescence intensity of AuNCs increased about 4 times with the addition of Al3+, but the enhanced fluorescence was quenched after the addition of CA. Based on this fluorescence phenomenon, an "on-off" fluorescence strategy was designed for the sensitive determination of CA and a linear detection range for CA was achieved within 0-80.0 μM. In addition, the developed probe exhibited high selectivity and accuracy for determination of CA. The mechanism of fluorescence enhancement and quenching of AuNCs was explored in detail. The established probe was used successfully for CA detection in beverages. The spiked recoveries from 97.50% to 103.67% were gratifying, which indicated the probe had potential prospects for detecting CA in food.
Collapse
Affiliation(s)
- Shengda Qi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730030, China.
| | - Huiru Zheng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730030, China
| | - Yunbo Niu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730030, China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Havenridge S, Liu C. A Theoretical Benchmark of the Geometric and Optical Properties for 3d Transition Metal Nanoclusters via Density Functional Theory. J Phys Chem A 2024; 128:3947-3956. [PMID: 38729915 DOI: 10.1021/acs.jpca.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Understanding structure-property relationships in atomically precise metal nanoclusters is vital in finding selective and tunable catalysts. In this study, density functional theory (DFT) was used to benchmark seven exchange correlation functionals at different basis sets for 17 atomically precise nanoclusters against experimentally determined geometries, band gaps, and optical gaps. The set contains both monometallic and bimetallic clusters that possess at least two types of 3d transition metals (specifically, Cu, Ni, Fe, or Co). The benchmark highlights that PBE0 is a good functional to use regardless of the basis set, and Minnesota functionals do well with respect to specific metals. Further, while long-range corrected functionals overestimate band and optical gaps, they model absorption features better than the other considered functionals. The study additionally looks at the photoinduced hydrogen evolution reaction (HER) and the CO2 reduction mechanism on nanoclusters reported from the literature.
Collapse
Affiliation(s)
- Shana Havenridge
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Sufyan SA, van Devener B, Perez P, Nigra MM. Electronic Tuning of Gold Nanoparticle Active Sites for Reduction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1210-1218. [PMID: 36580656 DOI: 10.1021/acsami.2c18786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electronic tuning of active sites in heterogeneous catalysis with organic ligands remains challenging since the ligands are often bound to the most active sites on the catalysts' surfaces. In this work, gold nanoparticles, which are on average less than 2 nm in diameter, are synthesized with strongly binding thiol and phosphine ligands and have measurable quantities of accessible sites on their surfaces in both cases. Triphenylphosphine (TPP) is used as the phosphine ligand, while triphenylmethyl mercaptan (TPMT) serves as the thiol ligand. Phosphines are chosen because they are electron-donating ligands when bound to Au, and thiols are selected because they are electron-withdrawing on the Au surface. X-ray photoelectron spectroscopy (XPS) results show differences in the Au 4f binding energies between the TPP- and TPMT-bound Au nanoparticles. Fourier transform infrared spectroscopy (FTIR) measurements of bound CO indicate that the TPP-bound Au nanoparticles are more electron-rich than the TPMT-bound Au nanoparticles. The number of binding sites on the surface is quantified using 2-naphthalenethiol titration experiments. It is observed that the number of binding sites on the thiol and phosphine-bound Au nanoparticles is similar in both cases. The Au nanoparticles are used for three different reactions: resazurin reduction, CO oxidation, and benzyl alcohol oxidation. For both CO oxidation and benzyl alcohol oxidation, which are performed with the ligands attached, TPP- and TPMT-bound nanoparticles are both catalytically active. However, for resazurin reduction, the TPMT-bound Au nanoparticles are not active, while the TPP-bound Au nanoparticles are catalytically active. These results illustrate that the catalytic activity can be tuned using bound organic ligands with different electronic properties for reduction reactions using Au nanoparticle catalysts.
Collapse
Affiliation(s)
- Sayed Abu Sufyan
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Brian van Devener
- Electron Microscopy and Surface Analysis Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Paulo Perez
- Electron Microscopy and Surface Analysis Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael M Nigra
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
5
|
Kawawaki T, Shimizu N, Mitomi Y, Yazaki D, Hossain S, Negishi Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| |
Collapse
|
6
|
Sudheeshkumar V, Soong C, Dogel S, Scott RWJ. Probing the Thermal Stability of (3-Mercaptopropyl)-trimethoxysilane-Protected Au 25 Clusters by In Situ Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004539. [PMID: 33511742 DOI: 10.1002/smll.202004539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
High-surface-area gold catalysts are promising catalysts for a number of selective oxidation and reduction reactions but typically suffer catalyst deactivation at higher temperatures. The major reason for catalyst deactivation is sintering, which can be triggered via two mechanisms: particle migration and coalescence, and Ostwald ripening. Herein, a direct method to synthesize Au25 clusters stabilized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands is discussed. The sintering of Au25 (MPTS)18 clusters on mesoporous silica (SBA-15) is monitored by using an environmental in situ transmission electron microscopy (TEM) technique. Results show that agglomeration of smaller particles is accelerated by increased mobility of particles during heat treatment, while growth of immobile particles occurs via diffusion of atomic species from smaller particles. The mobility of the Au clusters can be alleviated by fabricating overlayers of silica around the clusters. The resulting materials show tremendous sinter-resistance at temperatures up to 650 °C as shown by in situ TEM and extended X-ray absorption fine structure analysis.
Collapse
Affiliation(s)
- Veeranmaril Sudheeshkumar
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Charles Soong
- Hitachi High-Tech Canada, Inc, Rexdale, Ontario, M9W 6A4, Canada
| | - Stas Dogel
- Hitachi High-Tech Canada, Inc, Rexdale, Ontario, M9W 6A4, Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| |
Collapse
|
7
|
Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. NANOSCALE HORIZONS 2021; 6:409-448. [PMID: 33903861 DOI: 10.1039/d1nh00046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand-protected metal nanoclusters controlled by atomic accuracy (i. e. atomically precise metal NCs) have recently attracted considerable attention as active sites in heterogeneous catalysts. Using these atomically precise metal NCs, it becomes possible to create novel heterogeneous catalysts based on a size-specific electronic/geometrical structure of metal NCs and understand the mechanism of the catalytic reaction easily. However, to create high-performance heterogeneous catalysts using atomically precise metal NCs, it is often necessary to remove the ligands from the metal NCs. This review summarizes previous studies on the creation of heterogeneous catalysts using atomically precise metal NCs while focusing on the calcination as a ligand-elimination method. Through this summary, we intend to share state-of-art techniques and knowledge on (1) experimental conditions suitable for creating high-performance heterogeneous catalysts (e.g., support type, metal NC type, ligand type, and calcination temperature), (2) the mechanism of calcination, and (3) the mechanism of catalytic reaction over the created heterogeneous catalyst. We also discuss (4) issues that should be addressed in the future toward the creation of high-performance heterogeneous catalysts using atomically precise metal NCs. The knowledge and issues described in this review are expected to lead to clear design guidelines for the creation of novel heterogeneous catalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Kataoka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Momoko Hirata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuki Iwamatsu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
8
|
Yuan S, Lei Z, Guan Z, Wang Q. Atomically Precise Preorganization of Open Metal Sites on Gold Nanoclusters with High Catalytic Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhen Lei
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Zong‐Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
9
|
Yuan SF, Lei Z, Guan ZJ, Wang QM. Atomically Precise Preorganization of Open Metal Sites on Gold Nanoclusters with High Catalytic Performance. Angew Chem Int Ed Engl 2021; 60:5225-5229. [PMID: 33258228 DOI: 10.1002/anie.202012499] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Gold nanoclusters with surface open sites are crucial for practical applications in catalysis. We have developed a surface geometric mismatch strategy by using mixed ligands of different type of hindrance. When bulky phosphine Ph3 P and planar dipyridyl amine (Hdpa) are simultaneously used, steric repulsion between the ligands will reduce the ligand coverage of gold clusters. A well-defined access granted gold nanocluster [Au23 (Ph3 P)10 (dpa)2 Cl](SO3 CF3 )2 (Au23 , dpa=dipyridylamido) has been successfully synthesized. Single crystal structural determination reveals that Au23 has eight uncoordinated gold atoms in the shape of a distorted bicapped triangular prism. The accessibility of the exposed Au atoms has been confirmed quantitatively by luminescent titration with 2-naphthalenethiol. This cluster has excellent performance toward selective oxidation of benzyl alcohol to benzaldehyde and demonstrates excellent stability due to the protection of negatively charged multidentate ligand dpa.
Collapse
Affiliation(s)
- Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhen Lei
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Fabrication of Pd–Au Clusters by In Situ Spontaneous Reduction of Reductive Layered Double Hydroxides. Catal Letters 2021. [DOI: 10.1007/s10562-020-03481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Steric Effects of Mesoporous Silica Supported Bimetallic Au-Pt Catalysts on the Selective Aerobic Oxidation of Aromatic Alcohols. Catalysts 2020. [DOI: 10.3390/catal10101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three series of catalysts consisting of gold (Au), platinum (Pt), or gold-platinum bimetallic nanoparticles (NPs) with controlled sizes (Au NPs 10 ± 2 nm, Pt NPs 6 ± 2 nm) anchored on hierarchical micro-/meso-/macroporous silica were successfully developed and systematically evaluated for the selective oxidation of aromatic alcohols to their corresponding aldehydes. The catalysts were prepared by the sol-immobilization method using as-made Au NPs and/or Pt NPs colloids; the silica supports were prepared with controlled pore structures and the hierarchical porous structures of catalysts were created by controllable desilication via the alkaline solution of the metal colloids. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and these results showed no synergistic effect between Au and Pt on boosting the catalytic performance, whereas they demonstrated a clear dependence of catalytic conversions and reaction rates on the structural porosity of Au-Pt bimetallic catalysts. Our findings could potentially inspire peer researchers and scientists to develop designer porous catalysts and processes in the selective organic conversions.
Collapse
|
12
|
A convenient one-step synthesis of mesoporous ZrO2/SBA-15 and its uranium adsorption properties. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07372-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Xu Y, Li J, Zhou J, Liu Y, Wei Z, Zhang H. Layered double hydroxides supported atomically precise Aun nanoclusters for air oxidation of benzyl alcohol: Effects of size and active site structure. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Synthesis of supported Pd nanocluster catalyst by spontaneous reduction on layered double hydroxide. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Aerobic Oxidation of Alcohols to Aldehydes and Ketones with Recyclable Pd Catalysts on Cross-linked 1,10-Phenanthroline Polymers. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Kawawaki T, Negishi Y. Gold Nanoclusters as Electrocatalysts for Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E238. [PMID: 32013164 PMCID: PMC7075145 DOI: 10.3390/nano10020238] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Gold nanoclusters (Aun NCs) exhibit a size-specific electronic structure unlike bulk gold and can therefore be used as catalysts in various reactions. Ligand-protected Aun NCs can be synthesized with atomic precision, and the geometric structures of many Aun NCs have been determined by single-crystal X-ray diffraction analysis. In addition, Aun NCs can be doped with various types of elements. Clarification of the effects of changes to the chemical composition, geometric structure, and associated electronic state on catalytic activity would enable a deep understanding of the active sites and mechanisms in catalytic reactions as well as key factors for high activation. Furthermore, it may be possible to synthesize Aun NCs with properties that surpass those of conventional catalysts using the obtained design guidelines. With these expectations, catalyst research using Aun NCs as a model catalyst has been actively conducted in recent years. This review focuses on the application of Aun NCs as an electrocatalyst and outlines recent research progress.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan;
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan;
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| |
Collapse
|
17
|
Sudheeshkumar V, Sulaiman KO, Scott RWJ. Activation of atom-precise clusters for catalysis. NANOSCALE ADVANCES 2020; 2:55-69. [PMID: 36133968 PMCID: PMC9417207 DOI: 10.1039/c9na00549h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 05/07/2023]
Abstract
The use of atom-precise, ligand-protected metal clusters has exceptional promise towards the fabrication of model supported-nanoparticle heterogeneous catalysts which have controlled sizes and compositions. One major challenge in the field involves the ease at which metallic clusters sinter upon removal of protected ligands, thus destroying the structural integrity of the model system. This review focuses on methods used to activate atom-precise thiolate-stabilized clusters for heterogeneous catalysis, and strategies that can be used to mitigate sintering. Thermal activation is the most commonly employed approach to activate atom-precise metal clusters, though a variety of chemical and photochemical activation strategies have also been reported. Material chemistry methods that can mitigate sintering are also explored, which include overcoating of clusters with metal oxide supports fabricated by sol-gel chemistry or atomic layer deposition of thin oxide films or encapsulating clusters within porous supports. In addition to focusing on the preservation of the size and morphology of deprotected metal clusters, the fate of the removed ligands is also explored, because detached and/or oxidized ligands can also greatly influence the overall properties of the catalyst systems. We also show that modern characterization techniques such as X-ray absorption spectroscopy and high-resolution electron microscopy have the capacity to enable careful monitoring of particle sintering upon activation of metal clusters.
Collapse
Affiliation(s)
- V Sudheeshkumar
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Kazeem O Sulaiman
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
18
|
Gold Nanoparticles for Oxidation Reactions: Critical Role of Supports and Au Particle Size. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
|
20
|
Nasseri MA, Hemmat K, Allahresani A, Hamidi‐Hajiabadi E. CoFe
2
O
4
@SiO
2
@ Co (III) salen complex nanoparticle as a green and efficient magnetic nanocatalyst for the oxidation of benzyl alcohols by molecular O
2. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammad A. Nasseri
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | - Kaveh Hemmat
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | - Ali Allahresani
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | | |
Collapse
|
21
|
Du Y, Sheng H, Astruc D, Zhu M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem Rev 2019; 120:526-622. [DOI: 10.1021/acs.chemrev.8b00726] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanxin Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
22
|
Feghhi A, Malakooti R, Malakooti S, Hooshmand N. Easy Scale‐Up Synthesis of Mo
8
O
26
(C
5
H
6
N)
4
.H
2
O Hybrid with a Rectangular Prism Morphology and Its Application as an Efficient and Highly Recyclable Bi‐functional Catalyst for Knoevenagel Condensations. ChemistrySelect 2019. [DOI: 10.1002/slct.201803124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aliyeh Feghhi
- Department of ChemistryCollege of SciencesUniversity of Birjand, Birjand Iran
| | - Reihaneh Malakooti
- Department of ChemistryCollege of SciencesUniversity of Birjand, Birjand Iran
| | - Sadeq Malakooti
- Department of Mechanical EngineeringThe University of Texas at Dallas Richardson TX 75080 USA
| | - Nasrin Hooshmand
- Laser Dynamics LaboratorySchool of Chemistry and BiochemistryGeorgia Institute of Technology, Atlanta Georgia 30332–0400 USA
| |
Collapse
|
23
|
Shahin Z, Ji H, Chiriac R, Essayem N, Rataboul F, Demessence A. Thermal control of the defunctionalization of supported Au 25(glutathione) 18 catalysts for benzyl alcohol oxidation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:228-237. [PMID: 30746316 PMCID: PMC6350859 DOI: 10.3762/bjnano.10.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Au25(SG)18 (SG - glutathione) clusters deposited on ZrO2 nanoparticles have been used as a catalyst for benzyl alcohol oxidation. Calcination was performed at different temperatures to study the ligand and particle size effect on the catalytic activity. In contrast to most gold nanoclusters which have to be completely defunctionalized for maximum catalytic activity, the partially defunctionalized Au25(SG)18@ZrO2 catalyst, thermally treated at 300 °C, exhibits full conversion of benzyl alcohol within 15 h under atmospheric pressure with 94% selectivity towards benzaldehyde.
Collapse
Affiliation(s)
- Zahraa Shahin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), Villeurbanne, France
| | - Hyewon Ji
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), Villeurbanne, France
| | - Rodica Chiriac
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces (LMI), Villeurbanne, France
| | - Nadine Essayem
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), Villeurbanne, France
| | - Franck Rataboul
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), Villeurbanne, France
| | - Aude Demessence
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), Villeurbanne, France
| |
Collapse
|
24
|
Xu J, Wang Y, Cao Y, He Z, Zhao L, Etim UJ, Bai P, Yan Z, Wu P. What is the effect of Sn and Mo oxides on gold catalysts for selective oxidation of benzyl alcohol? NEW J CHEM 2019. [DOI: 10.1039/c8nj05642k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of SnOx and MoOx promoted gold nanoparticle catalysts were used for the aerobic oxidation of benzyl alcohol.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Heavy Oil Processing
- School of Materials Science and Engineering
- Institute of Advanced Materials
- China University of Petroleum (East China)
- Qingdao
| | - Yue Wang
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| | - Yunxiang Cao
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| | - Zhengke He
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| | - Lianming Zhao
- State Key Laboratory of Heavy Oil Processing
- School of Materials Science and Engineering
- Institute of Advanced Materials
- China University of Petroleum (East China)
- Qingdao
| | - Ubong Jerome Etim
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| | - Peng Bai
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| | - Pingping Wu
- State Key Laboratory of Heavy Oil Processing
- Key Laboratory of Catalysis
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
| |
Collapse
|
25
|
Li H, Song Y, Lv Y, Yun Y, Lv X, Yu H, Zhu M. Unexpected Observation of Heavy Monomeric Motifs in a Basket-like Au26Ag22 Nanocluster. Inorg Chem 2018; 58:1724-1727. [DOI: 10.1021/acs.inorgchem.8b01990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Yongbo Song
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Yapei Yun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Xinrou Lv
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
26
|
Yao Q, Yuan X, Chen T, Leong DT, Xie J. Engineering Functional Metal Materials at the Atomic Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802751. [PMID: 30118559 DOI: 10.1002/adma.201802751] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Indexed: 05/20/2023]
Abstract
With continuous research efforts devoted into synthesis and characterization chemistry of functional nanomaterials in the past decades, the development of metal materials is stepping into a new era, where atom-by-atom customization of property-dictating structural attributes is expected. Herein, the state-of-the-art modulation of functional metal nanomaterials at the atomic level, by size- and structure-controlled synthesis of thiolate-protected metal (e.g., Au and Ag) nanoclusters (NCs), is exemplified. Metal NCs are ultrasmall (<3 nm) particles with hierarchical primary, secondary, and tertiary structures, reminiscent of natural proteins or enzymes. Given the proven dependence of their physicochemical properties on their size and structure, documented synthetic methodologies delivering NCs with atomic-level monodispersity and tailorable size and structural attributes at individual hierarchical levels are categorized and discussed. Such assured atomic-level modulation could confer metal NCs with novel application opportunities in diverse fields, which are also exemplified by their size- and structure-dictated catalytic and biomedical performance. The precise synthesis and application chemistry developed based on the hierarchical structure scheme of metal NCs could increase the acceptance of metal NCs as a new family of functional materials.
Collapse
Affiliation(s)
- Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Shibei District, Qingdao, Shandong Province, 266042, China
| | - Tiankai Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
27
|
Kang X, Chong H, Zhu M. Au 25(SR) 18: the captain of the great nanocluster ship. NANOSCALE 2018; 10:10758-10834. [PMID: 29873658 DOI: 10.1039/c8nr02973c] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Noble metal nanoclusters are in the intermediate state between discrete atoms and plasmonic nanoparticles and are of significance due to their atomically accurate structures, intriguing properties, and great potential for applications in various fields. In addition, the size-dependent properties of nanoclusters construct a platform for thoroughly researching the structure (composition)-property correlations, which is favorable for obtaining novel nanomaterials with enhanced physicochemical properties. Thus far, more than 100 species of nanoclusters (mono-metallic Au or Ag nanoclusters, and bi- or tri-metallic alloy nanoclusters) with crystal structures have been reported. Among these nanoclusters, Au25(SR)18-the brightest molecular star in the nanocluster field-is capable of revealing the past developments and prospecting the future of the nanoclusters. Since being successfully synthesized (in 1998, with a 20-year history) and structurally determined (in 2008, with a 10-year history), Au25(SR)18 has stimulated the interest of chemists as well as material scientists, due to the early discovery, easy preparation, high stability, and easy functionalization and application of this molecular star. In this review, the preparation methods, crystal structures, physicochemical properties, and practical applications of Au25(SR)18 are summarized. The properties of Au25(SR)18 range from optics and chirality to magnetism and electrochemistry, and the property-oriented applications include catalysis, chemical imaging, sensing, biological labeling, biomedicine and beyond. Furthermore, the research progress on the Ag-based M25(SR)18 counterpart (i.e., Ag25(SR)18) is included in this review due to its homologous composition, construction and optical absorption to its gold-counterpart Au25(SR)18. Moreover, the alloying methods, metal-exchange sites and property alternations based on the templated Au25(SR)18 are highlighted. Finally, some perspectives and challenges for the future research of the Au25(SR)18 nanocluster are proposed (also holding true for all members in the nanocluster field). This review is directed toward the broader scientific community interested in the metal nanocluster field, and hopefully opens up new horizons for scientists studying nanomaterials. This review is based on the publications available up to March 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institute of Physical Science and Information Technology and AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | | | | |
Collapse
|
28
|
Li Z, Li W, Abroshan H, Ge Q, Li G, Jin R. Dual effects of water vapor on ceria-supported gold clusters. NANOSCALE 2018; 10:6558-6565. [PMID: 29577145 DOI: 10.1039/c7nr09447g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.
Collapse
Affiliation(s)
- Zhimin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | | | | | | | | | | |
Collapse
|
29
|
Huang R, Fu Y, Zeng W, Zhang L, Wang D. The facile approach to fabricate gold nanoparticles and their application on the hydration and dehydrogenation reactions. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Modification of as Synthesized SBA-15 with Pt nanoparticles: Nanoconfinement Effects Give a Boost for Hydrogen Storage at Room Temperature. Sci Rep 2017; 7:4509. [PMID: 28674443 PMCID: PMC5495762 DOI: 10.1038/s41598-017-04346-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/12/2017] [Indexed: 01/31/2023] Open
Abstract
In this work, Pt nanoparticles were incorporated into SBA-15 to prepare the materials for hydrogen spillover adsorption. We provide a direct modification (DM) strategy to improve the content of Pt nanoparticles inside the channels of SBA-15. In this strategy, the Pt precursor was directly incorporated into as synthesized SBA-15 by a solid-state grinding method. The subsequent calcination in air, then H2/Ar gases was conducted to obtain the resultant materials of PtAS. For the samples of PtAS, Pt nanoparticles up to 5.0 wt% have a high dispersion inside the channels of SBA-15. The size of nanoparticles is in control of 3.7 nm. Although much work so far has focused on modification of SBA-15 with Pt nanoparticles. Here, it is the first time the loading amount of Pt nanoparticles raises up to 5.0 wt%, and the location of the Pt nanoparticles is interior channels of SBA-15. We reveal that the high dispersion behaviors of Pt nanoparticles are ascribed to the nanoconfinement effects provided by as synthesized SBA-15. However, the samples derived from template free SBA-15 (PtCS) show sparsely dispersion of Pt nanoparticles with the size of 7.7 nm. We demonstrate that the PtAS samples show better hydrogen adsorption performance than PtCS.
Collapse
|
31
|
Elmaci G, Ozer D, Zumreoglu-Karan B. Liquid phase aerobic oxidation of benzyl alcohol by using manganese ferrite supported-manganese oxide nanocomposite catalyst. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Sadjadi S, Heravi M. Current advances in the utility of functionalized SBA mesoporous silica for developing encapsulated nanocatalysts: state of the art. RSC Adv 2017. [DOI: 10.1039/c7ra04833e] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cavities of SBA mesoporous silica materials can be used as nanoreactors for embedding catalytic species such as nanoparticles, complexes and heteropolyacids etc.
Collapse
Affiliation(s)
- S. Sadjadi
- Gas Conversion Department
- Faculty of Petrochemicals
- Iran Polymer and Petrochemical Institute
- Tehran
- Iran
| | - M. M. Heravi
- Department of Chemistry
- School of Science
- Alzahra University
- Tehran
- Iran
| |
Collapse
|
33
|
Pyrrolidone Modifying Gold Nanocatalysts for Enhanced Catalytic Activities in Aerobic Oxidation of Alcohols and Carbon Monoxide. J CHEM-NY 2017. [DOI: 10.1155/2017/5257296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enhancing the catalytic activity of supported metal nanoparticle is a great demand but extremely challenging to make. We reported a simple strategy for enhancing the activities by employing the polyvinylpyrrolidone (PVP) additive, where a series of supported Au nanoparticle catalysts including Au/C, Au/BN, Au/TiO2, and Au/SBA-15 exhibited significantly higher activities in the oxidation of various alcohols and carbon monoxide by molecular oxygen after adding PVP to the reaction system. The XPS study indicates that PVP could electronically interact with Au to form high active Au sites for molecular oxygen, thus causing improved activities for the various oxidation reactions.
Collapse
|
34
|
Wang C, Chen Z, Yao X, Jiang W, Zhang M, Li H, Liu H, Zhu W, Li H. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V2O5/SBA-15 catalyst in ionic liquids. RSC Adv 2017. [DOI: 10.1039/c7ra07286d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Clean oils could be obtained with this aerobic oxidation desulfurization method under mild conditions.
Collapse
Affiliation(s)
- Chao Wang
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhigang Chen
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Xiaoyu Yao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wei Jiang
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Ming Zhang
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hongping Li
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huaming Li
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
35
|
Malakooti R, Feghhi A. MoOx–pyridine organic–inorganic hybrid wires as a reusable and highly selective catalyst for the oxidation of alcohols: a comparison study between reaction-controlled phase-transfer catalysis and heterogeneous catalysis. NEW J CHEM 2017. [DOI: 10.1039/c6nj04072a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The different catalytic behaviors of Mo3O10(C5H6N)2·H2O wires (MoOx–pyridine) in the selective oxidation of alcohols by means of molecular oxygen (O2) and hydrogen peroxide (H2O2) as green oxidants were investigated.
Collapse
Affiliation(s)
- R. Malakooti
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| | - A. Feghhi
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| |
Collapse
|
36
|
Zhou W, Tao Q, Pan J, Liu J, Qian J, He M, Chen Q. Effect of basicity on the catalytic properties of Ni-containing hydrotalcites in the aerobic oxidation of alcohol. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wang B, Hu Y, Fang D, Wu L, Xing R. Efficient and Reusable Sn(II)-containing Imidazolium-based Ionic Liquid as a Catalyst for the Oxidation of Benzyl Alcohol. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201600286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingtong Wang
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
- College of Chemistry and Chemical Engineering; Nanjing Tech University; Jiangsu 210009 China
| | - Yulin Hu
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| | - Dong Fang
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| | - Lin Wu
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| | - Rong Xing
- College of Chemical and Environmental Engineering; Yancheng Teachers University; Jiangsu 224002 China
| |
Collapse
|
38
|
Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Santra C, Pramanik M, Bando KK, Maity S, Chowdhury B. Gold nanoparticles on mesoporous Cerium-Tin mixed oxide for aerobic oxidation of benzyl alcohol. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Wang X, Liu Q, Jiang J, Jin G, Li H, Gu F, Xu G, Zhong Z, Su F. SiO2-stabilized Ni/t-ZrO2 catalysts with ordered mesopores: one-pot synthesis and their superior catalytic performance in CO methanation. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01482d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ternary SiO2-stabilized Ni/t-ZrO2 catalysts with an ordered mesoporous structure were synthesized, which show excellent low temperature activity and thermal stability.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Materials Science and Engineering
- Shaanxi Normal University
- Xi'an
- China
- State Key Laboratory of Multiphase Complex Systems
| | - Qing Liu
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jiaxing Jiang
- School of Materials Science and Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Guojing Jin
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Huifang Li
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Fangna Gu
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Guangwen Xu
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ziyi Zhong
- School of Chemical & Biomedical Engineering
- Nanyang Technological University (NTU)
- 637459 Singapore
| | - Fabing Su
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
41
|
Zhang B, Fang J, Li J, Lau JJ, Mattia D, Zhong Z, Xie J, Yan N. Soft, Oxidative Stripping of Alkyl Thiolate Ligands from Hydroxyapatite-Supported Gold Nanoclusters for Oxidation Reactions. Chem Asian J 2015; 11:532-9. [DOI: 10.1002/asia.201501074] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Bin Zhang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive Singapore 117585 Singapore
| | - Jun Fang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive Singapore 117585 Singapore
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xin Mofan Road Nanjing 210009 P. R. China
| | - Jingguo Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive Singapore 117585 Singapore
| | - Jun Jie Lau
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive Singapore 117585 Singapore
| | - Davide Mattia
- Department of Chemical Engineering; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Ziyi Zhong
- Institute of Chemical and Engineering Sciences; ASTAR; 1 Pesek Road Jurong Island 627833 Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive Singapore 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive Singapore 117585 Singapore
| |
Collapse
|