1
|
Liu H, Zou H, Wang D, Wang C, Li F, Dai H, Song T, Wang M, Ji Y, Duan L. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single-Atom Gold Catalyst Supported on Amino-Substituted Graphdiyne. Angew Chem Int Ed Engl 2023; 62:e202216739. [PMID: 36651658 DOI: 10.1002/anie.202216739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Regulating the second sphere of homogeneous molecular catalysts is a common and effective method to boost their catalytic activities, while the second sphere effects have rarely been investigated for heterogeneous single-atom catalysts primarily due to the synthetic challenge for installing functional groups in their second spheres. Benefiting from the well-defined and readily tailorable structure of graphdiyne (GDY), an Au single-atom catalyst on amino-substituted GDY is constructed, where the amino group is located in the second sphere of the Au center. The Au atoms on amino-decorated GDY displayed superior activity for formic acid dehydrogenation compared with those on unfunctionalized GDY. The experimental studies, particularly the proton inventory studies, and theoretical calculations revealed that the amino groups adjacent to an Au atom could serve as proton relays and thus facilitate the protonation of an intermediate Au-H to generate H2 . Our study paves the way to precisely constructing the functional second sphere on single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dan Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuancheng Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fan Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hao Dai
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Song
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Sacco NA, Zoppas FM, Beltrame TF, Miró EE, Marchesini FA. Interference effects of oxyanions commonly found in natural waters on the catalytic reduction of nitrate in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37462-37474. [PMID: 36574122 DOI: 10.1007/s11356-022-24909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
In this work, the influence of oxyanions on the catalytic reduction of nitrates using formic acid as the reducing agent was studied as well as the influence of bicarbonate, sulfate, and phosphate co-anions on the catalytic nitrate reduction with Pd:In/Al2O3 (1:0.25 wt.%). A negative effect on nitrate conversion was observed in the following order: phosphate > sulfate > bicarbonate, showing a strong influence of electrostatic adsorption on the catalytic reduction of nitrate. However, no direct trend was observed relating the levels of interferents to the impact on the selectivity of the bimetallic catalyst using formic acid as a reducing agent. For both bicarbonate and phosphate, at lower levels, higher selectivity to nitrogen was obtained than for the reaction in the absence of interferents. On the other hand, increasing sulfate concentration led to a decrease in nitrate conversion. The mixtures of co-anions also showed a decrease in the catalytic activity. At 120 min, a N2 selectivity higher than 95% was obtained, except for the C50-S20 (bicarbonate 50 ppm-sulfate 20 ppm) mixture which showed the lowest selectivity to N2 value (87.3%). The loss of catalyst activity was found to be reversible and not permanent.
Collapse
Affiliation(s)
- Nicolás Alejandro Sacco
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Fernanda Miranda Zoppas
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Thiago Favarini Beltrame
- Laboratório de Corrosão, Proteção e Reciclagem de Materiais LACOR-UFRGS (Universidade Federal Do Rio Grande Do Sul), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - Eduardo Ernesto Miró
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Fernanda Albana Marchesini
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina.
| |
Collapse
|
3
|
Al-Azmi A, Keshipour S. New bidental sulfur-doped graphene quantum dots modified with gold as a catalyst for hydrogen generation. J Colloid Interface Sci 2022; 612:701-709. [PMID: 35030346 DOI: 10.1016/j.jcis.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/19/2022]
Abstract
Disadvantages of fossil fuels encourage researchers to develop clean combustion sources, in particular, H2 due to the high potential energy and safe by-products. Herein, Au was deposited on S-doped graphene quantum dots to obtain a heterogeneous photocatalyst for the degradation of formic acid toward H2 generation. Insertion of thiol groups on graphene quantum dots was carried out by self-condensation reaction of citric acid in the presence of Dimaval, as the thiol groups carrier. After the complexation of Au with the prepared S-doped graphene quantum dots, the catalytic activity of composite was evaluated in formic acid degradation to generate H2 under visible light. Au@S-doped graphene quantum dots demonstrated superior catalytic activity with the turnover frequency up to 112 h-1. The reaction enjoys significant benefits such as stability and recyclability of the catalyst, excellent reaction rate, and mild reaction conditions.
Collapse
Affiliation(s)
- Amal Al-Azmi
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait.
| | - Sajjad Keshipour
- Department of Nanotechnology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Srivastava V. CO2 Hydrogenation over Ru-NPs Supported Amine-Functionalized SBA-15 Catalyst: Structure–Reactivity Relationship Study. Catal Letters 2021. [DOI: 10.1007/s10562-021-03609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies. Catalysts 2021. [DOI: 10.3390/catal11030341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of hydrogen as a renewable fuel has gained increasing attention in recent years due to its abundance and efficiency. The decomposition of formic acid for hydrogen production under mild conditions of 30 °C has been investigated using a 5 wt.% Pd/C catalyst and a fixed bed microreactor. Furthermore, a comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to validate the experimental data. The results showed a very good agreement between the CFD studies and experimental work. Catalyst reusability studies have shown that after 10 reactivation processes, the activity of the catalyst can be restored to offer the same level of activity as the fresh sample of the catalyst. The CFD model was able to simulate the catalyst deactivation based on the production of the poisoning species CO, and a sound validation was obtained with the experimental data. Further studies demonstrated that the conversion of formic acid enhances with increasing temperature and decreasing liquid flow rate. Moreover, the CFD model established that the reaction system was devoid of any internal and external mass transfer limitations. The model developed can be used to successfully predict the decomposition of formic acid in microreactors for potential fuel cell applications.
Collapse
|
6
|
Bennedsen NR, Christensen DB, Mortensen RL, Wang B, Wang R, Kramer S, Kegnæs S. Heterogeneous Formic Acid Production by Hydrogenation of CO
2
Catalyzed by Ir‐bpy Embedded in Polyphenylene Porous Organic Polymers. ChemCatChem 2021. [DOI: 10.1002/cctc.202100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Niklas R. Bennedsen
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - David B. Christensen
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Rasmus L. Mortensen
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Bolun Wang
- Department of Chemical Engineering University College London Torrington Place WC1E London UK
| | - Ryan Wang
- Department of Chemical Engineering University College London Torrington Place WC1E London UK
| | - Søren Kramer
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Søren Kegnæs
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
7
|
Wu L, Hao Y, Chen S, Chen R, Sun P, Chen T. Effects of rare earth metal doping on Au/ReZrO 2 catalysts for efficient hydrogen generation from formic acid. NEW J CHEM 2021. [DOI: 10.1039/d0nj06124g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rare earth metal doped ZrO2 can promote the formation of oxygen vacancies in zirconia, which enhances the metal–support interaction, finally promoting catalytic activity of FA dehydrogenation.
Collapse
Affiliation(s)
- Luming Wu
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Yu Hao
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Shaohua Chen
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Rui Chen
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Pingchuan Sun
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| |
Collapse
|
8
|
Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ. Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chem Rev 2020; 120:3890-3938. [PMID: 32223178 PMCID: PMC7181275 DOI: 10.1021/acs.chemrev.9b00662] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
In
this review, we discuss selected examples from recent literature
on the role of the support on directing the nanostructures of Au-based
monometallic and bimetallic nanoparticles. The role of support is
then discussed in relation to the catalytic properties of Au-based
monometallic and bimetallic nanoparticles using different gas phase
and liquid phase reactions. The reactions discussed include CO oxidation,
aerobic oxidation of monohydric and polyhydric alcohols, selective
hydrogenation of alkynes, hydrogenation of nitroaromatics, CO2 hydrogenation, C–C coupling, and methane oxidation.
Only studies where the role of support has been explicitly studied
in detail have been selected for discussion. However, the role of
support is also examined using examples of reactions involving unsupported
metal nanoparticles (i.e., colloidal nanoparticles). It is clear that
the support functionality can play a crucial role in tuning the catalytic
activity that is observed and that advanced theory and characterization
add greatly to our understanding of these fascinating catalysts.
Collapse
Affiliation(s)
| | - Qian He
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575
| | - Rebecca V Engel
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Mala A Sainna
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - David J Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Nishtha Agarwal
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Christopher J Kiely
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| |
Collapse
|
9
|
Gonçalves LPL, Christensen DB, Meledina M, Salonen LM, Petrovykh DY, Carbó-Argibay E, Sousa JPS, Soares OSGP, Pereira MFR, Kegnæs S, Kolen'ko YV. Selective formic acid dehydrogenation at low temperature over a RuO2/COF pre-catalyst synthesized on the gram scale. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00145g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective formic acid dehydrogenation over an efficient RuO2/COF pre-catalyst with good dispersion of the active metal and large N-content on the COF support.
Collapse
Affiliation(s)
- Liliana P. L. Gonçalves
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM)
- Faculdade de Engenharia
| | | | - Maria Meledina
- Central Facility for Electron Microscopy
- RWTH Aachen University
- D-52074 Aachen
- Germany
- Forschungszentrum Jülich GmbH
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
| | | | | | | | - O. Salomé G. P. Soares
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM)
- Faculdade de Engenharia
- Universidade do Porto
- 4200-465 Porto
- Portugal
| | - M. Fernando R. Pereira
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM)
- Faculdade de Engenharia
- Universidade do Porto
- 4200-465 Porto
- Portugal
| | - Søren Kegnæs
- DTU Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Yury V. Kolen'ko
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
| |
Collapse
|
10
|
Liu M, Zhang Q, Shi Y, Wang H, Wei G, Zhang T, Sun H, Wang J, Zhang Y. AuPd bimetal immobilized on amine‐functionalized SBA‐15 for hydrogen generation from formic acid: The effect of the ratio of toluene to DMF. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mo Liu
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Qiulin Zhang
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Yuzhen Shi
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Huimin Wang
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Guangcheng Wei
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Tengxiang Zhang
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Haiyang Sun
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Jifeng Wang
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| | - Yaqing Zhang
- Faculty of Environmental Science and EngineeringKunming University of Science and Technology Kunming P. R. China
| |
Collapse
|
11
|
Zou L, Zhang Q, Huang Y, Luo X, Liang Z. Highly Efficient Hydrogen Generation from a Formic Acid/Triethanolamine System Using a Pd-Based Catalyst and Correlation for Apparent Activation Energy Estimation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangyu Zou
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Qiaoyu Zhang
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Yangqiang Huang
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Xiao Luo
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Zhiwu Liang
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|
12
|
Wu L, Ni B, Chen R, Shi C, Sun P, Chen T. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature. NANOSCALE ADVANCES 2019; 1:4415-4421. [PMID: 36134405 PMCID: PMC9419730 DOI: 10.1039/c9na00462a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/22/2019] [Indexed: 06/13/2023]
Abstract
Ultrafine and highly dispersed PdAu nanoparticles were immobilized on amine functionalized carbon black (VXC-72-NH2) for dehydrogenation of formic acid (FA). The introduction of amines is of vital importance for the formation of ultrafine PdAu nanoparticles (∼1.5 nm). Moreover, the presence of the amino groups also increased the electron density of PdAu nanoparticles, and this effect facilitated the formation of metal-formate, which further enhanced the rate of the catalytic dehydrogenation of FA. The as-prepared Pd0.6Au0.4/VXC-72-NH2 exhibited high catalytic activity and 100% H2 selectivity for dehydrogenation of formic acid without any additive, with turnover frequency (TOF) values of 7385 h-1 at 298 K and 17 724 h-1 at 333 K, which are the highest TOF values ever reported among heterogeneous catalysts for FA dehydrogenation.
Collapse
Affiliation(s)
- Luming Wu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 PR China
| | - Baoxia Ni
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 PR China
| | - Rui Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 PR China
| | - Chengxiang Shi
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 PR China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University Tianjin 300071 PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 PR China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 PR China
| |
Collapse
|
13
|
Li S, Singh S, Dumesic JA, Mavrikakis M. On the nature of active sites for formic acid decomposition on gold catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00410f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomic scale size-sensitivity of the catalytic properties of sub-nanometer gold clusters for HCOOH decomposition.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Suyash Singh
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| |
Collapse
|
14
|
Three-dimensional mesoporous silica networks with improved diffusion and interference-abating properties for electrochemical sensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Lü J, Yang Y, Gao J, Duan H, Lü C. Thermoresponsive Amphiphilic Block Copolymer-Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8205-8214. [PMID: 29920199 DOI: 10.1021/acs.langmuir.8b00414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of novel well-defined 8-hydroxyquinoline (HQ)-containing thermoresponsive amphiphilic diblock copolymers {poly(styrene- co-5-(2-methacryloylethyloxy-methyl)-8-quinolinol)- b-poly( N-isopropylacrylamide) P(St- co-MQ)- b-PNIPAm (P1,2), P(NIPAm- co-MQ)- b-PSt (P3,4)} and triblock copolymer poly( N-isopropylacrylamide)- b-poly(methyl-methacrylate- co-5-(2-methacryloylethyloxymethyl)-8-quinolinol)- b-polystyrene PNIPAm- b-P(MMA- co-MQ)- b-PSt (P5) were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization, and their self-assembly behaviors were studied. Block copolymer P1-P5-stabilized gold nanoparticles (Au@P1-Au@P5) with a small size and a narrow distribution were obtained through the in situ reduction of gold precursors in an aqueous solution of polymer micelles with HQ as the coordination groups. The resulting Au@P nanohybrids possessed excellent catalytic activity for the reduction of nitrophenols using NaBH4. The size, morphology, and surface chemistry of Au NPs could be controlled by adjusting the structure of block polymers with HQ in different block positions, which plays an important role in the catalytic properties. It was found that longer chain lengths of hydrophilic or hydrophobic segments of block copolymers were beneficial to elevating the catalytic activity of Au NPs for the reduction of nitrophenols, and the spherical nanoparticles (Au@P5) stabilized with triblock copolymers exhibit higher catalytic performance. Surprisingly, the gold nanowires (Au@P4) produced with P4 have the highest catalytic activity due to a large abundance of grain boundaries. Excellent thermoresponsive behavior for catalytic reaction makes the as-prepared Au@P hybrids an environmentally responsive nanocatalytic material.
Collapse
Affiliation(s)
- Jianhua Lü
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Yu Yang
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Junfang Gao
- Department of Chemistry , Baotou Teachers College , Baotou 014030 , P. R. China
| | - Haichao Duan
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| |
Collapse
|
16
|
Nitrate Reduction of Brines from Water Desalination Plants Employing a Low Metallic Charge Pd, In Catalyst and Formic Acid as Reducing Agent. Catal Letters 2018. [DOI: 10.1007/s10562-018-2429-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zacho SL, Mielby J, Kegnæs S. Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01500g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we exploited zeolitic imidazolate framework ZIF-67 as a sacrificial precursor to prepare Co nanoparticles supported on nanoporous nitrogen-doped carbon.
Collapse
Affiliation(s)
| | - Jerrik Mielby
- DTU Chemistry
- Technical University of Denmark
- DK-2800 Kgs. Lyngby
- Denmark
| | - Søren Kegnæs
- DTU Chemistry
- Technical University of Denmark
- DK-2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
18
|
Zohreh N, Hosseini SH, Jahani M, Xaba MS, Meijboom R. Stabilization of Au NPs on symmetrical tridentate NNN-Pincer ligand grafted on magnetic support as water dispersible and recyclable catalyst for coupling reaction of terminal alkyne. J Catal 2017. [DOI: 10.1016/j.jcat.2017.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Wang Z, Hao X, Hu D, Li L, Song X, Zhang W, Jia M. PdAu bimetallic nanoparticles anchored on amine-modified mesoporous ZrSBA-15 for dehydrogenation of formic acid under ambient conditions. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00311k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active catalysts for the dehydrogenation of formic acid were screened by using different amine-modified ZrSBA-15 as supports.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiufeng Hao
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dianwen Hu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Lin Li
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaojing Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wenxiang Zhang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Mingjun Jia
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|