1
|
Lin S, Chen Y, Li H, Wang W, Wang Y, Wu M. Application of metal-organic frameworks and their derivates for thermal-catalytic C1 molecules conversion. iScience 2024; 27:109656. [PMID: 38650984 PMCID: PMC11033205 DOI: 10.1016/j.isci.2024.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
One-carbon (C1) catalysis refers to the conversion of compounds with a single carbon atom, especially carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), into clean fuels and valuable chemicals via catalytic strategy is crucial for sustainable and green development. Among various catalytic strategies, thermal-driven process seems to be one of the most promising pathways for C1 catalysis due to the high efficiency and practical application prospect. Notably, the rational design of thermal-driven C1 catalysts plays a vital role in boosting the targeted products synthesis of C1 catalysis, which relies heavily on the choice of ideal active site support, catalyst fabrication precursor, and catalytic reaction field. As a novel crystalline porous material, metal-organic frameworks (MOFs) has made significant progress in the design and synthesis of various functional nanomaterials. However, the application of MOFs in C1 catalysis faces numerous challenges, such as thermal stability, mechanical strength, yield of MOFs, and so on. To overcome these limitations and harness the advantages of MOFs in thermal-driven C1 catalysis, researchers have developed various catalyst/carrier preparation strategies. In this review, we provide a concise overview of the recent advancements in the conversion of CO, CO2, and CH4 into clean fuels and valuable chemicals via thermal-catalytic strategy using MOFs-based catalysts. Furthermore, we discuss the main challenges and opportunities associated with MOFs-based catalysts for thermal-driven C1 catalysis in the future.
Collapse
Affiliation(s)
- Shiyuan Lin
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongjie Chen
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Huayong Li
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
2
|
Zhao J, Liu J, Li Z, Wang K, Shi R, Wang P, Wang Q, Waterhouse GIN, Wen X, Zhang T. Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures. Nat Commun 2023; 14:1909. [PMID: 37019942 PMCID: PMC10076290 DOI: 10.1038/s41467-023-37631-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Photothermal Fischer-Tropsch synthesis represents a promising strategy for converting carbon monoxide into value-added chemicals. High pressures (2-5 MPa) are typically required for efficient C-C coupling reactions and the production of C5+ liquid fuels. Herein, we report a ruthenium-cobalt single atom alloy (Ru1Co-SAA) catalyst derived from a layered-double-hydroxide nanosheet precursor. Under UV-Vis irradiation (1.80 W cm-2), Ru1Co-SAA heats to 200 °C and photo-hydrogenates CO to C5+ liquid fuels at ambient pressures (0.1-0.5 MPa). Single atom Ru sites dramatically enhance the dissociative adsorption of CO, whilst promoting C-C coupling reactions and suppressing over-hydrogenation of CHx* intermediates, resulting in a CO photo-hydrogenation turnover frequency of 0.114 s-1 with 75.8% C5+ selectivity. Owing to the local Ru-Co coordination, highly unsaturated intermediates are generated during C-C coupling reactions, thereby improving the probability of carbon chain growth into C5+ liquid fuels. The findings open new vistas towards C5+ liquid fuels under sunlight at mild pressures.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Beijing, 101400, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Kaiwen Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | | | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Beijing, 101400, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Hamid HH, Mohd Zabidi NA, Shaharun MS. Effects of Promoters on the Physicochemical Properties of Cobalt-Iron Catalysts Supported on Multiwalled-Carbon Nanotubes. Catal Letters 2023. [DOI: 10.1007/s10562-023-04294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Zhang H, Dong A, Liu B, Chen J, Xu Y, Liu X. Hydrogen spillover effects in the Fischer–Tropsch reaction over carbon nanotube supported cobalt catalysts. Catal Sci Technol 2023. [DOI: 10.1039/d3cy00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Support (CNTs) surface defect-induced hydrogen spillover significantly impacted the catalytic activity (turnover frequency, TOF) and methane selectivity evolution in cobalt-based Fischer–Tropsch synthesis.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Anliang Dong
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Jie Chen
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
5
|
Suo Y, Yao Y, Zhang Y, Xing S, Yuan ZY. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Chernyak SA, Stolbov DN, Maslakov KI, Maksimov SV, Kazantsev RV, Eliseev OL, Moskovskikh DO, Savilov SV. Consolidated Co- and Fe-based Fischer-Tropsch catalysts supported on jellyfish-like graphene nanoflake framework. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Wang A, Luo M, Lü B, Song Y, Yang Z, Li M, Shi B, Khan I. MOF-Derived Porous Carbon-Supported Bimetallic Fischer–Tropsch Synthesis Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aimei Wang
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Beijing 102617, China
| | - Mingsheng Luo
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Beijing 102617, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yongji Song
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Beijing 102617, China
| | - Zhi Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Min Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Beijing 102617, China
| | - Buchang Shi
- Department of Chemistry, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475, United States
| | - Iltaf Khan
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Beijing 102617, China
| |
Collapse
|
8
|
Rashed AE, Nasser A, Elkady MF, Matsushita Y, El-Moneim AA. Fe Nanoparticle Size Control of the Fe-MOF-Derived Catalyst Using a Solvothermal Method: Effect on FTS Activity and Olefin Production. ACS OMEGA 2022; 7:8403-8419. [PMID: 35309432 PMCID: PMC8928532 DOI: 10.1021/acsomega.1c05927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The design of a highly active Fe-supported catalyst with the optimum particle and pore size, dispersion, loading, and stability is essential for obtaining the desired product selectivity. This study employed a solvothermal method to prepare two Fe-MIL-88B metal-organic framework (MOF)-derived catalysts using triethylamine (TEA) or NaOH as deprotonation catalysts. The catalysts were analyzed using X-ray diffraction, N2-physisorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, H2 temperature-programed reduction, and thermogravimetric analysis and were evaluated for the Fischer-Tropsch synthesis performance. It was evident that the catalyst preparation in the presence of TEA produces a higher MOF yield and smaller crystal size than those produced using NaOH. The pyrolysis of MOFs yielded catalysts with different Fe particle sizes of 6 and 35 nm for the preparation in the presence of TEA and NaOH, respectively. Also, both types of catalysts exhibited a high Fe loading (50%) and good stability after 100 h reaction time. The smaller particle size TEA catalyst showed higher activity and higher olefin yield, with 94% CO conversion and a higher olefin yield of 24% at a lower reaction temperature of 280 °C and 20 bar at H2/CO = 1. Moreover, the smaller particle size TEA catalyst exhibited higher Fe time yield and CH4 selectivity but with lower chain growth probability (α) and C5+ selectivity.
Collapse
Affiliation(s)
- Ahmed E. Rashed
- Basic
and Applied Science Institute, Egypt-Japan
University of Science and Technology, New Borg El-Arab 21934, Egypt
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Alhassan Nasser
- Chemical
Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt
| | - Marwa F. Elkady
- Chemical
and Petroleum Engineering Department, Egypt-Japan
University of Science and Technology, New Borg El-Arab 21934, Egypt
- Fabrication
Technology Department, Advanced Technology and New Materials Research
Institute (ATNMRI), City of Scientific Research
and Technological Applications, Alexandria 21934, Egypt
| | | | - Ahmed Abd El-Moneim
- Basic
and Applied Science Institute, Egypt-Japan
University of Science and Technology, New Borg El-Arab 21934, Egypt
| |
Collapse
|
9
|
Current Methods for Synthesis and Potential Applications of Cobalt Nanoparticles: A Review. CRYSTALS 2022. [DOI: 10.3390/cryst12020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cobalt nanoparticles (CoNPs) are promising nanomaterials with exceptional catalytic magnetic, electronic, and chemical properties. The nano size and developed surface open a wide range of applications of cobalt nanoparticles in biomedicine along with those properties. The present review assessed the current environmentally friendly synthesis methods used to synthesize CoNPs with various properties, such as size, zeta potential, surface area, and magnetic properties. We systematized several methods and provided some examples to illustrate the synthetic process of CoNPs, along with the properties, the chemical formula of obtained CoNPs, and their method of analysis. In addition, we also looked at the potential application of CoNPs from water purification cytostatic agents against cancer to theranostic and diagnostic agents. Moreover, CoNPs also can be used as contrast agents in magnetic resonance imaging and photoacoustic methods. This review features a comprehensive understanding of the synthesis methods and applications of CoNPs, which will help guide future studies on CoNPs.
Collapse
|
10
|
Modulating C5+selectivity for Fischer-Tropsch synthesis by tuning pyrolysis temperature of MOFs derived Fe-based catalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Jalal A, Zhao Y, Uzun A. Pyrolysis Temperature Tunes the Catalytic Properties of CuBTC-Derived Carbon-Embedded Copper Catalysts for Partial Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahsan Jalal
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
12
|
He Y, Pan G, Li L, Zhong S, Li L, Liu Z, Yu Y. Local charge transfer within a covalent organic framework and Pt nanoparticles promoting interfacial catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pyridine-functionalized covalent organic framework encapsulating Pt nanoparticles with local charge transfer was developed, which efficiently catalyzed H2 production from ammonia borane hydrolysis in water.
Collapse
Affiliation(s)
- Yajun He
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guodong Pan
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liuyi Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shenghong Zhong
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lingyun Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zheyuan Liu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yan Yu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
13
|
Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts 2021. [DOI: 10.3390/catal12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).
Collapse
|
14
|
Chen K, Li Y, Wang M, Wang Y, Cheng K, Zhang Q, Kang J, Wang Y. Functionalized Carbon Materials in Syngas Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007527. [PMID: 33667030 DOI: 10.1002/smll.202007527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Functionalized carbon materials are widely used in heterogeneous catalysis due to their unique properties such as adjustable surface properties, excellent thermal conductivity, high surface areas, tunable porosity, and moderate interactions with guest metals. The transformation of syngas into hydrocarbons (known as the Fischer-Tropsch synthesis) or oxygenates is an exothermic reaction and is typically catalyzed by transition metals dispersed on functionalized supports. Various carbon materials have been employed in syngas conversions not only for improving the performance or decreasing the dosage of expensive active metals but also for building model catalysts for fundamental research. This article provides a critical review on recent advances in the utilization of carbon materials, in particular the recently developed functionalized nanocarbon materials, for syngas conversions to either hydrocarbons or oxygenates. The unique features of carbon materials in dispersing metal nanoparticles, heteroatom doping, surface modification, and building special nanoarchitectures are highlighted. The key factors that control the reaction course and the reaction mechanism are discussed to gain insights for the rational design of efficient carbon-supported catalysts for syngas conversions. The challenges and future opportunities in developing functionalized carbon materials for syngas conversions are briefly analyzed.
Collapse
Affiliation(s)
- Kuo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yubing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
15
|
Highly active K-promoted Cu/β-Mo2C catalysts for reverse water gas shift reaction: Effect of potassium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Ma C, Yun Y, Zhang T, Suo H, Yan L, Shen X, Li Y, Yang Y. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An
In Situ
Transmission Electron Microscopy Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenwei Ma
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yifeng Yun
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Tianfu Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Haiyun Suo
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Lai Yan
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Xianfeng Shen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Yong Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| |
Collapse
|
17
|
Barhoum A, Favre T, Sayegh S, Tanos F, Coy E, Iatsunskyi I, Razzouk A, Cretin M, Bechelany M. 3D Self-Supported Nitrogen-Doped Carbon Nanofiber Electrodes Incorporated Co/CoO x Nanoparticles: Application to Dyes Degradation by Electro-Fenton-Based Process. NANOMATERIALS 2021; 11:nano11102686. [PMID: 34685127 PMCID: PMC8540561 DOI: 10.3390/nano11102686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
We developed free-standing nitrogen-doped carbon nanofiber (CNF) electrodes incorporating Co/CoOx nanoparticles (NPs) as a new cathode material for removing Acid Orange 7 (AO7; a dye for wool) from wastewater by the heterogeneous electro-Fenton reaction. We produced the free-standing N-doped CNF electrodes by electrospinning a polyacrylonitrile (PAN) and cobalt acetate solution followed by thermal carbonation of the cobalt acetate/PAN nanofibers under a nitrogen atmosphere. We then investigated electro-Fenton-based removal of AO7 from wastewater with the free-standing N-doped-CNFs-Co/CoOx electrodes, in the presence or not of Fe2+ ions as a co-catalyst. The electrochemical analysis showed the high stability of the prepared N-doped-CNF-Co/CoOx electrodes in electrochemical oxidation experiments with excellent degradation of AO7 (20 mM) at acidic to near neutral pH values (3 and 6). Electro-Fenton oxidation at 10 mA/cm2 direct current for 40 min using the N-doped-CNF-Co/CoOx electrodes loaded with 25 wt% of Co/CoOx NPs led to complete AO7 solution decolorization with total organic carbon (TOC) removal values of 92.4% at pH 3 and 93.3% at pH 6. The newly developed N-doped-CNF-Co/CoOx electrodes are an effective alternative technique for wastewater pre-treatment before the biological treatment.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
- Correspondence: (A.B.); (M.B.)
| | - Therese Favre
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Fida Tanos
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Antonio Razzouk
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Marc Cretin
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Correspondence: (A.B.); (M.B.)
| |
Collapse
|
18
|
Tucker C, van Steen E. Effect of Crystallite Size Distribution on the Oxidation and Re-reduction of Cobalt in the Fischer–Tropsch Synthesis: A Thermodynamic Analysis. Catal Letters 2021. [DOI: 10.1007/s10562-020-03475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Smarzaro JL, Baldanza MAS, de Almeida AJ, Caytuero A, Salim VMM, Passos FB, Teixeira da Silva V. Effect of Silica Encapsulation on Cobalt-Based Catalysts for Fischer–Tropsch Synthesis under Different Reaction Conditions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana L. Smarzaro
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria A. S. Baldanza
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio J. de Almeida
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander Caytuero
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria 156, 24210-240 Niterói, Rio de Janeiro, Brazil
| | - Vera M. M. Salim
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio B. Passos
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria 156, 24210-240 Niterói, Rio de Janeiro, Brazil
| | - Victor Teixeira da Silva
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Han X, Li Y, Gong H, Wang Y, Lv J, Wang Y, Huang S, Ma X. Effect of Mn-dopant on carburization of the Fe3O4 catalysts in Fischer-Tropsch synthesis. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Cheng Q, Liu Y, Lyu S, Tian Y, Ma Q, Li X. Manipulating metal-support interactions of metal catalysts for Fischer-Tropsch synthesis. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Wei J, Chen Y, Ma Y, Shi X, Zhang X, Shi C, Hu M, Liu J. Precisely Engineering Architectures of Co/C Sub-Microreactors for Selective Syngas Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100082. [PMID: 33792157 DOI: 10.1002/smll.202100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Fischer-Tropsch synthesis (FTS) is an effective route to produce olefins, gasoline, diesel, and oxygenates from syngas (CO + H2 ). However, it still remains a challenge for regulating the product distribution of FTS. Here, a series of Co/C sub-microreactors with precise designed nanoarchitectures are synthesized for selective syngas conversion. Through a combination of surface protection-assisted etching and following carbonization process, Co/C sub-microreactors with solid cube, double-shelled hollow box, and hollow box architectures, namely, Co/C-Cube, Co/C-DBox, Co/C-Box can be obtained. In FTS, comparing with solid Co/C-Cube, double-shelled hollow structured Co/C-DBox is inclined to grow long-chain hydrocarbon products, whereas hollow structured Co/C-Box avails the formation of short-chain hydrocarbon chemicals. Therefore, shape selective catalysis and controlled product distribution of FTS are realized by tuning the architectures of Co/C sub-microreactors. It is expected to fundamentally unravel the heterogeneous catalytic process via upfront designing and precisely regulating the architectures of micro/nanoreactors.
Collapse
Affiliation(s)
- Jiatong Wei
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China
| | - Yanping Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xin Shi
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China
| | - Xiaoli Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunjing Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
23
|
Chen Y, Li X, Zhang J, Dai L, Zhao N, Liu C, Lyu S, Li Z. Insight into the Influence of the Graphite Layer and Cobalt Crystalline on a ZIF-67-Derived Catalyst for Fischer-Tropsch Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9885-9896. [PMID: 33591711 DOI: 10.1021/acsami.0c20888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the special framework structure, ZIF-67 is a promising material as the precursor to prepare the Co@C catalysts with high cobalt loading and superior cobalt dispersion. Unfortunately, these Co@C-X catalysts exhibit not only unsatisfied activity but also high CH4 selectivity. This limited its further application due to the lack of in-depth analysis of the reasons behind it. In this work, the Co@C-X catalysts were prepared by pyrolyzing the ZIF-67 precursor at different temperatures. A series of characterizations were conducted to explore the behavior of the graphite carbon coated on cobalt species, realizing that the role of active Co sites on these Co@C catalysts was restricted by the graphite carbon layer since it suppressed the adsorption and activation of syngas on Co sites. TEOS was introduced to suppress the aggregation of cobalt species and more active sites were exposed after the graphite carbon layer was eliminated. As a result, the FTS performance was greatly improved by a factor of 5. The effect of O2 concentration on the microcrystalline size of Co and the reconfinement effect of SiO2 were investigated. The model catalyst was prepared and the key factors determining CH4 selectivity of the ZIF-67-derived Co@C catalyst were revealed. This provides a good basis for rational designing ZIF-67-derived Co-based FTS catalysts.
Collapse
Affiliation(s)
- Yao Chen
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xin Li
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jingwei Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liya Dai
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ning Zhao
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Chengchao Liu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Shuai Lyu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhenhua Li
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Chen Y, Wei J, Duyar MS, Ordomsky VV, Khodakov AY, Liu J. Carbon-based catalysts for Fischer-Tropsch synthesis. Chem Soc Rev 2021; 50:2337-2366. [PMID: 33393529 DOI: 10.1039/d0cs00905a] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fischer-Tropsch synthesis (FTS) is an essential approach to convert coal, biomass, and shale gas into fuels and chemicals, such as lower olefins, gasoline, diesel, and so on. In recent years, there has been increasing motivation to deploy FTS at commercial scales which has been boosting the discovery of high performance catalysts. In particular, the importance of support in modulating the activity of metals has been recognized and carbonaceous materials have attracted attention as supports for FTS. In this review, we summarised the substantial progress in the preparation of carbon-based catalysts for FTS by applying activated carbon (AC), carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon spheres (CSs), and metal-organic frameworks (MOFs) derived carbonaceous materials as supports. A general assessment of carbon-based catalysts for FTS, concerning the support and metal properties, activity and products selectivity, and their interactions is systematically discussed. Finally, current challenges and future trends in the development of carbon-based catalysts for commercial utilization in FTS are proposed.
Collapse
Affiliation(s)
- Yanping Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| | - Jiatong Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China. and Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Melis S Duyar
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Vitaly V Ordomsky
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Andrei Y Khodakov
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China. and DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
25
|
Qin H, Zhou Y, Huang Q, Yang Z, Dong R, Li L, Tang J, Zhang C, Jiang F. Metal Organic Framework (MOF)/Wood Derived Multi-cylinders High-Power 3D Reactor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5460-5468. [PMID: 33471497 DOI: 10.1021/acsami.0c21664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
3D monolithic reactor has shown great promise for varied heterogeneous catalysis reactions including water treatment, energy generation and storage, and clean fuel production. As a natural porous material, macroporous wood is regarded as an excellent support for inorganic catalyst due to its abundant polar functional groups and channels. On the other hand, a metal organic framework (MOF) has been widely used as heterogeneous catalyst due to its high specific surface area and large amount of microporosities. Combining macroporous wood and a microporous MOF is expected to produce a high-performance 3D reactor and is demonstrated here for Fischer-Tropsch synthesis. The carbonized MOF/wood reactor retains the original cellular structure with over 180 000 channels/cm2. When being decorated with hexagonal-shaped core-shell Co@C nanoparticles aggregates derived from Co-MOF, the MOF/wood reactor resembles a multi-cylinders reactor for Fischer-Tropsch synthesis. Because of the unique combination of macro- and microporous hierarchical structure, the 3D MOF/wood reactor demonstrates exceptional performance under high gas hourly space velocity (81.2% CO conversion and 48.5% C5+ selectivity at 50 L·h-1·gcat-1 GHSV). This validates that MOF/wood can serve as a multi-cylinders and high-power reactor for catalytic reactions, which is expected to be applicable for environmental and energy applications.
Collapse
Affiliation(s)
- Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yue Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Qianyu Huang
- Department of Life Science, Imperial College London, Ascot, Berks, London, SL5 7PY, England
| | - Zhou Yang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Ruoyu Dong
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Long Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jianghong Tang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
26
|
Chernyak SA, Ivanov AS, Maksimov SV, Maslakov KI, Isaikina OY, Chernavskii PA, Kazantsev RV, Eliseev OL, Savilov SS. Fischer-Tropsch synthesis over carbon-encapsulated cobalt and iron nanoparticles embedded in 3D-framework of carbon nanotubes. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Li X, Chen Y, Wu P, Nisa MU, Li Z. Core–Shell Co@C Catalyst: Effect of a Confined Carbon Microenvironment on Syngas Conversion. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Li
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yao Chen
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Peiyu Wu
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mehar U Nisa
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhenhua Li
- Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Lü B, Qi W, Luo M, Liu Q, Guo L. Fischer–Tropsch Synthesis: ZIF-8@ZIF-67-Derived Cobalt Nanoparticle-Embedded Nanocage Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00971] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baozhong Lü
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Da-Xing
District, Beijing 102617, China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Da-Xing
District, Beijing 102617, China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, 19 Qing-Yuan North Road, Da-Xing District, Beijing 102617, China
- School of Chemistry, Beihang University, 37 Xue-Yuan Road, Hai-Dian District, Beijing 100191, China
| | - Weijie Qi
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Da-Xing
District, Beijing 102617, China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, 19 Qing-Yuan North Road, Da-Xing District, Beijing 102617, China
| | - Mingsheng Luo
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Da-Xing
District, Beijing 102617, China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, 19 Qing-Yuan North Road, Da-Xing District, Beijing 102617, China
| | - Qinglong Liu
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, 19 Qing-Yuan North Road, Da-Xing
District, Beijing 102617, China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, 19 Qing-Yuan North Road, Da-Xing District, Beijing 102617, China
| | - Lin Guo
- School of Chemistry, Beihang University, 37 Xue-Yuan Road, Hai-Dian District, Beijing 100191, China
| |
Collapse
|
29
|
Davoodian N, Nakhaei Pour A, Izadyar M, Mohammadi A, Salimi A, Kamali Shahri SM. Fischer–Tropsch synthesis using zeolitic imidazolate framework (ZIF‐7 and ZIF‐8)‐supported cobalt catalysts. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Negin Davoodian
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Ali Nakhaei Pour
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Mohammad Izadyar
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Ali Mohammadi
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Alireza Salimi
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's HospitalHarvard Medical School Boston Massachusetts 02115 USA
| |
Collapse
|
30
|
Torshizi HO, Nakhaei Pour A, Mohammadi A, Zamani Y, Kamali Shahri SM. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metal nanoparticle size on catalyst activity and products selectivity. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1925-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Hong J, Wang B, Xiao G, Wang N, Zhang Y, Khodakov AY, Li J. Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingping Hong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Bo Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guiqin Xiao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ning Wang
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Andrei Y. Khodakov
- Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
32
|
Ultrasmall Co confined in the silanols of dealuminated beta zeolite: A highly active and selective catalyst for direct dehydrogenation of propane to propylene. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Barhoum A, El-Maghrabi HH, Iatsunskyi I, Coy E, Renard A, Salameh C, Weber M, Sayegh S, Nada AA, Roualdes S, Bechelany M. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions. J Colloid Interface Sci 2020; 569:286-297. [PMID: 32114107 DOI: 10.1016/j.jcis.2020.02.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
The most critical challenge in hydrogen fuel production is to develop efficient, eco-friendly, low-cost electrocatalysts for water splitting. In this study, self-supported carbon nanofiber (CNF) electrodes decorated with nickel/nickel oxide (Ni/NiO) and palladium (Pd) nanoparticles (NPs) were prepared by combining electrospinning, peroxidation, and thermal carbonation with atomic layer deposition (ALD), and then employed for hydrogen evolution and oxygen evolution reactions (HER/OER). The best CNF-Ni/NiO-Pd electrode displayed the lowest overpotential (63 mV and 1.6 V at j = 10 mA cm-2), a remarkably small Tafel slope (72 and 272 mV dec-1), and consequent exchange current density (1.15 and 22.4 mA cm-2) during HER and OER, respectively. The high chemical stability and improved electrocatalytic performance of the prepared electrodes can be explained by CNF functionalization via Ni/NiO NP encapsulation, the formation of graphitic layers that cover and protect the Ni/NiO NPs from corrosion, and ALD of Pd NPs at the surface of the self-supported CNF-Ni/NiO electrodes.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt; Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Heba H El-Maghrabi
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Refining, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Aurélien Renard
- LCPME - UMR 7564 - CNRS - Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-Les-Nancy, France
| | - Chrystelle Salameh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Matthieu Weber
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Amr A Nada
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Stéphanie Roualdes
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
34
|
Fang X, Liu B, Cao K, Yang P, Zhao Q, Jiang F, Xu Y, Chen R, Liu X. Particle-Size-Dependent Methane Selectivity Evolution in Cobalt-Based Fischer–Tropsch Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05371] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuejin Fang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, P. R. China
| | - Pengju Yang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Qi Zhao
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, P. R. China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| |
Collapse
|
35
|
Al-Bsoul A, Al-Shannag M, Tawalbeh M, Al-Taani AA, Lafi WK, Al-Othman A, Alsheyab M. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134576. [PMID: 31706092 DOI: 10.1016/j.scitotenv.2019.134576] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 05/09/2023]
Abstract
The treatment of olive mill wastewater (OMW) in Jordan was investigated in this work using ultrasound oxidation (sonolysis) combined with other advanced oxidation processes such as ultraviolet radiation, hydrogen peroxide (H2O2) and titanium oxide (TiO2) catalyst. The efficiency of the combined oxidation process was evaluated based on the changes in the chemical oxygen demand (COD). The results showed that 59% COD removal was achieved within 90 min in the ultrasound /UV/TiO2 system. A more significant synergistic effect was observed on the COD removal efficiency when a combination of US/UV/TiO2 (sonophotocatalytic) processes was used at low ultrasound frequency. The results were then compared with the COD values obtained when each of these processes was used individually. The effects of different operating conditions such as, ultrasound power, initial COD concentration, the concentration of TiO2, frequency of ultrasound, and temperature on the OMW oxidation efficiency were studied and evaluated. The effect of adding a radical scavenger (sodium carbonate) on the OMW oxidation efficiency was investigated. The results showed that the sonophotocatalytic oxidation of OMW was affected by the initial COD, acoustic power, temperature and TiO2 concentration. The sonophotocatalytic oxidation of OMW increased with increasing the ultrasound power, temperature and H2O2 concentration. Sonolysis at frequency of 40 kHz combined with photocatalysis was not observed to have a significant effect on the OMW oxidation compared to sonication at frequency of 20 kHz. It was also found that the OMW oxidation was suppressed by the presence of the radical scavenger. The COD removal efficiency increased slightly with the increase of TiO2 concentration up to certain point due to the formation of oxidizing species. At ultrasound frequency of 20 kHz, considerable COD reduction of OMW was reported, indicating the effectiveness of the combined US/UV/TiO2 process for the OMW treatment.
Collapse
Affiliation(s)
- Abeer Al-Bsoul
- Al-Balqa Applied University, Al-Huson University College, Department of Chemical Engineering, Jordan.
| | - Mohammad Al-Shannag
- The University of Jordan, Faculty of Engineering and Technology, Chemical Engineering Department, 11942 Amman, Jordan.
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ahmed A Al-Taani
- Department of Life and Environmental Sciences, College of Natural & Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates; Department of Earth and Environmental Sciences, Yarmouk University, Jordan.
| | - Walid K Lafi
- Department of Chemical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Marka, Amman, Jordan.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad Alsheyab
- Department of Chemical Engineering, Qatar University, Qatar; Planning and Statistics Authority, Doha, Qatar.
| |
Collapse
|
36
|
Miao Z, Liu W, Zhao Y, Wang F, Meng J, Liang M, Wu X, Zhao J, Zhuo S, Zhou J. Zn-Modified Co@N–C composites with adjusted Co particle size as catalysts for the efficient electroreduction of CO2. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02203a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Zn-Co@N–C composites are developed by direct annealing of Zn–Co ZIF materials. The size of Co particles could be adjusted by the introduced Zn species. The activity in CO2RR is gradually improved with the decrease of Co particle size.
Collapse
Affiliation(s)
- Zhichao Miao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Weiqi Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yuzhen Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Fangyuan Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jian Meng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Manfen Liang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xiaozhong Wu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jinping Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
37
|
Xing Y, Jia G, Liu Z, Fang S, Zhao C, Guo X, Suib SL. Development of Highly Selective Support for CO Hydrogenation to Light Olefins with Partially Passivated Iron Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Xing
- Henan Provincial Key Laboratory of Surface and Interface Science School of Materials and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Gaopeng Jia
- Henan Provincial Key Laboratory of Surface and Interface Science School of Materials and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Zhenxin Liu
- Henan Provincial Key Laboratory of Surface and Interface Science School of Materials and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science School of Materials and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Chenxi Zhao
- Henan Provincial Key Laboratory of Surface and Interface Science School of Materials and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Xuehui Guo
- Henan Provincial Key Laboratory of Surface and Interface Science School of Materials and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Steven L. Suib
- Department of Chemistry, and Department of Chemical Materials & Biomolecular EngineeringUniversity of Connecticut Storrs CT 06269-3060 USA
| |
Collapse
|
38
|
Pestman R, Chen W, Hensen E. Insight into the Rate-Determining Step and Active Sites in the Fischer–Tropsch Reaction over Cobalt Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Robert Pestman
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Wei Chen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Emiel Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| |
Collapse
|