1
|
Başak F, Kuşat T, Ersan Y, Kahraman T. Titanium dioxide-induced fibrotic liver model and the therapeutic effect of resveratrol by modulation of α-SMA and 8-oHdG expressions, oxidative stress, and inflammation. Tissue Cell 2025; 93:102748. [PMID: 39847895 DOI: 10.1016/j.tice.2025.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
The research sought to assess the therapeutic impact of resveratrol by biochemical, immunohistochemical, and histopathological analyses in a TiO2-induced liver fibrosis model. Titanium dioxide (100 mg/kg body weight) was delivered for 15 days to induce liver fibrosis, either alone or in conjunction with resveratrol (30 mg/kg body weight) therapy for the same duration. Resveratrol has been identified as a crucial therapeutic drug that provides an alternative treatment method for TiO2-induced liver fibrosis by mitigating inflammation, oxidative stress, and the expressions of α-SMA and 8-OHdG. Resveratrol treatment mitigated TiO2-induced liver fibrosis by repairing hepatocellular injury and decreasing plasma AST, ALT, and ALP levels. Resveratrol improves the activity of superoxide dismutase (SOD) and catalase (CAT), crucial enzymes for antioxidant defense, and elevates glutathione peroxidase (GSH-Px) levels, so augmenting antioxidant function. Furthermore, resveratrol decreased hepatic inflammation (IL-6 and IL-1β) and oxidative stress markers. Furthermore, histological alterations and immunohistochemistry expression of α-SMA and 8-OhdG were reinstated after resveratrol administration in the TiO2-induced liver fibrosis model. Our research indicates that resveratrol administration effectively protects against liver fibrosis produced by TiO2.
Collapse
Affiliation(s)
- Feyza Başak
- Karabuk University, Faculty of Medicine, Department of Histology and Embryology, Karabuk, Turkey.
| | - Tansu Kuşat
- Karabuk University, Faculty of Medicine, Department of Histology and Embryology, Karabuk, Turkey
| | - Yusuf Ersan
- Karabuk University, Faculty of Medicine, Department of Histology and Embryology, Karabuk, Turkey
| | - Tahir Kahraman
- Karabuk University, Faculty of Medicine, Department of Medical Biochemistry, Karabuk, Turkey
| |
Collapse
|
2
|
Shabib Akhtar M, Chandrasekaran K, Saminathan S, Rajalingam SR, Mohsin N, Awad Alkarem Ahmed KA, Alhazmi Y, Walbi IA, Abdel-Wahab BA, Gholap AD, Faiyazuddin M, Sundaram G. Nanoengineered chitosan functionalized titanium dioxide biohybrids for bacterial infections and cancer therapy. Sci Rep 2024; 14:3705. [PMID: 38355697 PMCID: PMC10867112 DOI: 10.1038/s41598-024-52847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Nanoengineered chitosan functionalized titanium dioxide biohybrids (CTiO2@NPs) were prepared with Amomum subulatum Roxb extract via one-pot green method and assessed by UV-Vis spectroscopy, XRD, SEM and EDAX analyses. As revealed by XRD pattern, the nanohybrids exhibits a rutile TiO2 crystallites around 45 nm in size. The emergence of the Ti-O-Ti bond is identified by observing a peak between 400 and 800 cm-1. A wide bandgap (4.8 eV) has been observed in CTiO2@NPs, due to the quantum confinement effects and the oxygen vacancies reveal the intriguing potential of developed nanohybrids for various applications. Surface flaws were identified by observing an emission band at 382, 437, 482, 517, and 556 nm. They also exhibit better antibacterial performances using well diffusion method against Staphylococcus aureus, Bacillus substilis, Klebsiella pneumonia, and Escherichia coli. CTiO2@NPs were discovered to have free radical scavenging activity on DPPH analysis and exhibit IC50 value as 95.80 μg/mL and standard (Vitamin C) IC50 is 87.62 μg/mL. CTiO2@NPs exhibited better anticancer properties against the osteosarcoma (MG-63) cell line. All these findings suggest that there is a forum for further useful therapeutic applications. Therefore, we claim that nano-engineered carbohydrated TiO2 phytohybrid is a promising solution for bacterial infections and bone cancer.
Collapse
Affiliation(s)
- Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | | | - Sharmila Saminathan
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Siva Ranjani Rajalingam
- PG & Research Department of Physics, Cauvery College for Women, Tiruchchirappalli, Tamil Nadu, India
| | - Nehal Mohsin
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | | | - Yasir Alhazmi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ismail A Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, India
| | - Gowri Sundaram
- PG & Research Department of Physics, Cauvery College for Women, Tiruchchirappalli, Tamil Nadu, India.
| |
Collapse
|
3
|
Toader G, Podaru AI, Diacon A, Rusen E, Mocanu A, Brincoveanu O, Alexandru M, Zorila FL, Bacalum M, Albota F, Gavrila AM, Trica B, Rotariu T, Ionita M, Istrate M. Nanocomposite Hydrogel Films Based on Sequential Interpenetrating Polymeric Networks as Drug Delivery Platforms. Polymers (Basel) 2023; 15:3176. [PMID: 37571071 PMCID: PMC10420953 DOI: 10.3390/polym15153176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
| | - Alice Ionela Podaru
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
- Research Institute of the University of Bucharest, University of Bucharest, Soseaua Panduri, nr. 90, Sector 5, 050663 Bucharest, Romania
| | - Mioara Alexandru
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Florina Lucica Zorila
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Florin Albota
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Ana Mihaela Gavrila
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trica
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
4
|
Peng K, Liu X, Wu X, Yu H, He J, Chen K, Zhu L, Wang X. Study on the preparation of molecularly imprinted ZrO 2-TiO 2 photocatalyst and the degradation performance of hydroquinone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83575-83586. [PMID: 37344713 DOI: 10.1007/s11356-023-28295-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
In this paper, molecularly imprinted Zr-doped TiO2 photocatalysts (MIP-ZrO2-TiO2) were prepared by the molecularly imprinted sol-gel method for the photocatalytic degradation study of hydroquinone (HQ) as the target pollutant. For the effectiveness of the MIP-ZrO2-TiO2 catalyst in degrading HQ, the effects of Zr doping ratio, imprinted molecule dosage, calcination conditions, and pollutant concentration on its photocatalytic activity were investigated. XRD, TEM, XPS, and other techniques were used to evaluate the materials, and the findings revealed that MIP-ZrO2-TiO2 films with imprinted HQ were successfully produced on the ZrO2-TiO2 surface. The optimal preparation conditions were n(Ti):n(Zr) = 100:8, m(HQ) = 1.5 g, 550 °C for the calcination temperature, and 2 h for the calcination duration. The optimum reaction conditions were 10 mg/L HQ concentration, 1 g/L catalyst dose, and a pH of 6.91. According to the findings of photocatalytic tests, during 30 min of UV lamp (365 nm) irradiation, the degradation rates of MIP-ZrO2-TiO2, ZrO2-TiO2, and TiO2 for HQ were 90.58%, 83.94%, and 58.30%, respectively. The findings revealed that the doping of Zr metal and the addition of imprinted molecules improved the photocatalytic activity of TiO2, which can be used for the efficient treatment of low concentrations of hard-to-degrade hydroquinone.
Collapse
Affiliation(s)
- Ke Peng
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xi Wu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hang Yu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiachen He
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ke Chen
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan, 430065, China.
| |
Collapse
|
5
|
Phakatkar AH, Megaridis CM, Shokuhfar T, Shahbazian-Yassar R. Real-time TEM observations of ice formation in graphene liquid cell. NANOSCALE 2023; 15:7006-7013. [PMID: 36946122 DOI: 10.1039/d3nr00097d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The study of ice nucleation and growth at the nanoscale is of utmost importance in geological and atmospheric sciences. However, existing transmission electron microscopy (TEM) approaches have been unsuccessful in imaging ice formation directly. Herein, we demonstrate how radical scavengers - such as TiO2 - encased with water in graphene liquid cells (GLCs) facilitate the observation of ice nucleation phenomena at low temperatures. Atomic-resolution imaging reveals the nucleation and growth of cubic ice-phase crystals at close proximity to TiO2-water nanointerfaces at low temperatures. Interestingly, both heterogeneously and homogeneously nucleated ice crystals exhibited this cubic phase. Ice crystal nuclei were observed to be more stable at the TiO2-water nanointerface, as compared with crystals in the bulk liquid (homogeneous nucleation), suggesting the radical scavenging efficacy of TiO2 nanoparticles mitigating the electron beam by-products. The present work demonstrates that the use of radical scavengers in GLC TEM shows great promise towards unveiling the nanoscale pathways for ice nucleation and growth dynamic events.
Collapse
Affiliation(s)
- Abhijit H Phakatkar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Constantine M Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Canillas M, de Lima GG, de Sá MJC, Nugent MJD, Rodríguez MA, Devine DM. Self-Photopolymerizable Hydrogel-Ceramic Composites with Scavenger Properties. Polymers (Basel) 2022; 14:polym14061261. [PMID: 35335593 PMCID: PMC8950735 DOI: 10.3390/polym14061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The photocatalytic behaviours of semiconductive ceramic nanoparticles such as TiO2, ZnO, Fe2O3, and Fe3O4, have been extensively studied in photocatalysis and photopolymerization, due to their ability to produce radical species under ultraviolet-visible light, and even in dark conditions. In addition, in the form of microparticles, TiO2 and its Magnéli phases are capable of neutralizing radical species, and a heterogeneous catalytic process has been suggested to explain this property, as it is well known as scavenging activity. Thus, in this study, we demonstrate that these ceramic powders, in the form of microparticles, could be used as photoinitiators in UV polymerization in order to synthesize a hydrogel matrix. Them, embedded ceramic powders could be able to neutralize radical species of physiological media once implanted. The hydrogel matrix would regulate the exchange of free radicals in any media, while the ceramic particles would neutralize the reactive species. Therefore, in this work, the scavenger activities of TiO2, ZnO, Fe2O3, and Fe3O4 microparticles, along with their photoinitiation yield, were evaluated. After photopolymerization, the gel fraction and swelling behaviour were evaluated for each hydrogel produced with different ceramic initiators. Gel fractions were higher than 60%, exhibiting variation in their scavenging activity. Therefore, we demonstrate that ceramic photoinitiators of TiO2, ZnO, Fe2O3, and Fe3O4 can be used to fabricate implantable devices with scavenger properties in order to neutralize radical species involved in inflammatory processes and degenerative diseases.
Collapse
Affiliation(s)
- Maria Canillas
- Consejo Superior de Investigaciones Cientificas, Instituto de Cerámica y Vidrio, Calle Kelsen, 5, 28049 Madrid, Spain;
- Correspondence: (M.C.); (D.M.D.)
| | - Gabriel Goetten de Lima
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Jardim das Américas, Curitiba 81530-000, Brazil;
- Materials Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland; (M.J.C.d.S.); (M.J.D.N.)
| | - Marcelo J. C. de Sá
- Materials Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland; (M.J.C.d.S.); (M.J.D.N.)
- Programa de Pós-Graduação em Medicina Veterinária—PPGMV, Universidade Federal de Campina Grande, Avenida Universitária, s/n, Patos, Santa Cecilia, Sao Paulo 58708-110, Brazil
| | - Michael J. D. Nugent
- Materials Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland; (M.J.C.d.S.); (M.J.D.N.)
| | - Miguel A. Rodríguez
- Consejo Superior de Investigaciones Cientificas, Instituto de Cerámica y Vidrio, Calle Kelsen, 5, 28049 Madrid, Spain;
| | - Declan M. Devine
- Materials Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland; (M.J.C.d.S.); (M.J.D.N.)
- Correspondence: (M.C.); (D.M.D.)
| |
Collapse
|
7
|
Ionita P. The Chemistry of DPPH · Free Radical and Congeners. Int J Mol Sci 2021; 22:1545. [PMID: 33546504 PMCID: PMC7913707 DOI: 10.3390/ijms22041545] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023] Open
Abstract
Since the discovery in 1922 of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl stable free radical (DPPH·), the chemistry of such open-shell compounds has developed continuously, allowing for both theoretical and practical advances in the free radical chemistry area. This review presents the important, general and modern aspects of the chemistry of hydrazyl free radicals and the science behind it.
Collapse
Affiliation(s)
- Petre Ionita
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|