1
|
Liu Y, Bhowmick A, Liu D, Caratzoulas S, Vlachos DG. Propane Dehydrogenation on Pt xZn y Active Sites in Silicalite-1. Angew Chem Int Ed Engl 2024:e202414578. [PMID: 39283725 DOI: 10.1002/anie.202414578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 11/01/2024]
Abstract
The improvement of Pt-based catalysts for propane dehydrogenation (PDH) has progressed by recent investigations that have identified Zn as a promising promoter for Pt subnanometer catalysts. It is desirable to gain insights into the structure, stability, and activity of such active sites and the factors that influence them, such as Zn : Pt ratio, Pt coordination and nuclearity. Here, we employ density functional theory and microkinetic simulations to investigate the stability of PtxZny (x=1-3, y=0-3) active sites grafted on silanols of Silicalite-1 and the PDH activity of Pt. We find that the coordination of a Pt atom to a nest of grafted Zn(II) atoms increases the stability of the Pt1Zny sites, whose activity is similar for y=0-2 and drops dramatically for y>2. We further demonstrate, via linear scaling relations and microkinetic simulations, that the turnover frequency obeys a volcano law as a function of propylene binding strength. The Pt2Zn1 and Pt3Zn1 sites are stable and exhibit activity similar to Pt1Zn2, but only Pt1Zn2 manifests reaction kinetics consistent with experimental data, strongly suggesting the active site composition in the synthesized catalyst samples. The methodology presented here suggests a general strategy for deducing active site information such as composition through simple kinetic experiments.
Collapse
Affiliation(s)
- Yilang Liu
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Antara Bhowmick
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Stavros Caratzoulas
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Dionisios G Vlachos
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| |
Collapse
|
2
|
Liu K, Shoinkhorova T, You X, Gong X, Zhang X, Chung SH, Ruiz-Martínez J, Gascon J, Dutta Chowdhury A. The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites. Dalton Trans 2024; 53:11344-11353. [PMID: 38899920 DOI: 10.1039/d4dt00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
Collapse
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Tuiana Shoinkhorova
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Sang-Ho Chung
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Javier Ruiz-Martínez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | | |
Collapse
|
3
|
Wu Y, Lv Y, Wang R, Bao L, Zhang Z, Shi D, Zhang A, Zhang Y, Liu Q, Wu Q, Shi D, Chen K, Jiang G, Li H. Unraveling the Structure-Activity-Stability Relationship over Gallium-Promoted HZSM-5 Nanocrystalline Aggregates for Propane Aromatization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11998-12008. [PMID: 38814080 DOI: 10.1021/acs.langmuir.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The aromatization of light alkane is an important process for increasing the aromatic production and utilization efficiency of light alkane resources simultaneously. Herein, Ga-modified HZSM-5 catalysts were prepared and investigated by a series of characterization techniques such as X-ray diffraction, nuclear magnetic resonance spectroscopy, transmission electron microscopy, N2 adsorption-desorption, and NH3 temperature-programmed desorption to study their physicochemical properties. The catalytic performance in propane aromatization was also tested. Importantly, the structure-activity relationship, reaction pathway, and coke formation mechanism in propane aromatization were systematically explored. It was found that different Ga introduction methods would affect the amounts of Brønsted and Lewis acid sites, and Ga-HZSM-5 prepared by the hydrothermal method exhibited higher amounts of Brønsted and Lewis acid sites but a lower B/L ratio. As a result, Ga-HZSM-5 showed higher propane conversion and benzene, toluene, and xylene yield compared with that of Ga2O3/HZSM-5. The propane aromatization reaction pathway indicated that propane dehydrogenation to propene was a crucial step for aromatic formation. The increase of the Lewis acid density in Ga-HZSM-5 can effectively improve the dehydrogenation rate and promote the aromatization reaction. Furthermore, the formation of coke species was studied by thermogravimetry-mass spectrometry and Raman approaches, the results of which indicated that the graphitization degree of coke formed over spent Ga-HZSM-5 is lower, resulting in enhanced anticoking stability.
Collapse
Affiliation(s)
- Yiheng Wu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yangping Lv
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ruipu Wang
- Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Lixia Bao
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 102488, China
| | - Zhongdong Zhang
- Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Dejun Shi
- Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Anlv Zhang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yaoyuan Zhang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Qin Wu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Daxin Shi
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kangcheng Chen
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Hansheng Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Zhou Y, Santos S, Shamzhy M, Marinova M, Blanchenet AM, Kolyagin YG, Simon P, Trentesaux M, Sharna S, Ersen O, Zholobenko VL, Saeys M, Khodakov AY, Ordomsky VV. Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons. Nat Commun 2024; 15:2228. [PMID: 38472188 DOI: 10.1038/s41467-024-46232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Methanol-to-hydrocarbons (MTH) process has been considered one of the most practical approaches for producing value-added products from methanol. However, the commonly used zeolite catalysts suffer from rapid deactivation due to coke deposition and require regular regeneration treatments. We demonstrate that low-melting-point metals, such as Ga, can effectively promote more stable methanol conversion in the MTH process by slowing coke deposition and facilitating the desorption of carbonaceous species from the zeolite. The ZSM-5 zeolite physically mixed with liquid gallium exhibited an enhanced lifetime in the MTH reaction, which increased by a factor of up to ~14 as compared to the parent ZSM-5. These results suggest an alternative route to the design and preparation of deactivation-resistant zeolite catalysts.
Collapse
Affiliation(s)
- Yong Zhou
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- Research Institute of Interdisciplinary Sciences (RISE) and School of Materials Science & Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Sara Santos
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052, Ghent, Belgium
| | - Mariya Shamzhy
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12843, Prague, Czech Republic
| | - Maya Marinova
- Institut Michel-Eugène Chevreul, 59655, Villeneuve-d'Ascq, France
| | - Anne-Marie Blanchenet
- Univ. Lille, CNRS, UMR 8207-UMET-Unité Matériaux et Transformations, Lille, F-59000, France
| | - Yury G Kolyagin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Pardis Simon
- Institut Michel-Eugène Chevreul, 59655, Villeneuve-d'Ascq, France
| | - Martine Trentesaux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Sharmin Sharna
- IPCMS, Université de Strasbourg-CNRS, 67034, Strasbourg, France
| | - Ovidiu Ersen
- IPCMS, Université de Strasbourg-CNRS, 67034, Strasbourg, France
| | | | - Mark Saeys
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052, Ghent, Belgium
| | - Andrei Y Khodakov
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Vitaly V Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| |
Collapse
|
5
|
Ticali P, Salusso D, Airi A, Morandi S, Borfecchia E, Ramirez A, Cordero-Lanzac T, Gascon J, Olsbye U, Joensen F, Bordiga S. From Lab to Technical CO 2 Hydrogenation Catalysts: Understanding PdZn Decomposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5218-5228. [PMID: 36688511 PMCID: PMC9906622 DOI: 10.1021/acsami.2c19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The valorization of CO2 to produce high-value chemicals, such as methanol and hydrocarbons, represents key technology in the future net-zero society. Herein, we report further investigation of a PdZn/ZrO2 + SAPO-34 catalyst for conversion of CO2 and H2 into propane, already presented in a previous work. The focus of this contribution is on the scale up of this catalyst. In particular, we explored the effect of mixing (1:1 mass ratio) and shaping the two catalyst functions into tablets and extrudates using an alumina binder. Their catalytic performance was correlated with structural and spectroscopic characteristics using methods such as FT-IR and X-ray absorption spectroscopy. The two scaled-up bifunctional catalysts demonstrated worse performance than a 1:1 mass physical mixture of the two individual components. Indeed, we demonstrated that the preparation negatively affects the element distribution. The physical mixture is featured by the presence of a PdZn alloy, as demonstrated by our previous work on this sample and high hydrocarbon selectivity among products. For both tablets and extrudates, the characterization showed Zn migration to produce Zn aluminates from the alumina binder phase upon reduction. Moreover, the extrudates showed a remarkable higher amount of Zn aluminates before the activation rather than the tablets. Comparing tablets and extrudates with the physical mixture, no PdZn alloy was observed after activation and only the extrudates showed the presence of metallic Pd. Due to the Zn migration, SAPO-34 poisoning and subsequent deactivation of the catalyst could not be excluded. These findings corroborated the catalytic results: Zn aluminate formation and Pd0 separation could be responsible for the decrease of the catalytic activity of the extrudates, featured by high methane selectivity and unconverted methanol, while tablets displayed reduced methanol conversion to hydrocarbons mainly attributed to the partial deactivation of the SAPO-34.
Collapse
Affiliation(s)
- Pierfrancesco Ticali
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Davide Salusso
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Alessia Airi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Sara Morandi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Elisa Borfecchia
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Adrian Ramirez
- King
Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Tomás Cordero-Lanzac
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University. of Oslo, Sem Sælands vei 26, 0371Oslo, Norway
| | - Jorge Gascon
- King
Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Unni Olsbye
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University. of Oslo, Sem Sælands vei 26, 0371Oslo, Norway
| | | | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| |
Collapse
|
6
|
Geng R, Liu Y, Guo Y, Wang P, Dong M, Wang S, Wang J, Qin Z, Fan W. Structure Evolution of Zn Species on Fresh, Deactivated, and Regenerated Zn/ZSM-5 Catalysts in Ethylene Aromatization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rui Geng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yacong Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|
7
|
Song X, Fu Y, Pang Y, Gao L. Preparation of La-Zn/HZSM-5 zeolite and its application in photocatalytic degradation of phenol. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Niu X, Bai Y, Du YE, Qi H, Chen Y. Size controllable synthesis of ZSM-5 zeolite and its catalytic performance in the reaction of methanol conversion to aromatics. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211284. [PMID: 35345428 PMCID: PMC8941405 DOI: 10.1098/rsos.211284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
ZSM-5 zeolites were hydrothermally synthesized with commercial silica sol, and the crystal size was controlled by adding silicalite-1 seed in the synthetic system. The crystal size of ZSM-5 was affected by the crystallization time of seed, seed content and seed size. ZSM-5 zeolites with controllable particle size in the range of 200-2200 nm could be obtained. The prepared samples with different particle sizes were used for the reaction of methanol conversion to aromatics (MTA). The results suggested that the HZSM-5 catalyst with small crystal size showed much longer catalyst lifetime and higher selectivity for C5 + hydrocarbons and aromatics, especially C9 + aromatics in the MTA reaction. Moreover, the introduction of zinc (Zn) into the HZSM-5 zeolites can considerably promote the selectivity to aromatics in the products. Zn modified HZSM-5 zeolites with different Zn loading amounts were prepared by the incipient wetness impregnation method, and the highest aromatics selectivity was obtained when the Zn loading was 1.0%. The improvement of methanol aromatization was ascribed to the synergistic effect of Brønsted acid sites and the newly formed Zn-Lewis acid sites.
Collapse
Affiliation(s)
- Xianjun Niu
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, People's Republic of China
| | - Yang Bai
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, People's Republic of China
| | - Yi-en Du
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, People's Republic of China
| | - Hongxue Qi
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, People's Republic of China
| | - Yongqiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, People's Republic of China
| |
Collapse
|
9
|
Zhokh A, Trypolskyi A, Gritsenko V, Strizhak P. Effect of H-ZSM-5 zeolite content on the intrinsic kinetics of methanol dehydration to dimethyl ether over H-ZSM-5/Al 2O 3 molded catalyst. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00468a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The catalyst composition affects the activation energy and methanol absorption heat, whereas the mechanism of methanol absorption (associative or dissociative) and pre-exponential factor exhibit no sensitivity to catalyst composition.
Collapse
Affiliation(s)
- Alexey Zhokh
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| | - Andrey Trypolskyi
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| | - Valentina Gritsenko
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| | - Peter Strizhak
- L.V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Prospekt Nauki, 31 Kiev, 03028, Ukraine
| |
Collapse
|
10
|
Lezcano G, Velisoju VK, Kulkarni SR, Ramirez A, Castaño P. Engineering Thermally Resistant Catalytic Particles for Oxidative Coupling of Methane Using Spray-Drying and Incorporating SiC. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gontzal Lezcano
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Vijay K. Velisoju
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shekhar R. Kulkarni
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Nozik D, Tinga FMP, Bell AT. Propane Dehydrogenation and Cracking over Zn/H-MFI Prepared by Solid-State Ion Exchange of ZnCl 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Danna Nozik
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Francesca Mikaela P. Tinga
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Ramirez A, Ticali P, Salusso D, Cordero-Lanzac T, Ould-Chikh S, Ahoba-Sam C, Bugaev AL, Borfecchia E, Morandi S, Signorile M, Bordiga S, Gascon J, Olsbye U. Multifunctional Catalyst Combination for the Direct Conversion of CO 2 to Propane. JACS AU 2021; 1:1719-1732. [PMID: 34723275 PMCID: PMC8549042 DOI: 10.1021/jacsau.1c00302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The production of carbon-rich hydrocarbons via CO2 valorization is essential for the transition to renewable, non-fossil-fuel-based energy sources. However, most of the recent works in the state of the art are devoted to the formation of olefins and aromatics, ignoring the rest of the hydrocarbon commodities that, like propane, are essential to our economy. Hence, in this work, we have developed a highly active and selective PdZn/ZrO2+SAPO-34 multifunctional catalyst for the direct conversion of CO2 to propane. Our multifunctional system displays a total selectivity to propane higher than 50% (with 20% CO, 6% C1, 13% C2, 10% C4, and 1% C5) and a CO2 conversion close to 40% at 350 °C, 50 bar, and 1500 mL g-1 h-1. We attribute these results to the synergy between the intimately mixed PdZn/ZrO2 and SAPO-34 components that shifts the overall reaction equilibrium, boosting CO2 conversion and minimizing CO selectivity. Comparison to a PdZn/ZrO2+ZSM-5 system showed that propane selectivity is further boosted by the topology of SAPO-34. The presence of Pd in the catalyst drives paraffin production via hydrogenation, with more than 99.9% of the products being saturated hydrocarbons, offering very important advantages for the purification of the products.
Collapse
Affiliation(s)
- Adrian Ramirez
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Pierfrancesco Ticali
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Davide Salusso
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Tomas Cordero-Lanzac
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Samy Ould-Chikh
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Christian Ahoba-Sam
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Aram L. Bugaev
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russian Federation
| | - Elisa Borfecchia
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Sara Morandi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Matteo Signorile
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Jorge Gascon
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Unni Olsbye
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| |
Collapse
|
13
|
Li T, Shoinkhorova T, Gascon J, Ruiz-Martínez J. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Teng Li
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Tuiana Shoinkhorova
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Shoinkhorova T, Cordero-Lanzac T, Ramirez A, Chung SH, Dokania A, Ruiz-Martinez J, Gascon J. Highly Selective and Stable Production of Aromatics via High-Pressure Methanol Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tuiana Shoinkhorova
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tomas Cordero-Lanzac
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), PO Box 644, Bilbao 48080, Spain
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sang-ho Chung
- KAUST Catalysis Center (KCC), Catalysis, Nanomaterials and Spectroscopy, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abhay Dokania
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz-Martinez
- KAUST Catalysis Center (KCC), Catalysis, Nanomaterials and Spectroscopy, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Zhou F, Ma H, Han Z, Ma F, Wu G. Synthesis of hierarchical GaZSM-5 zeolites by the HCl treatment method and their catalytic performance in methanol aromatization. NEW J CHEM 2021. [DOI: 10.1039/d1nj03209g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ZSM-5 samples exhibiting isomorphic substitution with Ga and containing both micropores and mesopores were synthesized by a posttreatment method involving different concentrations of hydrochloric acid.
Collapse
Affiliation(s)
- Feng Zhou
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, Harbin, 150076, China
| | - Huixia Ma
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, Harbin, 150076, China
| | - Zheng Han
- School of Chemistry and Materials Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangwei Ma
- School of Chemistry and Materials Sciences, Heilongjiang University, Harbin 150080, China
| | - Guang Wu
- School of Chemistry and Materials Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|