1
|
Ozturk C, Pak DH, Rosalia L, Goswami D, Robakowski ME, McKay R, Nguyen CT, Duncan JS, Roche ET. AI-Powered Multimodal Modeling of Personalized Hemodynamics in Aortic Stenosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404755. [PMID: 39665137 DOI: 10.1002/advs.202404755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Indexed: 12/13/2024]
Abstract
Aortic stenosis (AS) is the most common valvular heart disease in developed countries. High-fidelity preclinical models can improve AS management by enabling therapeutic innovation, early diagnosis, and tailored treatment planning. However, their use is currently limited by complex workflows necessitating lengthy expert-driven manual operations. Here, we propose an AI-powered computational framework for accelerated and democratized patient-specific modeling of AS hemodynamics from computed tomography (CT). First, we demonstrate that the automated meshing algorithms can generate task-ready geometries for both computational and benchtop simulations with higher accuracy and 100 times faster than existing approaches. Then, we show that the approach can be integrated with fluid-structure interaction and soft robotics models to accurately recapitulate a broad spectrum of clinical hemodynamic measurements of diverse AS patients. The efficiency and reliability of these algorithms make them an ideal complementary tool for personalized high-fidelity modeling of AS biomechanics, hemodynamics, and treatment planning.
Collapse
Affiliation(s)
- Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Daniel H Pak
- Departments of Biomedical Engineering and Radiology & Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Luca Rosalia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- Health Sciences and Technology Program, Harvard University - Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Bioengineering, Stanford University, Palo Alto, CA, 94305, United States
| | - Debkalpa Goswami
- Cardiovascular Innovation Research Center and Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mary E Robakowski
- Cardiovascular Innovation Research Center and Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Raymond McKay
- Interventional Cardiology, Hartford Hospital, Hartford, CT, 06106, USA
| | - Christopher T Nguyen
- Cardiovascular Innovation Research Center and Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
- Department of Biomedical Engineering, Case Western Reserve University and Lerner Research Institute Cleveland Clinic, Cleveland, OH, 44116, United States
| | - James S Duncan
- Departments of Biomedical Engineering and Radiology & Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- Health Sciences and Technology Program, Harvard University - Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Fringand T, Mace L, Cheylan I, Lenoir M, Favier J. Analysis of Fluid-Structure Interaction Mechanisms for a Native Aortic Valve, Patient-Specific Ozaki Procedure, and a Bioprosthetic Valve. Ann Biomed Eng 2024; 52:3021-3036. [PMID: 39225853 DOI: 10.1007/s10439-024-03566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
The Ozaki procedure is a surgical technique which avoids to implant foreign aortic valve prostheses in human heart, using the patient's own pericardium. Although this approach has well-identified benefits, it is still a topic of debate in the cardiac surgical community, which prevents its larger use to treat valve pathologies. This is linked to the actual lack of knowledge regarding the dynamics of tissue deformations and surrounding blood flow for this autograft pericardial valve. So far, there is no numerical study examining the coupling between the blood flow characteristics and the Ozaki leaflets dynamics. To fill this gap, we propose here a comprehensive comparison of various performance criteria between a healthy native valve, its pericardium-based counterpart, and a bioprosthetic solution, this is done using a three-dimensional fluid-structure interaction solver. Our findings reveal similar physiological dynamics between the valves but with the emergence of fluttering for the Ozaki leaflets and higher velocity and wall shear stress for the bioprosthetic heart valve.
Collapse
Affiliation(s)
- Tom Fringand
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France.
| | - Loic Mace
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
- Department of Cardiac Surgery, La Timone Hospital, APHM, Aix Marseille Univ, Marseille, France
| | | | - Marien Lenoir
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
- Department of Cardiac Surgery, La Timone Hospital, APHM, Aix Marseille Univ, Marseille, France
| | - Julien Favier
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
| |
Collapse
|
3
|
Msallem B, Vavrina JJ, Beyer M, Halbeisen FS, Lauer G, Dragu A, Thieringer FM. Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology. J Clin Med 2024; 13:5848. [PMID: 39407907 PMCID: PMC11477136 DOI: 10.3390/jcm13195848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Background: With the rise of new 3D printers, assessing accuracy is crucial for obtaining the best results in patient care. Previous studies have shown that the highest accuracy is achieved with SLS printing technology; however, SLA printing technology has made significant improvements in recent years. Methods: In this study, a realistic anatomical model of a mandible and skull, a cutting guide for mandibular osteotomy, and a splint for orthognathic surgery were replicated five times each using two different 3D printing technologies: SLA and SLS. Results: The SLA group had a median trueness RMS value of 0.148 mm and a precision RMS value of 0.117 mm. The SLS group had a median trueness RMS value of 0.144 mm and a precision RMS value of 0.096 mm. There was no statistically significant difference in RMS values between SLS and SLA technologies regarding trueness. Regarding precision, however, the RMS values for SLS technology were significantly lower in the splint and cutting guide applications than those printed with SLA technology. Conclusions: Both 3D printing technologies produce modern models and applications with equally high dimensional accuracy. Considering current cost pressures experienced by hospitals, the lower-cost SLA 3D printer is a reliable choice for point-of-care 3D printing.
Collapse
Affiliation(s)
- Bilal Msallem
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
| | - Joel J. Vavrina
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michel Beyer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Florian S. Halbeisen
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
| | - Adrian Dragu
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
4
|
Macé LG, Fringand T, Cheylan I, Sabatier L, Meille L, Lenoir M, Favier J. Three-dimensional modelling of aortic leaflet coaptation and load-bearing surfaces: in silico design of aortic valve neocuspidizations. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 39:ivae108. [PMID: 38830038 PMCID: PMC11246164 DOI: 10.1093/icvts/ivae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES Three-dimensional (3D) modelling of aortic leaflets remains difficult due to insufficient resolution of medical imaging. We aimed to model the coaptation and load-bearing surfaces of the aortic leaflets and adapt this workflow to aid in the design of aortic valve neocuspidizations. METHODS Geometric morphometrics, using landmarks and semilandmarks, was applied to the geometric determinants of the aortic leaflets from computed tomography, followed by an isogeometric analysis using Non-Uniform Rational Basis Splines (NURBS). Ten aortic valve models were generated, measuring determinants of leaflet geometry defined as 3D NURBS curves, and leaflet coaptation and load-bearing surfaces were defined as 3D NURBS surfaces. Neocuspidizations were obtained by either shifting the upper central coaptation landmark towards the sinotubular junction or using parametric neo-landmarks placed on a centreline drawn between the centroid of the aortic root base and centroid of a circle circumscribing the 3 upper commissural landmarks. RESULTS The ratio of the leaflet free margin length to the geometric height was 1.83, whereas the ratio of the commissural coaptation height to the central coaptation height was 1.93. The median coaptation surface was 137 mm2 (IQR 58) and the median load-bearing surface was 203 mm2 (60) per leaflet. Neocuspidization multiplied the central coaptation height by 3.7 and the coaptation surfaces by 1.97 and 1.92 using the native coaptation axis and centroid coaptation axis, respectively. CONCLUSIONS Geometric morphometrics reliably defined the coaptation and load-bearing surfaces of aortic leaflets, enabling an experimental 3D design for the in silico neocuspidization of aortic valves.
Collapse
Affiliation(s)
- Loïc Georges Macé
- Department of Cardiac Surgery, La Timone Hospital, AP-HM, Aix Marseille Univ, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
| | - Tom Fringand
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
| | | | | | - Laurent Meille
- Cardiovascular Department, Clinique Rhône Durance, Avignon, France
| | - Marien Lenoir
- Department of Cardiac Surgery, La Timone Hospital, AP-HM, Aix Marseille Univ, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
| | - Julien Favier
- Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France
| |
Collapse
|
5
|
Reisman Y, van Renterghem K, Meijer B, Ricapito A, Fode M, Bettocchi C. Development and validation of 3-dimensional simulators for penile prosthesis surgery. J Sex Med 2024; 21:494-499. [PMID: 38477106 DOI: 10.1093/jsxmed/qdae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The acquisition of skills in penile prosthesis surgery has many limitations mainly due to the absence of simulators and models for training. Three-dimensional (3D) printed models can be utilized for surgical simulations, as they provide an opportunity to practice before entering the operating room and provide better understanding of the surgical approach. AIM This study aimed to evaluate and validate a 3D model of human male genitalia for penile prosthesis surgery. METHODS This study included 3 evaluation and validation stages. The first stage involved verification of the 3D prototype model for anatomic landmarks compared with a cadaveric pelvis. The second stage involved validation of the improved model for anatomic accuracy and teaching purposes with the Rochester evaluation score. The third stage comprised validation of the suitability of the 3D prototype model as a surgical simulator and for skill acquisition. The third stage was performed at 3 centers using a modified version of a pre-existing, validated questionnaire and correlated with the Rochester evaluation score. OUTCOME We sought to determine the suitability of 3D model for training in penile prosthesis surgery in comparison with the available cadaveric model. RESULTS The evaluation revealed a high Pearson correlation coefficient (0.86) between questions of the Rochester evaluation score and modified validated questionnaire. The 3D model scored 4.33 ± 0.57 (on a Likert scale from 1 to 5) regarding replication of the relevant human anatomy for the penile prosthesis surgery procedure. The 3D model scored 4.33 ± 0.57 (on a Likert scale from 1 to 5) regarding its ability to improve technical skills, teach and practice the procedure, and assess a surgeon's ability. Furthermore, the experts stated that compared with the cadaver, the 3D model presented greater ethical suitability, reduced costs, and easier accessibility. CLINICAL IMPLICATIONS A validated 3D model is a suitable alternative for penile prosthesis surgery training. STRENGTHS AND LIMITATIONS This is the first validated 3D hydrogel model for penile prosthesis surgery teaching and training that experts consider suitable for skill acquisition. Because specific validated guidelines and questionnaires for the validation and verifications of 3D simulators for penile surgery are not available, a modified questionnaire was used. CONCLUSION The current 3D model for penile prosthesis surgery shows promising results regarding anatomic properties and suitability to train surgeons to perform penile implant surgery. The possibility of having an ethical, easy-to-use model with lower costs and limited consequences for the environment is encouraging for further development of the models.
Collapse
Affiliation(s)
- Yacov Reisman
- Flare-Health, Amsterdam, the Netherlands
- Reuth Rehabilitation Hospital, Tel-Aviv 67062, Israel
| | | | - Boaz Meijer
- Department of Urology, Acibadem Medical Center, 1043, HP Amsterdam, the Netherlands
| | - Anna Ricapito
- Andrology and Male Genitalia Reconstructive Surgery Unit, University of Foggia, 71122, Foggia FG, Italy
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, University of Copenhagen, 13DK-2730, Herlev, Denmark
| | - Carlo Bettocchi
- Andrology and Male Genitalia Reconstructive Surgery Unit, University of Foggia, 71122, Foggia FG, Italy
| |
Collapse
|
6
|
Chrysostomidis G, Apostolos A, Papanikolaou A, Konstantinou K, Tsigkas G, Koliopoulou A, Chamogeorgakis T. The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. J Pers Med 2024; 14:375. [PMID: 38673001 PMCID: PMC11051532 DOI: 10.3390/jpm14040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The personalized applications of 3D printing in interventional cardiology and cardiac surgery represent a transformative paradigm in the management of structural heart diseases. This review underscores the pivotal role of 3D printing in enhancing procedural precision, from preoperative planning to procedural simulation, particularly in valvular heart diseases, such as aortic stenosis and mitral regurgitation. The ability to create patient-specific models contributes significantly to predicting and preventing complications like paravalvular leakage, ensuring optimal device selection, and improving outcomes. Additionally, 3D printing extends its impact beyond valvular diseases to tricuspid regurgitation and non-valvular structural heart conditions. The comprehensive synthesis of the existing literature presented here emphasizes the promising trajectory of individualized approaches facilitated by 3D printing, promising a future where tailored interventions based on precise anatomical considerations become standard practice in cardiovascular care.
Collapse
Affiliation(s)
- Grigorios Chrysostomidis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Anastasios Apostolos
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Amalia Papanikolaou
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Konstantinos Konstantinou
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London 26504, UK;
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, 265 04 Patras, Greece;
| | - Antigoni Koliopoulou
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Themistokles Chamogeorgakis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| |
Collapse
|
7
|
Mao Y, Liu Y, Ma Y, Zhai M, Li L, Jin P, Yang J. Feasibility of 3-dimensional printed models in simulated training and teaching of transcatheter aortic valve replacement. Open Med (Wars) 2024; 19:20240909. [PMID: 38463517 PMCID: PMC10921447 DOI: 10.1515/med-2024-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
In the study of TAVR, 3-dimensional (3D) printed aortic root models and pulsatile simulators were used for simulation training and teaching before procedures. The study was carried out in the following three parts: (1) experts were selected and equally divided into the 3D-printed simulation group and the non-3D-printed simulation group to conduct four times of TAVR, respectively; (2) another 10 experts and 10 young proceduralists were selected to accomplish three times of TAVR simulations; (3) overall, all the doctors were organized to complete a specific questionnaire, to evaluate the training and teaching effect of 3D printed simulations. For the 3D-printed simulation group, six proceduralists had a less crossing-valve time (8.3 ± 2.1 min vs 11.8 ± 2.7 min, P < 0.001) and total operation time (102.7 ± 15.3 min vs 137.7 ± 15.4 min, P < 0.001). In addition, the results showed that the median crossing-valve time and the total time required were significantly reduced in both the expert group and the young proceduralist group (all P<0.001). The results of the questionnaire showed that 3D-printed simulation training could enhance the understanding of anatomical structure and improve technical skills. Overall, cardiovascular 3D printing may play an important role in assisting TAVR, which can shorten the operation time and reduce potential complications.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
8
|
Shabbak A, Masoumkhani F, Fallah A, Amani-Beni R, Mohammadpour H, Shahbazi T, Bakhshi A. 3D Printing for Cardiovascular Surgery and Intervention: A Review Article. Curr Probl Cardiol 2024; 49:102086. [PMID: 37716537 DOI: 10.1016/j.cpcardiol.2023.102086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
3D printing technology can be applied to practically every aspect of modern life, fulfilling the needs of people from various backgrounds. The utilization of 3D printing in the context of adult heart disease can be succinctly categorized into 3 primary domains: preoperative strategizing or simulation, medical instruction, and clinical consultations. 3D-printed model utilization improves surgical planning and intraoperative decision-making and minimizes surgical risks, and it has demonstrated its efficacy as an innovative educational tool for aspiring surgeons with limited practical exposure. Despite all the applications of 3D printing, it has not yet been shown to improve long-term outcomes, including safety. There are no data on the outcomes of controlled trials available. To appropriately diagnose heart disease, 3D-printed models of the heart can provide a better understanding of the intracardiac anatomy and provide all the information needed for operative planning. Experientially, 3D printing provides a wide range of perceptions for understanding lower extremity arteries' spatial geometry and anatomical features of pathology. Practicing cardiac surgery processes using objects printed using 3D imaging data can become the norm rather than the exception, leading to improved accuracy and quality of treatment. This study aimed to review the various applications of 3D printing technology in cardiac surgery and intervention.
Collapse
Affiliation(s)
- Ali Shabbak
- Research Committee, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Fateme Masoumkhani
- Department of cardiology, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Fallah
- Research Committee, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Mohammadpour
- Research Committee, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Taha Shahbazi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Bakhshi
- Remember of Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Ullah M, Bibi A, Wahab A, Hamayun S, Rehman MU, Khan SU, Awan UA, Riaz NUA, Naeem M, Saeed S, Hussain T. Shaping the Future of Cardiovascular Disease by 3D Printing Applications in Stent Technology and its Clinical Outcomes. Curr Probl Cardiol 2024; 49:102039. [PMID: 37598773 DOI: 10.1016/j.cpcardiol.2023.102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. In recent years, 3D printing technology has ushered in a new era of innovation in cardiovascular medicine. 3D printing in CVD management encompasses various aspects, from patient-specific models and preoperative planning to customized medical devices and novel therapeutic approaches. In-stent technology, 3D printing has revolutionized the design and fabrication of intravascular stents, offering tailored solutions for complex anatomies and individualized patient needs. The advantages of 3D-printed stents, such as improved biocompatibility, enhanced mechanical properties, and reduced risk of in-stent restenosis. Moreover, the clinical trials and case studies that shed light on the potential of 3D printing technology to improve patient outcomes and revolutionize the field has been comprehensively discussed. Furthermore, regulatory considerations, and challenges in implementing 3D-printed stents in clinical practice are also addressed, underscoring the need for standardization and quality assurance to ensure patient safety and device reliability. This review highlights a comprehensive resource for clinicians, researchers, and policymakers seeking to harness the full potential of 3D printing technology in the fight against CVD.
Collapse
Affiliation(s)
- Muneeb Ullah
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa, Pakistan.
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan
| | - Noor-Ul-Ain Riaz
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan.
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Talib Hussain
- Women Dental College Abbottabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Verstraeten S, Hoeijmakers M, Tonino P, Brüning J, Capelli C, van de Vosse F, Huberts W. Generation of synthetic aortic valve stenosis geometries for in silico trials. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3778. [PMID: 37961993 DOI: 10.1002/cnm.3778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 11/15/2023]
Abstract
In silico trials are a promising way to increase the efficiency of the development, and the time to market of cardiovascular implantable devices. The development of transcatheter aortic valve implantation (TAVI) devices, could benefit from in silico trials to overcome frequently occurring complications such as paravalvular leakage and conduction problems. To be able to perform in silico TAVI trials virtual cohorts of TAVI patients are required. In a virtual cohort, individual patients are represented by computer models that usually require patient-specific aortic valve geometries. This study aimed to develop a virtual cohort generator that generates anatomically plausible, synthetic aortic valve stenosis geometries for in silico TAVI trials and allows for the selection of specific anatomical features that influence the occurrence of complications. To build the generator, a combination of non-parametrical statistical shape modeling and sampling from a copula distribution was used. The developed virtual cohort generator successfully generated synthetic aortic valve stenosis geometries that are comparable with a real cohort, and therefore, are considered as being anatomically plausible. Furthermore, we were able to select specific anatomical features with a sensitivity of around 90%. The virtual cohort generator has the potential to be used by TAVI manufacturers to test their devices. Future work will involve including calcifications to the synthetic geometries, and applying high-fidelity fluid-structure-interaction models to perform in silico trials.
Collapse
Affiliation(s)
- Sabine Verstraeten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Pim Tonino
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Jan Brüning
- Institute of Computer-assisted Cardiovascular Medicine, Charite Universitaetsmedizin, Berlin, Germany
| | - Claudio Capelli
- Institute of Cardiovascular Science, University College London, London, UK
| | - Frans van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, Ramakrishna S, Saidin S, Jaganathan SK. A Systematic Analysis of Additive Manufacturing Techniques in the Bioengineering of In Vitro Cardiovascular Models. Ann Biomed Eng 2023; 51:2365-2383. [PMID: 37466879 PMCID: PMC10598155 DOI: 10.1007/s10439-023-03322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
Collapse
Affiliation(s)
| | - Vivek Nair
- Computational Fluid Dynamics (CFD) Lab, Mechanical and Aerospace Engineering, University of Texas Arlington, Arlington, TX, 76010, USA
| | | | - Ahmad Athif Mohd Faudzi
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nick Tucker
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology Initiative, National University of Singapore, Singapore, Singapore
| | - Syafiqah Saidin
- IJNUTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
12
|
Rouhollahi A, Willi JN, Haltmeier S, Mehrtash A, Straughan R, Javadikasgari H, Brown J, Itoh A, de la Cruz KI, Aikawa E, Edelman ER, Nezami FR. CardioVision: A fully automated deep learning package for medical image segmentation and reconstruction generating digital twins for patients with aortic stenosis. Comput Med Imaging Graph 2023; 109:102289. [PMID: 37633032 PMCID: PMC10599298 DOI: 10.1016/j.compmedimag.2023.102289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
Aortic stenosis (AS) is the most prevalent heart valve disease in western countries that poses a significant public health challenge due to the lack of a medical treatment to prevent valve calcification. Given the aging population demographic, the prevalence of AS is projected to rise, resulting in a progressively significant healthcare and economic burden. While surgical aortic valve replacement (SAVR) has been the gold standard approach, the less invasive transcatheter aortic valve replacement (TAVR) is poised to become the dominant method for high- and medium-risk interventions. Computational simulations using patient-specific models, have opened new research avenues for optimizing emerging devices and predicting clinical outcomes. The traditional techniques of generating digital replicas of patients' aortic root, native valve, and calcification are time-consuming and labor-intensive processes requiring specialized tools and expertise in anatomy. Alternatively, deep learning models, such as the U-Net architecture, have emerged as reliable and fully automated methods for medical image segmentation. Two-dimensional U-Nets have been shown to produce comparable or more accurate results than trained clinicians' manual segmentation while significantly reducing computational costs. In this study, we have developed a fully automatic AI tool capable of reconstructing the digital twin geometry and analyzing the calcification distribution on the aortic valve. The developed automatic segmentation package enables the modeling of patient-specific anatomies, which can then be used to simulate virtual interventional procedures, optimize emerging prosthetic devices, and predict clinical outcomes.
Collapse
Affiliation(s)
- Amir Rouhollahi
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Noel Willi
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Haltmeier
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alireza Mehrtash
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ross Straughan
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Hoda Javadikasgari
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Brown
- Clinical and Translation Science Institute, Tufts University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akinobu Itoh
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim I de la Cruz
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farhad R Nezami
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Rosalia L, Ozturk C, Goswami D, Bonnemain J, Wang SX, Bonner B, Weaver JC, Puri R, Kapadia S, Nguyen CT, Roche ET. Soft robotic patient-specific hydrodynamic model of aortic stenosis and ventricular remodeling. Sci Robot 2023; 8:eade2184. [PMID: 36812335 PMCID: PMC10280738 DOI: 10.1126/scirobotics.ade2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Aortic stenosis (AS) affects about 1.5 million people in the United States and is associated with a 5-year survival rate of 20% if untreated. In these patients, aortic valve replacement is performed to restore adequate hemodynamics and alleviate symptoms. The development of next-generation prosthetic aortic valves seeks to provide enhanced hemodynamic performance, durability, and long-term safety, emphasizing the need for high-fidelity testing platforms for these devices. We propose a soft robotic model that recapitulates patient-specific hemodynamics of AS and secondary ventricular remodeling which we validated against clinical data. The model leverages 3D-printed replicas of each patient's cardiac anatomy and patient-specific soft robotic sleeves to recreate the patients' hemodynamics. An aortic sleeve allows mimicry of AS lesions due to degenerative or congenital disease, whereas a left ventricular sleeve recapitulates loss of ventricular compliance and diastolic dysfunction (DD) associated with AS. Through a combination of echocardiographic and catheterization techniques, this system is shown to recreate clinical metrics of AS with greater controllability compared with methods based on image-guided aortic root reconstruction and parameters of cardiac function that rigid systems fail to mimic physiologically. Last, we leverage this model to evaluate the hemodynamic benefit of transcatheter aortic valves in a subset of patients with diverse anatomies, etiologies, and disease states. Through the development of a high-fidelity model of AS and DD, this work demonstrates the use of soft robotics to recreate cardiovascular disease, with potential applications in device development, procedural planning, and outcome prediction in industrial and clinical settings.
Collapse
Affiliation(s)
- Luca Rosalia
- Health Sciences and Technology Program, Harvard–Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Health Sciences and Technology, ETH-Zürich, Zürich, Switzerland
- Institute of Robotics and Intelligent Systems, ETH-Zürich, Zürich, Switzerland
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sophie X. Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Bonner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Fidvi S, Holder J, Li H, Parnes GJ, Shamir SB, Wake N. Advanced 3D Visualization and 3D Printing in Radiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:103-138. [PMID: 37016113 DOI: 10.1007/978-3-031-26462-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Since the discovery of X-rays in 1895, medical imaging systems have played a crucial role in medicine by permitting the visualization of internal structures and understanding the function of organ systems. Traditional imaging modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) present fixed two-dimensional (2D) images which are difficult to conceptualize complex anatomy. Advanced volumetric medical imaging allows for three-dimensional (3D) image post-processing and image segmentation to be performed, enabling the creation of 3D volume renderings and enhanced visualization of pertinent anatomic structures in 3D. Furthermore, 3D imaging is used to generate 3D printed models and extended reality (augmented reality and virtual reality) models. A 3D image translates medical imaging information into a visual story rendering complex data and abstract ideas into an easily understood and tangible concept. Clinicians use 3D models to comprehend complex anatomical structures and to plan and guide surgical interventions more precisely. This chapter will review the volumetric radiological techniques that are commonly utilized for advanced 3D visualization. It will also provide examples of 3D printing and extended reality technology applications in radiology and describe the positive impact of advanced radiological image visualization on patient care.
Collapse
Affiliation(s)
- Shabnam Fidvi
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA.
| | - Justin Holder
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Hong Li
- Department of Radiology, Jacobi Medical Center, Bronx, NY, USA
| | | | | | - Nicole Wake
- GE Healthcare, Aurora, OH, USA
- Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA
| |
Collapse
|
15
|
Ma Y, Mao Y, Zhu G, Yang J. Application of cardiovascular 3-dimensional printing in Transcatheter aortic valve replacement. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:35. [PMID: 36121512 PMCID: PMC9485371 DOI: 10.1186/s13619-022-00129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) has been performed for nearly 20 years, with reliable safety and efficacy in moderate- to high-risk patients with aortic stenosis or regurgitation, with the advantage of less trauma and better prognosis than traditional open surgery. However, because surgeons have not been able to obtain a full view of the aortic root, 3-dimensional printing has been used to reconstruct the aortic root so that they could clearly and intuitively understand the specific anatomical structure. In addition, the 3D printed model has been used for the in vitro simulation of the planned procedures to predict the potential complications of TAVR, the goal being to provide guidance to reasonably plan the procedure to achieve the best outcome. Postprocedural 3D printing can be used to understand the depth, shape, and distribution of the stent. Cardiovascular 3D printing has achieved remarkable results in TAVR and has a great potential.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
16
|
Xenofontos P, Zamani R, Akrami M. The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review. Biomed Eng Online 2022; 21:59. [PMID: 36050722 PMCID: PMC9434927 DOI: 10.1186/s12938-022-01029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, transcatheter aortic valve replacement (TAVR) has been suggested as a less invasive treatment compared to surgical aortic valve replacement, for patients with severe aortic stenosis. Despite the attention, persisting evidence suggests that several procedural complications are more prevalent with the transcatheter approach. Consequently, a systematic review was undertaken to evaluate the application of three-dimensional (3D) printing in preoperative planning for TAVR, as a means of predicting and subsequently, reducing the incidence of adverse events. METHODS MEDLINE, Web of Science and Embase were searched to identify studies that utilised patient-specific 3D printed models to predict or mitigate the risk of procedural complications. RESULTS 13 of 219 papers met the inclusion criteria of this review. The eligible studies have shown that 3D printing has most commonly been used to predict the occurrence and severity of paravalvular regurgitation, with relatively high accuracy. Studies have also explored the usefulness of 3D printed anatomical models in reducing the incidence of coronary artery obstruction, new-onset conduction disturbance and aortic annular rapture. CONCLUSION Patient-specific 3D models can be used in pre-procedural planning for challenging cases, to help deliver personalised treatment. However, the application of 3D printing is not recommended for routine clinical practice, due to practicality issues.
Collapse
Affiliation(s)
| | - Reza Zamani
- Medical School, College of Medicine and Health, Exeter, UK
| | - Mohammad Akrami
- Department of Engineering, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
17
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
18
|
Mao Y, Liu Y, Ma Y, Jin P, Li L, Yang J. Mitral Valve-in-Valve Implant of a Balloon-Expandable Valve Guided by 3-Dimensional Printing. Front Cardiovasc Med 2022; 9:894160. [PMID: 35711355 PMCID: PMC9195497 DOI: 10.3389/fcvm.2022.894160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background Our goal was to explore the role of 3-dimensional (3D) printing in facilitating the outcome of a mitral valve-in-valve (V-in-V) implant of a balloon-expandable valve. Methods From November 2020 to April 2021, 6 patients with degenerated mitral valves were treated by a transcatheter mitral V-in-V implant of a balloon-expandable valve. 3D printed mitral valve pre- and post-procedure models were prepared to facilitate the process by making individualized plans and evaluating the outcomes. Results Each of the 6 patients was successfully implanted with a balloon-expandable valve. From post-procedural images and the 3D printed models, we could clearly observe the valve at the ideal position, with the proper shape and no regurgitation. 3D printed mitral valve models contributed to precise decisions, the avoidance of complications, and the valuation of outcomes. Conclusions 3D printing plays an important role in guiding the transcatheter mitral V-in-V implant of a balloon-expandable valve. Clinical Trial Registration ClinicalTrials.gov Protocol Registration System (NCT02917980).
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
An impact of three dimensional techniques in virtual reality. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns4.6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three dimensional (3D) imaging play a prominent role in the diagnosis, treatment planning, and post-therapeutic monitoring of patients with Rheumatic Heart Disease (RHD) or mitral valve disease. More interactive and realistic medical experiences take an advantage of advanced visualization techniques like augmented, mixed, and virtual reality to analyze the 3D models. Further, 3D printed mitral valve model is being used in medical field. All these technologies improve the understanding of the complex morphologies of mitral valve disease. Real-time 3D Echocardiography has attracted much more attention in medical researches because it provides interactive feedback to acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary for intraoperative ultrasound examinations. In this article, three dimensional techniques and its impacts in mitral valve disease are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms with clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.
Collapse
|
20
|
Aoyama G, Zhao L, Zhao S, Xue X, Zhong Y, Yamauchi H, Tsukihara H, Maeda E, Ino K, Tomii N, Takagi S, Sakuma I, Ono M, Sakaguchi T. Automatic Aortic Valve Cusps Segmentation from CT Images Based on the Cascading Multiple Deep Neural Networks. J Imaging 2022; 8:11. [PMID: 35049852 PMCID: PMC8780687 DOI: 10.3390/jimaging8010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Accurate morphological information on aortic valve cusps is critical in treatment planning. Image segmentation is necessary to acquire this information, but manual segmentation is tedious and time consuming. In this paper, we propose a fully automatic aortic valve cusps segmentation method from CT images by combining two deep neural networks, spatial configuration-Net for detecting anatomical landmarks and U-Net for segmentation of aortic valve components. A total of 258 CT volumes of end systolic and end diastolic phases, which include cases with and without severe calcifications, were collected and manually annotated for each aortic valve component. The collected CT volumes were split 6:2:2 for the training, validation and test steps, and our method was evaluated by five-fold cross validation. The segmentation was successful for all CT volumes with 69.26 s as mean processing time. For the segmentation results of the aortic root, the right-coronary cusp, the left-coronary cusp and the non-coronary cusp, mean Dice Coefficient were 0.95, 0.70, 0.69, and 0.67, respectively. There were strong correlations between measurement values automatically calculated based on the annotations and those based on the segmentation results. The results suggest that our method can be used to automatically obtain measurement values for aortic valve morphology.
Collapse
Affiliation(s)
- Gakuto Aoyama
- Research and Development Center, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara 324-8550, Japan;
| | - Longfei Zhao
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Shun Zhao
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Xiao Xue
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Yunxin Zhong
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Haruo Yamauchi
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Hiroyuki Tsukihara
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Eriko Maeda
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Kenji Ino
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Naoki Tomii
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Shu Takagi
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Ichiro Sakuma
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Minoru Ono
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Takuya Sakaguchi
- Research and Development Center, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara 324-8550, Japan;
| |
Collapse
|
21
|
Three-dimensional printing to plan intracardiac operations. JTCVS Tech 2021; 9:101-108. [PMID: 34647075 PMCID: PMC8500990 DOI: 10.1016/j.xjtc.2021.02.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
|
22
|
Borracci RA, Ferreira LM, Alvarez Gallesio JM, Tenorio Núñez OM, David M, Eyheremendy EP. Three-dimensional virtual and printed models for planning adult cardiovascular surgery. Acta Cardiol 2021; 76:534-543. [PMID: 33283655 DOI: 10.1080/00015385.2020.1852754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The objective of this study was to explore the usefulness of virtual models and three-dimensional (3D) printing technologies for planning complex non-congenital cardiovascular surgery. METHODS Between July 2018 and December 2019, adult patients with different cardiovascular structural diseases were included in a clinical protocol to explore the usefulness of Standard Tessellation Language (STL)-based virtual models and 3D printing for prospectively planning surgery. A qualitative descriptive analysis from the surgeon's viewpoint was done based on the characteristics, advantages and usefulness of 3D models for guiding, planning and simulating the surgical procedures. RESULTS A total of 14 custom 3D-printed heart and great vessel replicas with their corresponding 3D virtual models were created for preoperative surgical planning. Six of 14 models helped to redefine the surgical approach, 3 were useful to verify device delivery, while the rest did not change the surgical decision. In all open surgery cases, cardiac and vascular anatomy accuracy of virtual and physical 3D replicas was validated by direct visualisation of the organs during surgery. Printing was achieved through an external provider associated with the Hospital, who printed the final prototype in 5-7 days. Printed production cost was between 100 and 500 USD per model. CONCLUSIONS In the current study, the selected 3D printed models presented different advantages (visual, tactile, and instrumental) over the traditional flat anatomical images when simulating and planning some complex types of surgery. Notwithstanding 3D printing advantages, STL-based virtual models were pre-printing useful tools when instrumentation on a physical replica was not required.
Collapse
Affiliation(s)
- Raul A. Borracci
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | - Luis M. Ferreira
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | | | | | - Michel David
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2020; 10:biom10111577. [PMID: 33233652 PMCID: PMC7699768 DOI: 10.3390/biom10111577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.
Collapse
|
24
|
Use of Patient-Specific 3-Dimensional Printed Models for Planning a Valve-in-Valve Transcatheter Aortic Valve Replacement and Educating Health Personnel, Patients, and Families. Ochsner J 2020; 21:93-98. [PMID: 33828432 PMCID: PMC7993438 DOI: 10.31486/toj.19.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Aortic stenosis is a common disease of the elderly. Valve replacement with open surgery is the preferred therapy for many patients with low surgical risk. Bioprosthetic valve failure occurs in up to 66% of patients and has a worse prognosis when the mechanism of failure is stenosis compared to regurgitation. Case Report: An 80-year-old female with a medical history of surgical aortic valve replacement, diabetes, chronic back pain, coronary artery disease, and hypertension was referred to the interventional cardiology clinic for heart failure symptoms. A bioprosthetic valve placement that was small for the patient's size (effective orifice area/body surface area 0.75 cm2/m2) resulted in symptomatic improvement that lasted for 7 years. The patient underwent an aortic valve-in-valve transcatheter valve replacement with excellent outcomes. Preoperative planning involved a patient-specific 3-dimensional printed patient model. Conclusion: In patients at high surgical risk, transcatheter aortic valve replacement is a fundamental pillar of treatment. However, valve-in-valve procedures have specific anatomic challenges, such as the risk of coronary artery obstruction and the limitation of valve expansion inside a rigid bioprosthetic valve frame. In those difficult cases, interventional cardiologists must make precise decisions regarding the approach. Three-dimensional models can be printed with the patient's specific measurements. This approach represents truly personalized medicine and can serve as a tool for procedural planning, education of the health personnel involved in the case, and patient and family engagement.
Collapse
|
25
|
Wang H, Song H, Yang Y, Cao Q, Hu Y, Chen J, Guo J, Wang Y, Jia D, Cao S, Zhou Q. Three-dimensional printing for cardiovascular diseases: from anatomical modeling to dynamic functionality. Biomed Eng Online 2020; 19:76. [PMID: 33028306 PMCID: PMC7542711 DOI: 10.1186/s12938-020-00822-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing is widely used in medicine. Most research remains focused on forming rigid anatomical models, but moving from static models to dynamic functionality could greatly aid preoperative surgical planning. This work reviews literature on dynamic 3D heart models made of flexible materials for use with a mock circulatory system. Such models allow simulation of surgical procedures under mock physiological conditions, and are; therefore, potentially very useful to clinical practice. For example, anatomical models of mitral regurgitation could provide a better display of lesion area, while dynamic 3D models could further simulate in vitro hemodynamics. Dynamic 3D models could also be used in setting standards for certain parameters for function evaluation, such as flow reserve fraction in coronary heart disease. As a bridge between medical image and clinical aid, 3D printing is now gradually changing the traditional pattern of diagnosis and treatment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongning Song
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanting Yang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yugang Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinling Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juan Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yijia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Jia
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
26
|
Ali A, Ballard DH, Althobaity W, Christensen A, Geritano M, Ho M, Liacouras P, Matsumoto J, Morris J, Ryan J, Shorti R, Wake N, Rybicki FJ, Sheikh A. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: adult cardiac conditions. 3D Print Med 2020; 6:24. [PMID: 32965536 PMCID: PMC7510265 DOI: 10.1186/s41205-020-00078-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Medical 3D printing as a component of care for adults with cardiovascular diseases has expanded dramatically. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness criteria for adult cardiac 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with a number of adult cardiac indications, physiologic, and pathologic processes. Each study was vetted by the authors and graded according to published guidelines. RESULTS Evidence-based appropriateness guidelines are provided for the following areas in adult cardiac care; cardiac fundamentals, perioperative and intraoperative care, coronary disease and ischemic heart disease, complications of myocardial infarction, valve disease, cardiac arrhythmias, cardiac neoplasm, cardiac transplant and mechanical circulatory support, heart failure, preventative cardiology, cardiac and pericardial disease and cardiac trauma. CONCLUSIONS Adoption of common clinical standards regarding appropriate use, information and material management, and quality control are needed to ensure the greatest possible clinical benefit from 3D printing. This consensus guideline document, created by the members of the RSNA 3D printing Special Interest Group, will provide a reference for clinical standards of 3D printing for adult cardiac indications.
Collapse
Affiliation(s)
- Arafat Ali
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Waleed Althobaity
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Michelle Ho
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Jane Matsumoto
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Justin Ryan
- Rady Children's Hospital, San Diego, CA, USA
| | - Rami Shorti
- Intermountain Healthcare, South Jordan, UT, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
27
|
Accelerating the future of cardiac CT: Social media as sine qua non? J Cardiovasc Comput Tomogr 2020; 14:382-385. [DOI: 10.1016/j.jcct.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
|
28
|
Prathumwan R, Subannajui K. Fabrication of a ceramic/metal (Al 2O 3/Al) composite by 3D printing as an advanced refractory with enhanced electrical conductivity. RSC Adv 2020; 10:32301-32308. [PMID: 35516498 PMCID: PMC9056607 DOI: 10.1039/d0ra01515f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/07/2020] [Indexed: 01/02/2023] Open
Abstract
Fused deposition modelling (3D) printing is used extensively in modern fabrication processes. Although the technique was designed for polymer printing, it can now be applied in advanced ceramic research. An alumina/aluminum (Al2O3/Al) composite refractory can be fabricated by mixing metallic aluminum in a polymer to form an Al/polymer composite filament. The filament can be printed via a regular thermoplastic material extrusion printer with no machine modification. In this study, Al/polymer composite samples were printed in a crucible shape and sintered at different temperatures to form Al2O3/Al composite refractory specimens. The sintered samples were examined via several analytical techniques such as scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, compressive testing, hardness testing, XPS, and Hall measurement. Unlike other ceramic printing techniques that require expensive 3D printing machines and a very high temperature furnace (above 1500 °C) for post processing, this study demonstrates the viability of fabricating refractory items using a cost-effective fused deposition modelling 3D printer and a low temperature furnace (900 °C). The samples did not disintegrate at 1400 °C and were still sufficiently electrically conductive for advanced refractory applications. An Al2O3/Al composite is fabricated by the 3D printing, sintering, and calcination processes that can be used in refractory applications.![]()
Collapse
Affiliation(s)
- Rat Prathumwan
- Faculty of Science, Mahidol University 272 Rama VI Road, Ratchathewi District Bangkok 10400 Thailand
| | - Kittitat Subannajui
- Faculty of Science, Mahidol University 272 Rama VI Road, Ratchathewi District Bangkok 10400 Thailand
| |
Collapse
|
29
|
Utility of Three-Dimensional (3D) Modeling for Planning Structural Heart Interventions (with an Emphasis on Valvular Heart Disease). Curr Cardiol Rep 2020; 22:125. [PMID: 32789652 DOI: 10.1007/s11886-020-01354-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Advanced imaging has played a vital role in the contemporary, rapid rise of structural heart interventions. 3D modeling and printing has emerged as one of the most recent imaging tools and the implementation of 3D modeling is expected to increase with further advances in imaging, print hardware, and materials. RECENT FINDINGS 3D modeling can be used to educate patients and clinical teams, provide ex vivo procedural simulation, and improve outcomes. Intra-procedural success rates may be improved, and post-procedural complications can be predicted more robustly with appropriate application of 3D modeling. Recent advances in technology have increased the availability of this tool, such that there can be more ready adoption into a routine clinical workflow. Familiarity with 3D modeling and its current utilization and role in structural interventions will help inform how to approach and adapt this exciting new technology.
Collapse
|
30
|
Haghiashtiani G, Qiu K, Zhingre Sanchez JD, Fuenning ZJ, Nair P, Ahlberg SE, Iaizzo PA, McAlpine MC. 3D printed patient-specific aortic root models with internal sensors for minimally invasive applications. SCIENCE ADVANCES 2020; 6:eabb4641. [PMID: 32923641 PMCID: PMC7455187 DOI: 10.1126/sciadv.abb4641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Minimally invasive surgeries have numerous advantages, yet complications may arise from limited knowledge about the anatomical site targeted for the delivery of therapy. Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure for treating aortic stenosis. Here, we demonstrate multimaterial three-dimensional printing of patient-specific soft aortic root models with internally integrated electronic sensor arrays that can augment testing for TAVR preprocedural planning. We evaluated the efficacies of the models by comparing their geometric fidelities with postoperative data from patients, as well as their in vitro hemodynamic performances in cases with and without leaflet calcifications. Furthermore, we demonstrated that internal sensor arrays can facilitate the optimization of bioprosthetic valve selections and in vitro placements via mapping of the pressures applied on the critical regions of the aortic anatomies. These models may pave exciting avenues for mitigating the risks of postoperative complications and facilitating the development of next-generation medical devices.
Collapse
Affiliation(s)
- Ghazaleh Haghiashtiani
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaiyan Qiu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jorge D. Zhingre Sanchez
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J. Fuenning
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Paul A. Iaizzo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Wang C, Zhang L, Qin T, Xi Z, Sun L, Wu H, Li D. 3D printing in adult cardiovascular surgery and interventions: a systematic review. J Thorac Dis 2020; 12:3227-3237. [PMID: 32642244 PMCID: PMC7330795 DOI: 10.21037/jtd-20-455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
3D printing in adult cardiac and vascular surgery has been evaluated over the last 10 years, and all of the available literature reports benefits from the use of 3D models. In the present study, we analyzed the current applications of 3D printing for adult cardiovascular disease treated with surgical or catheter-based interventions, including the clinical medical simulation of physiological or pathology conducted with 3D printing in this field. A search of PubMed and MEDLINE databases were supplemented by searching through bibliographies of key articles. Thereafter, data on demographic, clinical scenarios and application, imaging modality, purposes of using with 3D printing, outcomes and follow-up were extracted. A total of 43 articles were deemed eligible and included. 296 patients (mean age: 65.4±14.2 years; male, 58.2%) received 3D printing for cardiac and vascular surgery or conditions [percutaneous left atrial appendage occlusion (LAAO), TAVR, mitral valve disease, aortic valve replacement, coronary artery abnormality, HOCM, aortic aneurysm and aortic dissection, Kommerell's diverticulum, primary cardiac tumor and ventricular aneurysm]. Eight papers reported the utility of 3D printing in the medical simulator and training fields. Most studies were conducted starting in 2014. Twenty-six was case report. The major scenario used with 3D printing technology was LAAO (50.3%) and followed by TAVR (17.6%). CT and echocardiography were two main imaging techniques that were used to generate 3D-printed heart models. All studies showed that 3D-printed models were helpful for preoperative planning, orientation, and medical teaching. The important finding is that 3D printing provides a unique patient-specific method to assess complex anatomy and is helpful for intraoperative orientation, decision-making, creating functional models, and teaching adult cardiac and vascular surgery, including catheter-based heart surgery.
Collapse
Affiliation(s)
- Changtian Wang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Tao Qin
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Zhilong Xi
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Sun
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Haiwei Wu
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Demin Li
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| |
Collapse
|
32
|
Gatti M, Cosentino A, Cura Stura E, Bergamasco L, Garabello D, Pennisi G, Puppo M, Salizzoni S, Veglia S, Davini O, Rinaldi M, Fonio P, Faletti R. Accuracy of cardiac magnetic resonance generated 3D models of the aortic annulus compared to cardiovascular computed tomography generated 3D models. Int J Cardiovasc Imaging 2020; 36:2007-2015. [PMID: 32472299 DOI: 10.1007/s10554-020-01902-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
To evaluate the accuracy of 3D models of the aortic-root generated from non-contrast cardiac magnetic resonance (CMR). Data were retrospectively collected from 30 consecutive patients who underwent surgical aortic valve replacement and had available records of both intra-operative assessment and pre-surgery annulus assessment by cardiovascular computed tomography (CCT) and CMR. The 3D models were independently segmented, modelled and printed by two blinded "manufacturers". The measurements on the models were carried out by two cardiac surgeons with Hegar dilator. Data were analyzed with non-parametric tests. There was no significant intra- or inter-observer variability (p ≥ 0.13). The agreement between the diameter of the 3D model derived from CMR images and either the anatomical reference of the intraoperative measurement (p = 0.10, r = 0.97) or the radiological reference of the 3D model generated from CCT (p = 0.71, r = 0.92) was very good. The process of segmentation plus the post-processing was about 17 ± 2 min for a model created by CMR, significantly higher than a model created from CCT (7 ± 2 min; p < 0.001). The printing time for a single model did not differ between the two modalities (p = 0.61) and was less than 60 min. The cost for a single model was approximately 0.5 €. 3D models generated from non-contrast CMR performed well when compared to the anatomical reference standard and are comparable to the pair CCT derived models.
Collapse
Affiliation(s)
- Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy.
| | - Aurelio Cosentino
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| | - Erik Cura Stura
- Division of Cardiac Surgery, Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Laura Bergamasco
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Domenica Garabello
- Department of Radiodiagnostic, S.C. Radiodiagnostica Ospedaliera, Torino, Italy
| | - Giovanni Pennisi
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Mattia Puppo
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| | - Stefano Salizzoni
- Division of Cardiac Surgery, Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Simona Veglia
- Department of Radiodiagnostic, S.C. Radiodiagnostica Ospedaliera, Torino, Italy
| | - Ottavio Davini
- Department of Radiodiagnostic, S.C. Radiodiagnostica Ospedaliera, Torino, Italy
| | - Mauro Rinaldi
- Division of Cardiac Surgery, Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| |
Collapse
|
33
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Jiménez Restrepo A, Chahal D, Gupta A. Roadmap to Success: 3D Printing in Pre-Procedural Planning. JACC Case Rep 2020; 2:358-360. [PMID: 34317242 PMCID: PMC8311681 DOI: 10.1016/j.jaccas.2020.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Diljon Chahal
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anuj Gupta
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Choi JW, van Rosendael AR, Bax AM, van den Hoogen IJ, Gianni U, Baskaran L, Andreini D, De Cecco CN, Earls J, Ferencik M, Hecht H, Leipsic JA, Maurovich-Horvat P, Nicol E, Pontone G, Raman S, Schoenhagen P, Arbab-Zadeh A, Choi AD, Feuchtner G, Weir-McCall J, Chinnaiyan K, Whelton S, Min JK, Villines TC, Al’Aref SJ. The Journal of Cardiovascular Computed Tomography year in review – 2019. J Cardiovasc Comput Tomogr 2020; 14:107-117. [DOI: 10.1016/j.jcct.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
|
36
|
Levin D, Mackensen GB, Reisman M, McCabe JM, Dvir D, Ripley B. 3D Printing Applications for Transcatheter Aortic Valve Replacement. Curr Cardiol Rep 2020; 22:23. [PMID: 32067112 DOI: 10.1007/s11886-020-1276-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW A combination of evolving 3D printing technologies, new 3D printable materials, and multi-disciplinary collaborations have made 3D printing applications for transcatheter aortic valve replacement (TAVR) a promising tool to promote innovation, increase procedural success, and provide a compelling educational tool. This review synthesizes the knowledge via publications and our group's experience in this area that exemplify uses of 3D printing for TAVR. RECENT FINDINGS Patient-specific 3D-printed models have been used for TAVR pre-procedural device sizing, benchtop prediction of procedural complications, planning for valve-in-valve and bicuspid aortic valve procedures, and more. Recent publications also demonstrate how 3D printing can be used to test assumptions about why certain complications occur during THV implantation. Finally, new materials and combinations of existing materials are starting to bridge the large divide between current 3D material and cardiac tissue properties. Several studies have demonstrated the utility of 3D printing in understanding challenges of TAVR. Innovative approaches to benchtop testing and multi-material printing have brought us closer to being able to predict how a THV will interact with a specific patient's aortic anatomy. This work to date is likely to open the door for advancements in other areas of structural heart disease, such as interventions involving the mitral valve, tricuspid valve, and left atrial appendage.
Collapse
Affiliation(s)
- Dmitry Levin
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - G Burkhard Mackensen
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Mark Reisman
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James M McCabe
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Danny Dvir
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Beth Ripley
- Department of Radiology, University of Washington, Seattle, WA, USA. .,Department of Radiology, VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|
37
|
Whitaker J, Neji R, Byrne N, Puyol-Antón E, Mukherjee RK, Williams SE, Chubb H, O’Neill L, Razeghi O, Connolly A, Rhode K, Niederer S, King A, Tschabrunn C, Anter E, Nezafat R, Bishop MJ, O’Neill M, Razavi R, Roujol S. Improved co-registration of ex-vivo and in-vivo cardiovascular magnetic resonance images using heart-specific flexible 3D printed acrylic scaffold combined with non-rigid registration. J Cardiovasc Magn Reson 2019; 21:62. [PMID: 31597563 PMCID: PMC6785908 DOI: 10.1186/s12968-019-0574-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 09/02/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ex-vivo cardiovascular magnetic resonance (CMR) imaging has played an important role in the validation of in-vivo CMR characterization of pathological processes. However, comparison between in-vivo and ex-vivo imaging remains challenging due to shape changes occurring between the two states, which may be non-uniform across the diseased heart. A novel two-step process to facilitate registration between ex-vivo and in-vivo CMR was developed and evaluated in a porcine model of chronic myocardial infarction (MI). METHODS Seven weeks after ischemia-reperfusion MI, 12 swine underwent in-vivo CMR imaging with late gadolinium enhancement followed by ex-vivo CMR 1 week later. Five animals comprised the control group, in which ex-vivo imaging was undertaken without any support in the LV cavity, 7 animals comprised the experimental group, in which a two-step registration optimization process was undertaken. The first step involved a heart specific flexible 3D printed scaffold generated from in-vivo CMR, which was used to maintain left ventricular (LV) shape during ex-vivo imaging. In the second step, a non-rigid co-registration algorithm was applied to align in-vivo and ex-vivo data. Tissue dimension changes between in-vivo and ex-vivo imaging were compared between the experimental and control group. In the experimental group, tissue compartment volumes and thickness were compared between in-vivo and ex-vivo data before and after non-rigid registration. The effectiveness of the alignment was assessed quantitatively using the DICE similarity coefficient. RESULTS LV cavity volume changed more in the control group (ratio of cavity volume between ex-vivo and in-vivo imaging in control and experimental group 0.14 vs 0.56, p < 0.0001) and there was a significantly greater change in the short axis dimensions in the control group (ratio of short axis dimensions in control and experimental group 0.38 vs 0.79, p < 0.001). In the experimental group, prior to non-rigid co-registration the LV cavity contracted isotropically in the ex-vivo condition by less than 20% in each dimension. There was a significant proportional change in tissue thickness in the healthy myocardium (change = 29 ± 21%), but not in dense scar (change = - 2 ± 2%, p = 0.034). Following the non-rigid co-registration step of the process, the DICE similarity coefficients for the myocardium, LV cavity and scar were 0.93 (±0.02), 0.89 (±0.01) and 0.77 (±0.07) respectively and the myocardial tissue and LV cavity volumes had a ratio of 1.03 and 1.00 respectively. CONCLUSIONS The pattern of the morphological changes seen between the in-vivo and the ex-vivo LV differs between scar and healthy myocardium. A 3D printed flexible scaffold based on the in-vivo shape of the LV cavity is an effective strategy to minimize morphological changes in the ex-vivo LV. The subsequent non-rigid registration step further improved the co-registration and local comparison between in-vivo and ex-vivo data.
Collapse
Affiliation(s)
- John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
- Siemens Healthcare Limited, Frimley, UK
| | - Nicholas Byrne
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
- Medical Physics, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Esther Puyol-Antón
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Steven E. Williams
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Henry Chubb
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Louisa O’Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Orod Razeghi
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Adam Connolly
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Kawal Rhode
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Andrew King
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Cory Tschabrunn
- Cardiology Department, University of Pennsylvania, Philadelphia, PA USA
| | - Elad Anter
- Cardiology Department, Beth Israel Deaconess Medical Centre / Harvard Medical School, Boston, MA USA
| | - Reza Nezafat
- Cardiology Department, Beth Israel Deaconess Medical Centre / Harvard Medical School, Boston, MA USA
| | - Martin J. Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Mark O’Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| |
Collapse
|
38
|
Fan Y, Wong RHL, Lee APW. Three-dimensional printing in structural heart disease and intervention. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:579. [PMID: 31807560 DOI: 10.21037/atm.2019.09.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) printing refers to the process by which physical objects are built by depositing materials in layers based on a specific digital design. It was initially used in manufacture industry. Inspired by the technology, clinicians have recently attempted to integrate 3D printing into medical applications. One of the medical specialties that has recently made such attempt is cardiology, especially in the field of structural heart disease (SHD). SHD refers to a group of non-coronary cardiovascular disorders and related interventions. Obvious examples are aortic stenosis, mitral regurgitation, atrial septal defect, and known or potential left atrial appendage (LAA) clots. In the last decade, cardiologists have witnessed a dramatic increase in the types and complexity of catheter-based interventions for SHD. Current imaging modalities have important limitations in accurate delineation of cardiac anatomies necessary for SHD interventions. Application of 3D printing in SHD interventional planning enables tangible appreciation of cardiac anatomy and allows in vitro interventional device testing. 3D printing is used in diagnostic workup, guidance of treatment strategies, and procedural simulation, facilitating hemodynamic research, enhancing interventional training, and promoting patient-clinician communication. In this review, we attempt to define the concept, technique, and work flow of 3D printing in SHD and its interventions, highlighting the reported clinical benefits and unsolved issues, as well as exploring future developments in this field.
Collapse
Affiliation(s)
- Yiting Fan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Randolph H L Wong
- Division of Cardiothoracic Surgery, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex Pui-Wai Lee
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Lenihan M, Vegas A, Buys M, Mashari A, Feindel C, Djaiani G. Re: "Bicuspid Aortic Valve Associated Aortopathy: A Primer for Cardiac Anaesthesiologists". J Cardiothorac Vasc Anesth 2019; 34:325-334. [PMID: 31451372 DOI: 10.1053/j.jvca.2019.07.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Lenihan
- Department of Anesthesia & Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Annette Vegas
- Department of Anesthesia & Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Mathilde Buys
- Department of Anesthesia & Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Azad Mashari
- Department of Anesthesia & Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Christopher Feindel
- Department of Anesthesia & Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - George Djaiani
- Department of Anesthesia & Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Pantelic M, Pantelic M, Pietila T, Rollet M, Myers E, Song T, O’Neill WW, Wang DD. Using 3D-Printed Models to Advance Clinical Care. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2019. [DOI: 10.15212/cvia.2019.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Odeh M, Levin D, Inziello J, Lobo Fenoglietto F, Mathur M, Hermsen J, Stubbs J, Ripley B. Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example. 3D Print Med 2019; 5:6. [PMID: 30923948 PMCID: PMC6743141 DOI: 10.1186/s41205-019-0043-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background Medical 3D printing has brought the manufacturing world closer to the patient’s bedside than ever before. This requires hospitals and their personnel to update their quality assurance program to more appropriately accommodate the 3D printing fabrication process and the challenges that come along with it. Results In this paper, we explored different methods for verifying the accuracy of a 3D printed anatomical model. Methods included physical measurements, digital photographic measurements, surface scanning, photogrammetry, and computed tomography (CT) scans. The details of each verification method, as well as their benefits and challenges, are discussed. Conclusion There are multiple methods for model verification, each with benefits and drawbacks. The choice of which method to adopt into a quality assurance program is multifactorial and will depend on the type of 3D printed models being created, the training of personnel, and what resources are available within a 3D printed laboratory.
Collapse
Affiliation(s)
- Mohammad Odeh
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA
| | - Dmitry Levin
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jim Inziello
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA
| | | | - Moses Mathur
- Structural Interventional Cardiology, Virginia Mason Hospital, Edmonds, WA, USA
| | - Joshua Hermsen
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Jack Stubbs
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA
| | - Beth Ripley
- VA Puget Sound Health Care System, Seattle, WA, USA. .,Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
42
|
The Role of 3D Printing in Medical Applications: A State of the Art. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:5340616. [PMID: 31019667 PMCID: PMC6451800 DOI: 10.1155/2019/5340616] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing refers to a number of manufacturing technologies that generate a physical model from digital information. Medical 3D printing was once an ambitious pipe dream. However, time and investment made it real. Nowadays, the 3D printing technology represents a big opportunity to help pharmaceutical and medical companies to create more specific drugs, enabling a rapid production of medical implants, and changing the way that doctors and surgeons plan procedures. Patient-specific 3D-printed anatomical models are becoming increasingly useful tools in today's practice of precision medicine and for personalized treatments. In the future, 3D-printed implantable organs will probably be available, reducing the waiting lists and increasing the number of lives saved. Additive manufacturing for healthcare is still very much a work in progress, but it is already applied in many different ways in medical field that, already reeling under immense pressure with regards to optimal performance and reduced costs, will stand to gain unprecedented benefits from this good-as-gold technology. The goal of this analysis is to demonstrate by a deep research of the 3D-printing applications in medical field the usefulness and drawbacks and how powerful technology it is.
Collapse
|