1
|
Liechty J, Wuyts S. 'If I had a hedge fund, I would cure diabetes': endogenous mechanisms for creating public goods. SN BUSINESS & ECONOMICS 2021; 1:120. [PMID: 34778817 PMCID: PMC8419655 DOI: 10.1007/s43546-021-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
We consider the problem of organizing capital to produce public goods with broad societal value. We review why market corrections via government subsidies or philanthropic initiatives are inadequate, in addition to considering the paradox of patents. Our proposed mechanism (an Ever-growing Prize and a Patent Repository) directs capital towards two innovation problems routinely overlooked: (1) problems for which the reward is insufficient even with established mechanisms (e.g. patents or academic prestige), and (2) problems for which the reward is large, but the effort risk is incalculable. The proposed hedge fund mechanism facilitates crowdsourcing, addressing the challenge of determining problems with broad societal interest; the ever-growing prize allows for an emergent rather than predetermined reward; the patent repository turns private intellectual property into a public good for target problems while circumventing the inventors' threat of patent expiration. We guide this discussion by considering two problems: treating Cystic Fibrosis and curing Diabetes.
Collapse
Affiliation(s)
- John Liechty
- Department of Marketing, Smeal College of Business, Pennsylvania State University, Business Building, University Park, PA 16802 USA
| | - Stefan Wuyts
- Department of Marketing, Smeal College of Business, Pennsylvania State University, Business Building, University Park, PA 16802 USA
| |
Collapse
|
2
|
Oral Glutathione and Growth in Cystic Fibrosis: A Multicenter, Randomized, Placebo-controlled, Double-blind Trial. J Pediatr Gastroenterol Nutr 2020; 71:771-777. [PMID: 32960827 PMCID: PMC8220910 DOI: 10.1097/mpg.0000000000002948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The nutritional status of children with cystic fibrosis (CF) is associated with mortality and morbidity. Intestinal inflammation may contribute to impaired digestion, absorption, and nutrient utilization in patients with CF and oral glutathione may reduce inflammation, promoting improved nutritional status in patients with CF. METHODS The GROW study was a prospective, multicenter, randomized, placebo-controlled, double-blind, phase II clinical trial in pancreatic insufficient patients with CF between the ages of 2 and 10 years. Patients received reduced glutathione or placebo orally daily for 24 weeks. The primary endpoint was the difference in change in weight-for-age z-scores from baseline through week 24 between treatment groups. Secondary endpoints included other anthropometrics, serum, and fecal inflammatory markers in addition to other clinical outcomes. RESULTS Fifty-eight participants completed the study. No significant differences were seen between glutathione (n = 30) and placebo (n = 28) groups in the 6-month change in weight-for-age z-score (-0.08; 95% CI: -0.22 to 0.06; P = 0.25); absolute change in weight (kg) (-0.18; 95% CI: -0.55 to 0.20; P = 0.35); or absolute change in BMI kg/m (-0.06; 95% CI: -0.37 to 0.25; P = 0.69). There were no significant differences in other secondary endpoints. Overall, glutathione was safe and well tolerated. CONCLUSIONS Oral glutathione supplementation did not impact growth or change serum or fecal inflammatory markers in pancreatic insufficient children with CF when compared with placebo.
Collapse
|
3
|
Shi X, Gao Z, Lin Q, Zhao L, Ma Q, Kang Y, Yu J. Meta-analysis Reveals Potential Influence of Oxidative Stress on the Airway Microbiomes of Cystic Fibrosis Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:590-602. [PMID: 32171662 PMCID: PMC7212475 DOI: 10.1016/j.gpb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
The lethal chronic airway infection of the cystic fibrosis (CF) patients is predisposed by colonization of specific CF-philic pathogens or the CF microbiomes, but key processes and reasons of the microbiome settlement in the patients are yet to be fully understood, especially their survival and metabolic dynamics from normal to diseased status under treatment. Here, we report our meta-analysis results on CF airway microbiomes based on metabolic networks reconstructed from genome information at species level. The microbiomes of CF patients appear to engage much more redox-related activities than those of controls, and by constructing a large dataset of anti-oxidative stress (anti-OS) genes, our quantitative evaluation of the anti-OS capacity of each bacterial species in the CF microbiomes confirms strong conservation of the anti-OS responses within genera and also shows that the CF pathogens have significantly higher anti-OS capacity than commensals and other typical respiratory pathogens. In addition, the anti-OS capacity of a relevant species correlates with its relative fitness for the airways of CF patients over that for the airways of controls. Moreover, the total anti-OS capacity of the respiratory microbiome of CF patients is collectively higher than that of controls, which increases with disease progression, especially after episodes of acute exacerbation and antibiotic treatment. According to these results, we propose that the increased OS in the airways of CF patients may play an important role in reshaping airway microbiomes to a more resistant status that favors the pre-infection colonization of the CF pathogens for a higher anti-OS capacity.
Collapse
Affiliation(s)
- Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science and Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
4
|
Lights and Shadows in the Use of Mesenchymal Stem Cells in Lung Inflammation, a Poorly Investigated Topic in Cystic Fibrosis. Cells 2019; 9:cells9010020. [PMID: 31861724 PMCID: PMC7016730 DOI: 10.3390/cells9010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic stem cells residing in many tissues, including the lung. MSCs have long been regarded as a promising tool for cell-based therapy because of their ability to replace damaged tissue by differentiating into the resident cell and repopulating the injured area. Their ability to release soluble factors and extracellular vesicles has emerged as crucial in the resolution of inflammation and injury. There is a growing literature on the use of MSCs and MSC secretome to hamper inflammation in different lung pathologies, including: asthma, pneumonia, acute lung injury (ALI), pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). However, their potential therapeutic role in the context of Cystic Fibrosis (CF) lung inflammation is still not fully characterized. CF morbidity and mortality are mainly due to progressive lung dysfunction. Lung inflammation is a chronic and unresolved condition that triggers progressive tissue damage. Thus, it becomes even more important to develop innovative immunomodulatory therapies aside from classic anti-inflammatory agents. Here, we address the main features of CF and the implications in lung inflammation. We then review how MSCs and MSC secretome participate in attenuating inflammation in pulmonary pathologies, emphasizing the significant potential of MSCs as new therapeutic approach in CF.
Collapse
|
5
|
Zhao J, Huang W, Zhang S, Xu J, Xue W, He B, Zhang Y. Efficacy of Glutathione for Patients With Cystic Fibrosis: A Meta-analysis of Randomized-Controlled Studies. Am J Rhinol Allergy 2019; 34:115-121. [PMID: 31550169 DOI: 10.1177/1945892419878315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction The impact of glutathione on pulmonary function remains elusive for patients with cystic fibrosis. The aim of this systematic review and meta-analysis is to explore the influence of glutathione versus placebo on pulmonary function of cystic fibrosis. Methods We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through May 2019, and randomized-controlled trials (RCTs) regarding the effect of glutathione on pulmonary function of cystic fibrosis are included in this meta-analysis. Results Four RCTs are included. Compared with control group in patients with cystic fibrosis, glutathione treatment shows positive impact on forced expiratory volume 1 second (FEV1) (mean difference [MD] = 0.19; 95% confidence interval (CI), 0.10–0.28; P < .0001) and body mass index (MD = 0.27; 95% CI, 0.02–0.51; P = .03), but has no obvious influence on 6-minute walk test (standard MD = 0.28; 95% CI, −0.08 to 0.64; P = .13), number of exacerbations (MD = −0.10; 95% CI, −0.34 to 0.15; P = .43), abdominal pain or distal intestinal obstruction (risk ratios [RR] = 0.78; 95% CI, 0.32–1.90; P = .58), or hemoptysis (RR = 1.87; 95% CI, 0.43–8.26; P = .41). Conclusions Glutathione treatment provides some benefits to improve pulmonary function of patients with cystic fibrosis, as evidenced by the increase in FEV1.
Collapse
Affiliation(s)
- Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin He
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Dickerhof N, Pearson JF, Hoskin TS, Berry LJ, Turner R, Sly PD, Kettle AJ. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic Biol Med 2017; 113:236-243. [PMID: 28982600 DOI: 10.1016/j.freeradbiomed.2017.09.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Abstract
Neutrophil-derived myeloperoxidase (MPO) is recognized as a major source of oxidative stress at the airway surface of a cystic fibrosis (CF) lung where, despite limited evidence, the antioxidant glutathione is widely considered to be low. The aims of this study were to establish whether oxidative stress or glutathione status are associated with bronchiectasis and whether glutathione deficiency is inherently linked to CF or a consequence of oxidative stress. MPO was measured by ELISA in 577 bronchoalveolar lavage samples from 205 clinically-phenotyped infants and children with CF and 58 children without CF (ages 0.2-6.92 years). Reduced glutathione (GSH), oxidized glutathione species (GSSG; glutathione attached to proteins, GSSP; glutathione sulfonamide, GSA) and allantoin, an oxidation product of uric acid, were measured by mass spectrometry. The odds of having bronchiectasis were associated with MPO and GSSP. GSH was low in children with CF irrespective of oxidation. Oxidized glutathione species were significantly elevated in CF children with pulmonary infections compared to uninfected CF children. In non-CF children, infections had no effect on glutathione levels. An inadequate antioxidant response to neutrophil-mediated oxidative stress during infections exists in CF due to an inherent glutathione deficiency. Effective delivery of glutathione and inhibition of MPO may slow the development of bronchiectasis.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Teagan S Hoskin
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Luke J Berry
- Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | | |
Collapse
|
7
|
Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 2016; 106:223-241. [PMID: 26921819 DOI: 10.1016/j.addr.2016.02.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/12/2023]
Abstract
The development of oral dosage forms that allows absorption of therapeutic peptides to the systemic circulation is one of the greatest challenges for the pharmaceutical industry. Currently, a number of technologies including either mixtures of penetration enhancers or protease inhibitors and/or nanotechnology-based products are under clinical development. Typically, these formulations are presented in the form of enteric-coated tablets or capsules. Systems undergoing preclinical investigation include further advances in nanotechnology, including intestinal microneedle patches, as well as their combination with regional delivery to the colon. This review critically examines four selected promising oral peptide technologies at preclinical stage and the twelve that have progressed to clinical trials, as indicated in www.clinicaltrials.gov. We examined these technologies under the criteria of peptide selection, formulation design, system components and excipients, intestinal mechanism of action, efficacy in man, and safety issues. The conclusion is that most of the technologies in clinical trials are incremental rather than paradigm-shifting and that even the more clinically advanced oral peptide drugs examples of oral bioavailability appear to yield oral bioavailability values of only 1-2% and are, therefore, only currently suitable for a limited range of peptides.
Collapse
Affiliation(s)
- T A S Aguirre
- Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - D Teijeiro-Osorio
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Rosa
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - I S Coulter
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - M J Alonso
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - D J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, Hong JS, Pollard HB, Guggino WB, Balch WE, Skach WR, Cutting GR, Frizzell RA, Sheppard DN, Cyr DM, Sorscher EJ, Brodsky JL, Lukacs GL. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 2016; 27:424-33. [PMID: 26823392 PMCID: PMC4751594 DOI: 10.1091/mbc.e14-04-0935] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients.
Collapse
Affiliation(s)
- Gudio Veit
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Radu G Avramescu
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Annette N Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Scott A Houck
- Marsico Lung Institute, School of Medicine, University of North Carolina, Chapel Hill, NC 27514
| | - Zhiwei Cai
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kathryn W Peters
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jeong S Hong
- Department of Cellular, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL 35294
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics and Center for Medical Proteomics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - William B Guggino
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205
| | - William E Balch
- Department of Chemical Physiology, Skaggs Institute of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - William R Skach
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Raymond A Frizzell
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - David N Sheppard
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Douglas M Cyr
- Marsico Lung Institute, School of Medicine, University of North Carolina, Chapel Hill, NC 27514
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada GRASP, McGill University, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
9
|
Fabiano A, Gavilanes AW, Zimmermann LJ, Kramer BW, Paolillo P, Livolti G, Picone S, Bressan K, Gazzolo D. The development of lung biochemical monitoring can play a key role in the early prediction of bronchopulmonary dysplasia. Acta Paediatr 2016; 105:535-41. [PMID: 26439807 DOI: 10.1111/apa.13233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/18/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
AIM Despite advances in perinatal management, there is a flat trend in incidences of respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in preterm infants. The main feature of BPD development in preterm infants is an imbalance between increased exposure to free radicals and inadequate antioxidant defences. We investigated the associations between BPD and lipid hydro-peroxide (LOOH) and glutathione (GSH) concentrations in bronchoalveolar lavage fluid (BALF). METHODS In this prospective study, BALF samples were collected from 44 preterm infants with RDS and oxidative stress markers were measured in 11 with BPD and 33 controls without BPD. RESULTS LOOH levels were significantly higher (p < 0.01) in the BPD group (median 16.35; 25th-75th centile 13.75-17.05 nmol/mL) than in the no BPD group (median 13.18; 25th-75th centile 12.92-13.63 nmol/mL). Conversely, GSH levels were significantly lower in the BPD group (p < 0.01) (median 11.52; 25th-75th centile 6.95-13.85 μmol/mg) than the no BPD group (median: 18.69; 25th-75th centile: 13.89-23.64 μmol/mg). Multiple regression analysis showed significant correlations between BPD and mechanical ventilation time (p < 0.01) and LOOH levels (p < 0.05). CONCLUSION Early LOOH level increases in preterm infants developing BPD suggest that lung biochemical monitoring of sick infants might be possible and BPD could be predicted early by evaluating biomarkers.
Collapse
Affiliation(s)
- Adele Fabiano
- Department of Maternal, Fetal and Neonatal Medicine; NICU; Casilino Hospital; Rome Italy
| | - Antonio W.D. Gavilanes
- Department of Pediatrics and Neonatology; School for Oncology and Developmental Biology; Maastricht University Medical Center; Maastricht The Netherlands
| | - Luc J.I. Zimmermann
- Department of Pediatrics and Neonatology; School for Oncology and Developmental Biology; Maastricht University Medical Center; Maastricht The Netherlands
| | - Boris W. Kramer
- Department of Pediatrics and Neonatology; School for Oncology and Developmental Biology; Maastricht University Medical Center; Maastricht The Netherlands
| | - Piermichele Paolillo
- Department of Maternal, Fetal and Neonatal Medicine; NICU; Casilino Hospital; Rome Italy
| | - Giovanni Livolti
- Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Simonetta Picone
- Department of Maternal, Fetal and Neonatal Medicine; NICU; Casilino Hospital; Rome Italy
| | - Katia Bressan
- Department of Maternal, Fetal and Neonatal Medicine; NICU; Casilino Hospital; Rome Italy
| | - Diego Gazzolo
- Department of Maternal, Fetal and Neonatal Medicine; C. Arrigo Children's Hospital; Alessandria Italy
| |
Collapse
|
10
|
Abstract
BACKGROUND AND OBJECTIVE Consensus nutritional guidelines for patients with cystic fibrosis (CF) recommend aggressive treatment of growth failure. Oral reduced glutathione (GSH) has been shown to improve cachexia and case reports have demonstrated improved growth in pediatric patients with CF. No controlled studies using oral GSH in CF have, however, been reported. The aim of the study was to determine whether oral GSH could improve growth in CF. Secondarily, to determine whether oral GSH could improve other systemic clinical markers. METHODS We performed a placebo-controlled, randomized, double-blind, repeated-measures clinical trial in 44 pediatric patients with CF ages 18 months to 10 years. Primary outcomes were change in weight percentile, body mass index (BMI) percentile, height percentile, and fecal calprotectin. Secondary outcomes included liver function tests and measures of systemic inflammation. Each participant was studied for 6 months, with data obtained at baseline, 3 months, and 6 months. Blood samples were obtained on the baseline and 6-month visits. Subjects were treated with oral GSH or placebo (calcium citrate), each 65 mg · kg(-1) · day(-1) divided into 3 doses per day at mealtimes, and administered daily for 6 months. RESULTS The GSH treatment group gained an average of 0.67 standard deviation (SD) in weight-for-age-and sex z score (wfaszs), (19.1 weight percentile points) during the course of 6 months, with no adverse effects (vs placebo with an increase of 0.1 SD in wfaszs [2.1 weight percentile points], P < 0.0001). Fecal calprotectin improved, GSH -52.0 vs placebo 0.5), also BMI for GSH improved 0.69 SD BMI-adjusted-for-age-and-sex z score versus placebo 0.22 SD (BMI percentile 21.7 GSH vs 5.2 placebo), and height 0.2 SD in height-for-age-and-sex z score (hfaszs) GSH versus -0.06 SD hfaszs placebo [height percentile 7.0 GSH vs -2.6 placebo], all P < 0.0001). Secondary outcomes improved significantly, as well. CONCLUSIONS Oral reduced L-GSH significantly improves measures of growth status and gut inflammation in CF.
Collapse
|
11
|
Calabrese C, Tosco A, Abete P, Carnovale V, Basile C, Magliocca A, Quattrucci S, De Sanctis S, Alatri F, Mazzarella G, De Pietro L, Turino C, Melillo E, Buonpensiero P, Di Pasqua A, Raia V. Randomized, single blind, controlled trial of inhaled glutathione vs placebo in patients with cystic fibrosis. J Cyst Fibros 2015; 14:203-10. [DOI: 10.1016/j.jcf.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
12
|
Griese M, Kappler M, Eismann C, Ballmann M, Junge S, Rietschel E, van Koningsbruggen-Rietschel S, Staab D, Rolinck-Werninghaus C, Mellies U, Köhnlein T, Wagner T, König S, Teschler H, Heuer HE, Kopp M, Heyder S, Hammermann J, Küster P, Honer M, Mansmann U, Beck-Speier I, Hartl D, Fuchs C, Hector A. Inhalation treatment with glutathione in patients with cystic fibrosis. A randomized clinical trial. Am J Respir Crit Care Med 2013; 188:83-9. [PMID: 23631796 DOI: 10.1164/rccm.201303-0427oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Glutathione is the major antioxidant in the extracellular lining fluid of the lungs and depleted in patients with cystic fibrosis (CF). OBJECTIVES We aimed to assess glutathione delivered by inhalation as a potential treatment for CF lung disease. METHODS This randomized, double-blind, placebo-controlled trial evaluated inhaled glutathione in subjects with CF 8 years of age and older and FEV1 of 40-90% of predicted. Subjects were randomized to receive 646 mg glutathione in 4 ml (n = 73) or placebo (n = 80) via an investigational eFlow nebulizer every 12 hours for 6 months. MEASUREMENTS AND MAIN RESULTS FEV1 (absolute values), both as pre-post differences (P = 0.180) and as area under the curves (P = 0.205), were the primary efficacy endpoints, and were not different between the glutathione group and the placebo group over the 6-month treatment period. Exploratory analysis showed an increase of FEV1 from baseline over placebo of 100 ml or 2.2% predicted; this was significant at 3 months, but not later. Subjects receiving glutathione had neither fewer pulmonary exacerbations, nor better scores for quality of life. Whereas increased glutathione and metabolites in sputum demonstrated significant delivery to the lungs, there was no indication of diminished oxidative stress to proteins or lipids, and no evidence for anti-inflammatory or antiproteolytic actions of glutathione supplemented to the airways. The adverse event incidence was similar between glutathione and placebo. CONCLUSIONS Inhaled glutathione in the dose administered did not demonstrate clinically relevant improvements in lung function, pulmonary exacerbation frequency, or patient-reported outcomes. Glutathione delivery to the airways was not associated with changes in markers of oxidation, proteolysis, or inflammation. Clinical trial registered with www.clinicaltrials.gov (NCT00506688) and https://eudract.ema.europa.eu/index.html (EudraCT 2005-003870-88).
Collapse
Affiliation(s)
- Matthias Griese
- Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. ScientificWorldJournal 2013; 2013:767482. [PMID: 23710148 PMCID: PMC3654247 DOI: 10.1155/2013/767482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/10/2013] [Indexed: 12/21/2022] Open
Abstract
Physicians are increasingly being asked to diagnose and treat people made ill by exposure to water-damaged environments, mold, and mycotoxins. In addition to avoidance of further exposure to these environments and to items contaminated by these environments, a number of approaches have been used to help persons affected by exposure to restore their health. Illness results from a combination of factors present in water-damaged indoor environments including, mold spores and hyphal fragments, mycotoxins, bacteria, bacterial endotoxins, and cell wall components as well as other factors. Mechanisms of illness include inflammation, oxidative stress, toxicity, infection, allergy, and irritant effects of exposure. This paper reviews the scientific literature as it relates to commonly used treatments such as glutathione, antioxidants, antifungals, and sequestering agents such as Cholestyramine, charcoal, clay and chlorella, antioxidants, probiotics, and induced sweating.
Collapse
|
14
|
Liu R, Chen H, Bai H, Zhang W, Wang X, Qin X, Zhang X, Li W, Liang X, Hai C. Suppression of nuclear factor erythroid 2-related factor 2 via extracellular signal-regulated kinase contributes to bleomycin-induced oxidative stress and fibrogenesis. Toxicol Lett 2013; 220:15-25. [PMID: 23570914 DOI: 10.1016/j.toxlet.2013.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/29/2013] [Accepted: 03/30/2013] [Indexed: 01/07/2023]
Abstract
Pulmonary fibrosis is a serious and irreversible lung injury with obscure etiologic mechanisms and no effective treatment to date. This study explored a crucial link between oxidative stress and pulmonary fibrogenesis, focusing on nuclear factor erythroid 2-related factor 2 (Nrf2), a core transcription factor in antioxidative regulation systems. Treatment of C57 BL/6 mice with bleomycin increased fibroblast viability and collagen production and significantly downregulated Nrf2. In addition, prominent oxidative stress was indicated by changes in superoxide dismutase, catalase activity, and glutathione and thiobarbituric acid-reactive substance levels. In a cell-based model, bleomycin suppressed Nrf2 activation via extracellular signal-related kinase phosphorylation, enhancing intracellular reactive oxygen species in lung fibroblasts and stimulating abnormal cell proliferation and collagen secretion. To confirm this novel mechanism of bleomycin-induced fibrogenesis, we attempted to upregulate Nrf2 and related antioxidant proteins in bleomycin-treated fibroblasts using a putative Nrf2 activator, caffeic acid phenethyl ester, and the results showed that bleomycin-induced fibroblast proliferation and collagen content were attenuated through improved redox balance. Collectively, these results disclose a potential regulatory mechanism in pulmonary fibrosis that will aid the development of new therapies.
Collapse
Affiliation(s)
- Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Extracellular glutathione decreases the ability of Burkholderia cenocepacia to penetrate into epithelial cells and to induce an inflammatory response. PLoS One 2012; 7:e47550. [PMID: 23094061 PMCID: PMC3477146 DOI: 10.1371/journal.pone.0047550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 09/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background The airway surface liquid (ASL) of Cystic Fibrosis (CF) patients contains a lower concentration of reduced glutathione (GSH) with respect to healthy people. It is not known whether this defect may favor lung colonization by opportunistic pathogens. Principal Findings We have analyzed the effects of extracellular GSH on the ability of Burkholderia cenocepacia to penetrate and multiply in epithelial respiratory cells. Extracellular GSH proved to be able to drastically reduce the pathogen ability to adhere and invade airway epithelial cells. This effect is correlated to a GSH-dependent increase in the number of free thiols on the surface of epithelial cells, suggestive of a change in the oxidoreductive status of membrane proteins involved in B. cenocepacia recognition. Moreover, treatments with GSH led to a consistent reduction of the expression of IL-8, TNF-α and IL-1β in response to B. cenocepacia infection. Conclusions and Significance Extracellular GSH modulates the interaction between B. cenocepacia and epithelial respiratory cells and inhibits the bacterial invasion into these cells. This suggests that therapies aimed at restoring normal levels of GSH in the ASL might be beneficial to control CF lung infections.
Collapse
|
16
|
Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M, Dechecchi MC, Cabrini G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:690-713. [DOI: 10.1016/j.bbadis.2011.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/07/2023]
|
17
|
Abstract
Inflammation is a major component of the vicious cycle characterizing cystic fibrosis (CF) pulmonary disease. If untreated, this inflammatory process irreversibly damages the airways, leading to bronchiectasis and ultimately respiratory failure. Anti-inflammatory drugs for CF lung disease appear to have beneficial effects on disease progression. These agents include oral corticosteroids and ibuprofen, as well as azithromycin, which, in addition to its antimicrobial effects, also possess anti-inflammatory properties. Inhaled corticosteroids, antioxidants, nutritional supplements, and protease inhibitors have a limited impact on the disease. Adverse effects limit therapy with oral corticosteroids and ibuprofen. Azithromycin appears to be safe and effective, and is thus the most promising anti-inflammatory therapy available for patients with CF. Pharmacologic therapy with anti-inflammatory agents should be started early in the disease course, before extensive irreversible lung damage has occurred. To optimize anti-inflammatory therapy, it is necessary to understand the mechanism of action of these agents in the CF lung, to determine which of these agents would provide the most benefit to patients with CF, and to determine which therapies should be initiated at what age or stage of lung disease.
Collapse
Affiliation(s)
- Tacjana Pressler
- CF Centre Copenhagen, Department of Paediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
18
|
Muller M. Glutathione modulates the toxicity of, but is not a biologically relevant reductant for, the Pseudomonas aeruginosa redox toxin pyocyanin. Free Radic Biol Med 2011; 50:971-7. [PMID: 21255639 DOI: 10.1016/j.freeradbiomed.2011.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/16/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
Pyocyanin is an important redox toxin produced by the common human pathogen Pseudomonas aeruginosa. It generates reactive oxygen species (ROS) that alter intracellular redox status and cell function. Reducing equivalents for pyocyanin are provided by intracellular NAD(P)H and, it has been reported, glutathione (GSH). Cellular GSH levels are at least 1-2 orders of magnitude greater than NAD(P)H; therefore GSH should represent the major reductant for pyocyanin and potentiate its toxicity. Paradoxically, GSH has been found to inhibit pyocyanin toxicity in cellular models. This study was undertaken to evaluate the potential of GSH as a biologically relevant reductant for pyocyanin. As observed using spectrophotometry, under aerobic conditions pyocyanin readily oxidized NADPH, whereas oxidation of GSH could not be detected. Under anaerobic conditions pyocyanin was reduced by NADPH, but reduction by GSH could not be detected. Reduction of molecular oxygen and the formation of ROS readily proceeded in the presence of pyocyanin and NADPH, whereas GSH was without effect. Finally, exposure of normal human dermal fibroblasts to subcytotoxic concentrations of pyocyanin did not lead to depletion of endogenous GSH, but exogenous GSH provided protection against the senescence-inducing effects of the toxin. In summary, GSH does not reduce pyocyanin under physiologically relevant conditions or contribute to pyocyanin toxicity. However, GSH does provide protection against the deleterious effects of this important bacterial toxin on mammalian cells.
Collapse
Affiliation(s)
- Michael Muller
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
19
|
Vasu VT, De Cruz SJ, Houghton JS, Hayakawa KA, Morrissey BM, Cross CE, Eiserich JP. Evaluation of thiol-based antioxidant therapeutics in cystic fibrosis sputum: Focus on myeloperoxidase. Free Radic Res 2011; 45:165-76. [PMID: 20954832 PMCID: PMC3018684 DOI: 10.3109/10715762.2010.521154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neutrophil-dependent reactions catalysed by myeloperoxidase (MPO) are thought to play important roles in the pulmonary pathobiology of cystic fibrosis (CF). Aerosolized thiol antioxidants such as glutathione (GSH) and N-acetylcysteine (NAC) are currently being utilized as therapeutics to modify CF respiratory tract oxidative processes. This study hypothesized that MPO in CF airway lining fluids may be a target of such therapeutics. MPO activity in sputum from 21 adult CF patients was found to be inversely associated with lung function (FEV(1)). In contrast, systemic inflammation (assessed by plasma C-reactive protein) was not correlated with lung function. Ex vivo studies revealed that GSH and NAC effectively scavenged N-chloramines in sputum and inhibited sputum MPO activity with potency exquisitely dependent upon MPO activity levels. Detailed kinetic analyses revealed that NAC and GSH inhibit MPO by distinct mechanisms. Activation of the key pro-inflammatory transcription factor NF-κB in cultured HBE1 cells was inhibited by GSH. The findings reveal that MPO activity and its reactive products represent useful predictors of the doses of inhaled thiol antioxidants required to ameliorate airway oxidative stress and inflammation in CF patients and provide mechanistic insight into the antioxidative/anti-inflammatory mechanisms of action of GSH and NAC when administered into the CF lung.
Collapse
Affiliation(s)
- Vihas T. Vasu
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
| | - Sharon J. De Cruz
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
| | - Jessica S. Houghton
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
| | - Keri A. Hayakawa
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
| | - Brian M. Morrissey
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
| | - Carroll E. Cross
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, CA
| | - Jason P. Eiserich
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, Center for Comparative Respiratory Biology and Medicine, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, CA
| |
Collapse
|
20
|
Targeting maladaptive glutathione responses in lung disease. Biochem Pharmacol 2010; 81:187-93. [PMID: 20951119 DOI: 10.1016/j.bcp.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 11/20/2022]
Abstract
The lung is unique being exposed directly to the atmospheric environment containing xenobiotics, pathogens, and other agents which are continuously inhaled on a daily basis. Additionally, the lung is exposed to higher ambient oxygen levels which can promote the formation of a complex number of reactive oxygen and nitrogen species. Due to this constant barrage of potential damaging agents, the lung has developed a high degree of plasticity in dealing with ever changing conditions. In the present commentary, we will focus on glutathione (GSH) as a key antioxidant in the lung airways and discuss mechanisms by which the lung uses GSH to adapt to its rapidly changing environment. We will then examine the evidence on how defective and inadequate adaptive responses can lead to lung injury, inflammation and disease. Lastly, we will examine some of the recent attempts to alter lung GSH levels with therapies in a number of human lung diseases and discuss some of the limitations of such approaches.
Collapse
|
21
|
Wetmore DR, Joseloff E, Pilewski J, Lee DP, Lawton KA, Mitchell MW, Milburn MV, Ryals JA, Guo L. Metabolomic profiling reveals biochemical pathways and biomarkers associated with pathogenesis in cystic fibrosis cells. J Biol Chem 2010; 285:30516-22. [PMID: 20675369 PMCID: PMC2945545 DOI: 10.1074/jbc.m110.140806] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/08/2010] [Indexed: 01/15/2023] Open
Abstract
Cystic fibrosis (CF) is a life-shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To gain an understanding of the epithelial dysfunction associated with CF mutations and discover biomarkers for therapeutics development, untargeted metabolomic analysis was performed on primary human airway epithelial cell cultures from three separate cohorts of CF patients and non-CF subjects. Statistical analysis revealed a set of reproducible and significant metabolic differences between the CF and non-CF cells. Aside from changes that were consistent with known CF effects, such as diminished cellular regulation against oxidative stress and osmotic stress, new observations on the cellular metabolism in the disease were generated. In the CF cells, the levels of various purine nucleotides, which may function to regulate cellular responses via purinergic signaling, were significantly decreased. Furthermore, CF cells exhibited reduced glucose metabolism in glycolysis, pentose phosphate pathway, and sorbitol pathway, which may further exacerbate oxidative stress and limit the epithelial cell response to environmental pressure. Taken together, these findings reveal novel metabolic abnormalities associated with the CF pathological process and identify a panel of potential biomarkers for therapeutic development using this model system.
Collapse
Affiliation(s)
- Diana R. Wetmore
- From Cystic Fibrosis Foundation Therapeutics, Inc., Bethesda, Maryland 20814
| | - Elizabeth Joseloff
- From Cystic Fibrosis Foundation Therapeutics, Inc., Bethesda, Maryland 20814
| | - Joseph Pilewski
- the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15251, and
| | | | | | | | | | | | - Lining Guo
- Metabolon, Inc., Durham, North Carolina 27713
| |
Collapse
|
22
|
Lands LC, Iskandar M, Beaudoin N, Meehan B, Dauletbaev N, Berthiuame Y. Dietary supplementation with pressurized whey in patients with cystic fibrosis. J Med Food 2010; 13:77-82. [PMID: 20136439 DOI: 10.1089/jmf.2008.0326] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by malnutrition, chronic pulmonary inflammation, and oxidative stress. Whey protein is rich in sulfhydryl groups and is recognized for its ability to increase glutathione and reduce oxidative stress. Previously, we have shown that supplementation with whey increased intracellular glutathione levels in patients with CF. We have subsequently shown that hyperbaric pressure treatment of whey protein promotes the release of novel peptides for absorption, increases intracellular glutathione in healthy subjects, and reduces in vitro production of interleukin (IL)-8. We hypothesized that pressurized whey supplementation in children and adults with CF could have significant nutritional and anti-inflammatory benefits. A pilot open-label study of 1-month dietary supplementation with pressurized whey in CF patients was undertaken to assess the effects. Twenty-seven patients with CF (nine children, 18 adults) were enrolled. The dose of pressurized whey was 20 g/day in patients less than 18 years of age and 40 g/day in older patients. Anthropometric measures, pulmonary function, serum C-reactive protein (CRP), whole blood glutathione, and whole blood IL-8 and IL-6 responses to phytohemagglutinin (PHA) stimulation were measured at baseline and at 1 month. Three adults withdrew (one with gastrointestinal side effects, two with acute infection). Both children and adults showed enhancements in nutritional status, as assessed by body mass index. Children showed improvement in lung function (forced expiratory volume in 1 second). The majority of patients with an initially elevated CRP showed a decrease. PHA-stimulated IL-8 responses tended to decrease in the adults. Whole blood glutathione levels did not change. Thus, oral supplementation with pressurized whey improves nutritional status and can have additional beneficial effects on inflammation in patients with CF.
Collapse
Affiliation(s)
- L C Lands
- Division of Pediatric Respiratory Medicine, Montreal Children's Hospital-McGill University Health Centre, Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Belcher C, Vij N. Protein processing and inflammatory signaling in Cystic Fibrosis: challenges and therapeutic strategies. Curr Mol Med 2010; 10:82-94. [PMID: 20205681 PMCID: PMC3114428 DOI: 10.2174/156652410791065408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/22/2009] [Indexed: 01/23/2023]
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (DeltaF508) in CFTR is the most common mutation that results in a temperature sensitive folding defect, retention of the protein in the endoplasmic reticulum (ER), and subsequent degradation by the proteasome. ER associated degradation (ERAD) is a major quality control pathway of the cell. The majority (99%) of the protein folding, DeltaF508-, mutant of CFTR is known to be degraded by this pathway to cause CF. Recent studies have revealed that inhibition of DeltaF508-CFTR ubiquitination and proteasomal degradation can increase its cell surface expression and may provide an approach to treat CF. The finely tuned balance of ER membrane interactions determine the cytosolic fate of newly synthesized CFTR. These ER membrane interactions induce ubiquitination and proteasomal targeting of DeltaF508- over wild type- CFTR. We discuss here challenges and therapeutic strategies targeting protein processing of DeltaF508-CFTR with the goal of rescuing functional DeltaF508-CFTR to the cell surface. It is evident from recent studies that CFTR plays a critical role in inflammatory response in addition to its well-described ion transport function. Previous studies in CF have focused only on improving chloride efflux as a marker for promising treatment. We propose that methods quantifying the therapeutic efficacy and recovery from CF should not include only changes in chloride efflux, but also recovery of the chronic inflammatory signaling, as evidenced by positive changes in inflammatory markers (in vitro and ex vivo), lung function (pulmonary function tests, PFT), and chronic lung disease (state of the art molecular imaging, in vivo). This will provide novel therapeutics with greater opportunities of potentially attenuating the progression of the chronic CF lung disease.
Collapse
Affiliation(s)
- C.N. Belcher
- Department of Pediatrics, Eudowood Division of Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - N. Vij
- Department of Pediatrics, Eudowood Division of Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Rottner M, Freyssinet JM, Martínez MC. Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 2009; 10:23. [PMID: 19284656 PMCID: PMC2660284 DOI: 10.1186/1465-9921-10-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/13/2009] [Indexed: 01/09/2023] Open
Abstract
Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.
Collapse
Affiliation(s)
- Mathilde Rottner
- 1INSERM U 770; Université Paris-Sud 11, Faculté de Médecine, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|