1
|
Milczewska J, Syunyaeva Z, Żabińska-Jaroń A, Sands D, Thee S. Changing profile of bacterial infection and microbiome in cystic fibrosis: when to use antibiotics in the era of CFTR-modulator therapy. Eur Respir Rev 2024; 33:240068. [PMID: 39631927 PMCID: PMC11615665 DOI: 10.1183/16000617.0068-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
The advent of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy, especially the triple therapy combining the drugs elexacaftor, tezacaftor, ivacaftor (ETI), has significantly changed the course of the disease in people with cystic fibrosis (pwCF). ETI, which is approved for the majority (80-90%) of pwCF, partially restores CFTR channel function, resulting in improved mucociliary clearance and, consequently, improved lung function, respiratory symptoms and pulmonary exacerbations. The bacterial burden of classical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus is reduced without reaching eradication in the majority of infected patients. Limited data is available on less common or emerging bacterial pathogens. ETI has a positive effect on the lung microbiome but does not fully restore it to a healthy state. Due to the significant reduction in sputum production under ETI, respiratory samples such as deep-throat swabs are commonly taken, despite their inadequate representation of lower respiratory tract pathogens. Currently, there are still unanswered questions related to this new therapy, such as the clinical impact of infection with cystic fibrosis (CF) pathogens, the value of molecular diagnostic tests, the durability of the effects on respiratory infection and the role of fungal and viral infections. This article reviews the changes in bacterial lung infections and the microbiome in CF to provide evidence for the use of antibiotics in the era of ETI.
Collapse
Affiliation(s)
- Justyna Milczewska
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
- Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
- Joint first authors
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Joint first authors
| | | | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
- Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Gramegna A, Misuraca S, Lombardi A, Premuda C, Barone I, Ori M, Amati F, Retucci M, Nazzari E, Alicandro G, Ferrarese M, Codecasa L, Bandera A, Aliberti S, Daccò V, Blasi F. Treatable traits and challenges in the clinical management of non-tuberculous mycobacteria lung disease in people with cystic fibrosis. Respir Res 2023; 24:316. [PMID: 38104098 PMCID: PMC10725605 DOI: 10.1186/s12931-023-02612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Over the last ten years an increasing prevalence and incidence of non-tuberculous mycobacteria (NTM) has been reported among patients with cystic fibrosis (CF) Viviani (J Cyst Fibros, 15(5):619-623, 2016). NTM pulmonary disease has been associated with negative clinical outcomes and often requires pharmacological treatment. Although specific guidelines help clinicians in the process of diagnosis and clinical management, the focus on the multidimensional assessment of concomitant problems is still scarce. MAIN BODY This review aims to identify the treatable traits of NTM pulmonary disease in people with CF and discuss the importance of a multidisciplinary approach in order to detect and manage all the clinical and behavioral aspects of the disease. The multidisciplinary complexity of NTM pulmonary disease in CF requires careful management of respiratory and extra-respiratory, including control of comorbidities, drug interactions and behavioral factors as adherence to therapies. CONCLUSIONS The treatable trait strategy can help to optimize clinical management through systematic assessment of all the aspects of the disease, providing a holistic treatment for such a multi-systemic and complex condition.
Collapse
Affiliation(s)
- Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - Sofia Misuraca
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Premuda
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Ivan Barone
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Margherita Ori
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Mariangela Retucci
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Healthcare Professions Department, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Nazzari
- Cystic Fibrosis Center, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Maurizio Ferrarese
- Regional TB Reference Centre, Villa Marelli Institute, Niguarda Hospital, Milan, Italy
| | - Luigi Codecasa
- Regional TB Reference Centre, Villa Marelli Institute, Niguarda Hospital, Milan, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Valeria Daccò
- Cystic Fibrosis Center, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
3
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
4
|
Loebinger MR, Quint JK, van der Laan R, Obradovic M, Chawla R, Kishore A, van Ingen J. Risk Factors for Nontuberculous Mycobacterial Pulmonary Disease: A Systematic Literature Review and Meta-Analysis. Chest 2023; 164:1115-1124. [PMID: 37429481 DOI: 10.1016/j.chest.2023.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Nontuberculous mycobacterial pulmonary disease (NTM-PD) is widely underdiagnosed, and certain patient groups, such as those with underlying respiratory diseases, are at increased risk of developing the disease. Understanding patients at risk is essential to allow for prompt testing and diagnosis and appropriate management to prevent disease progression. RESEARCH QUESTION What are the risk factors for NTM-PD that should prompt a physician to consider NTM testing and diagnosis? STUDY DESIGN AND METHODS Electronic searches of PubMed and EMBASE were conducted in July 2021 for the period 2011-2021. Inclusion criteria were studies of patients with NTM-PD with associated risk factors. Data were extracted and assessed using the Newcastle-Ottawa Scale. Data analysis was conducted using the R-based "meta" package. Only studies that reported association outcomes for cases with NTM-PD compared with control participants (healthy populations or participants without NTM-PD) were considered for the meta-analysis. RESULTS Of the 9,530 searched publications, 99 met the criteria for the study. Of these, 24 formally reported an association between possible risk factors and the presence of NTM-PD against a control population and were included in the meta-analysis. Comorbid respiratory disease was associated with a significant increase in the OR for NTM-PD (bronchiectasis [OR, 21.43; 95% CI, 5.90-77.82], history of TB [OR, 12.69; 95% CI, 2.39-67.26], interstitial lung disease [OR, 6.39; 95% CI, 2.65-15.37], COPD [OR, 6.63; 95% CI, 4.57-9.63], and asthma [OR, 4.15; 95% CI, 2.81-6.14]). Other factors noted to be associated with an increased risk of NTM-PD were the use of inhaled corticosteroids (OR 4.46; 95% CI, 2.13-9.35), solid tumors (OR, 4.66; 95% CI, 1.04-20.94) and the presence of pneumonia (OR, 5.54; 95% CI, 2.72-11.26). INTERPRETATION The greatest risk for NTM-PD is conferred by comorbid respiratory diseases such as bronchiectasis. These findings could help with identification of patient populations at risk for NTM-PD to drive prompt testing and appropriate initiation of therapy.
Collapse
Affiliation(s)
| | - Jennifer K Quint
- Royal Brompton Hospital and NHLI, Imperial College London, London, England
| | | | | | | | | | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Schnitker F, Liu Y, Keitsch S, Soddemann M, Verhasselt HL, Kehrmann J, Grassmé H, Kamler M, Gulbins E, Wu Y. Reduced Sphingosine in Cystic Fibrosis Increases Susceptibility to Mycobacterium abscessus Infections. Int J Mol Sci 2023; 24:14004. [PMID: 37762308 PMCID: PMC10530875 DOI: 10.3390/ijms241814004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Matthias Soddemann
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Markus Kamler
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| |
Collapse
|
6
|
Parmar S, Tocheva EI. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog 2023; 19:e1011318. [PMID: 37200238 DOI: 10.1371/journal.ppat.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent features and undergoes modifications that are responsible for its pathogenesis. Compositional changes of the mycobacterial outer membrane (MOM) significantly decrease the presence of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morphotype into a virulent, rough morphotype. The GPLs are transported to the MOM by the Mycobacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems (T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host-pathogen interactions and virulence. This review summarizes the current knowledge of M. abscessus pathogenesis and highlights the clinically relevant association between the structure and functions of its cell envelope.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Matsuyama M, Matsumura S, Nonaka M, Nakajima M, Sakai C, Arai N, Ueda K, Hizawa N. Pathophysiology of pulmonary nontuberculous mycobacterial (NTM) disease. Respir Investig 2023; 61:135-148. [PMID: 36640546 DOI: 10.1016/j.resinv.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
In recent years, the incidence and prevalence of pulmonary nontuberculous mycobacterial (NTM) disease have increased worldwide. Although the reasons for this increase are unclear, dealing with this disease is essential. Pulmonary NTM disease is a chronic pulmonary infection caused by NTM bacteria, which are ubiquitous in various environments. In Japan, Mycobacterium avium-intracellulare complex (MAC) accounts for approximately 90% of the causative organisms of pulmonary NTM disease, which is also called pulmonary MAC disease or pulmonary MAI disease. It is important to elucidate the pathophysiology of this disease, which occurs frequently in postmenopausal women despite the absence of obvious immunodeficiency. The pathophysiology of this disease has not been fully elucidated; however, it can largely be divided into bacterial (environmental) and host-side problems. The host factors can be further divided into immune and airway problems. The authors suggest that the triangular relationship between bacteria, immunity, and the airway is important in the pathophysiology of this disease. The latest findings on the pathophysiology of pulmonary NTM disease are reviewed.
Collapse
Affiliation(s)
- Masashi Matsuyama
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan.
| | - Sosuke Matsumura
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Mizu Nonaka
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Masayuki Nakajima
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Chio Sakai
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Naoki Arai
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Kodai Ueda
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Japan
| |
Collapse
|
8
|
Gomes AC, Sousa DM, Oliveira TC, Fonseca Ó, Pinto RJ, Silvério D, Fernandes AI, Moreira AC, Silva T, Teles MJ, Pereira L, Saraiva M, Lamghari M, Gomes MS. Serum amyloid A proteins reduce bone mass during mycobacterial infections. Front Immunol 2023; 14:1168607. [PMID: 37153579 PMCID: PMC10161249 DOI: 10.3389/fimmu.2023.1168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- *Correspondence: Ana Cordeiro Gomes,
| | - Daniela Monteiro Sousa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Óscar Fonseca
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Mestrado em Bioquímica Clínica, Universidade de Aveiro, , Aveiro, Portugal
| | - Ricardo J. Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana C. Moreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CHUSJ – Centro Hospitalar de São João, Porto, Portugal
- EPIUnit, ISPUP - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Luísa Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Prieto MD, Jang J, Franciosi AN, Av-Gay Y, Bach H, Tebbutt SJ, Quon BS. Whole blood RNA-seq demonstrates an increased host immune response in individuals with cystic fibrosis who develop nontuberculous mycobacterial pulmonary disease. PLoS One 2022; 17:e0278296. [PMID: 36480571 PMCID: PMC9731410 DOI: 10.1371/journal.pone.0278296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Individuals with cystic fibrosis have an elevated lifetime risk of colonization, infection, and disease caused by nontuberculous mycobacteria. A prior study involving non-cystic fibrosis individuals reported a gene expression signature associated with susceptibility to nontuberculous mycobacteria pulmonary disease (NTM-PD). In this study, we determined whether people living with cystic fibrosis who progress to NTM-PD have a gene expression pattern similar to the one seen in the non-cystic fibrosis population. METHODS We evaluated whole blood transcriptomics using bulk RNA-seq in a cohort of cystic fibrosis patients with samples collected closest in timing to the first isolation of nontuberculous mycobacteria. The study population included patients who did (n = 12) and did not (n = 30) develop NTM-PD following the first mycobacterial growth. Progression to NTM-PD was defined by a consensus of two expert clinicians based on reviewing clinical, microbiological, and radiological information. Differential gene expression was determined by DESeq2. RESULTS No differences in demographics or composition of white blood cell populations between groups were identified at baseline. Out of 213 genes associated with NTM-PD in the non-CF population, only two were significantly different in our cystic fibrosis NTM-PD cohort. Gene set enrichment analysis of the differential expression results showed that CF individuals who developed NTM-PD had higher expression levels of genes involved in the interferon (α and γ), tumor necrosis factor, and IL6-STAT3-JAK pathways. CONCLUSION In contrast to the non-cystic fibrosis population, the gene expression signature of patients with cystic fibrosis who develop NTM-PD is characterized by increased innate immune responses.
Collapse
Affiliation(s)
- Miguel Dario Prieto
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jiah Jang
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Alessandro N. Franciosi
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Horacio Bach
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott J. Tebbutt
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, British Columbia, Canada
| | - Bradley S. Quon
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
10
|
Mycobacterium avium complex infected cells promote growth of the pathogen Pseudomonas aeruginosa. Microb Pathog 2022; 166:105549. [DOI: 10.1016/j.micpath.2022.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
11
|
Multiresistant organisms: bacteria and beyond. Curr Opin Organ Transplant 2022; 27:184-190. [PMID: 35283468 DOI: 10.1097/mot.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Infections with multiresistant organisms are an emerging problem, cause early mortality post lung transplantation and are sometimes associated with graft dysfunction. Frequently they raise questions about the selection of lung transplant candidates and therapeutic management post lung transplantation. There are no guidelines and management must be individualized. This review summarizes the available therapeutic options in cases of multidrug-resistant (MDR) organisms and outcomes after lung transplant. RECENT FINDINGS Improvements in diagnosis, new and more effective drugs and the experience gained in the management of these infections in lung transplantation, lead to a more optimistic horizon than that found a decade ago. SUMMARY Update on the management of Burkholderia cepacia complex, Mycobacterium abscessus complex, Aspergillus spp., Scedosporium spp. and Lomentospora prolificans infections. This review clarifies current posttransplant outcomes and adds a little hope in these scenarios.
Collapse
|
12
|
Kumar K, Loebinger MR. Nontuberculous Mycobacterial Pulmonary Disease: Clinical Epidemiologic Features, Risk Factors, and Diagnosis: The Nontuberculous Mycobacterial Series. Chest 2022; 161:637-646. [PMID: 34627854 DOI: 10.1016/j.chest.2021.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) continues to impose a significant clinical burden of disease on susceptible patients. The incidence of NTM-PD is rising globally, but it remains a condition that is challenging to diagnose and treat effectively. This review provides an update on the global epidemiologic features, risk factors, and diagnostic considerations associated with the management of NTM-PD.
Collapse
Affiliation(s)
- Kartik Kumar
- National Heart and Lung Institute, Imperial College London, London, England; Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Michael R Loebinger
- National Heart and Lung Institute, Imperial College London, London, England; Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, England.
| |
Collapse
|
13
|
Lipner EM, Crooks JL, French J, Strong M, Nick JA, Prevots DR. Nontuberculous mycobacterial infection and environmental molybdenum in persons with cystic fibrosis: a case-control study in Colorado. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:289-294. [PMID: 34218259 PMCID: PMC8920885 DOI: 10.1038/s41370-021-00360-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/01/2023]
Abstract
RATIONALE Nontuberculous mycobacteria (NTM) are ubiquitous environmental bacteria that may cause chronic lung disease and are one of the most difficult-to-treat infections among persons with cystic fibrosis (pwCF). Environmental factors likely contribute to increased NTM densities, with higher potential for exposure and infection. OBJECTIVE To identify water-quality constituents that influence odds of NTM infection among pwCF in Colorado. METHODS We conducted a population-based nested case-control study using patient data from the Colorado CF Center NTM database. We associated data from pwCF and water-quality data extracted from the Water Quality Portal to estimate odds of NTM infection. Using Bayesian generalized linear models with binomial-distributed discrete responses, we modeled three separate outcomes; any NTM infection, infections due to Mycobacterium avium complex species, and infections due to M. abscessus group species. RESULTS We observed a consistent association with molybdenum in the source water and M. abscessus group species infection among pwCF in all models. For every 1-unit increase in the log concentration of molybdenum in surface water, the odds of infection for those with M. abscessus group species compared to those who were NTM culture-negative increased by 79%. The odds of M. abscessus group infection varied by county; the counties with the highest probability of infection are located along the major rivers. CONCLUSIONS We have identified molybdenum in the source water as the most predictive factor of M. abscessus group infection among pwCF in Colorado. This finding will help inform patients at risk for NTM of their relative risks in residing within specific regions.
Collapse
Affiliation(s)
- Ettie M Lipner
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| | - James L Crooks
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO, USA
| | - Joshua French
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - D Rebecca Prevots
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Ademhan Tural D, Emiralioglu N, Ozsezen B, Saribas Z, Ozcan N, Alp A, Sunman B, Hizal M, Eryilmaz Polat S, Yalcin E, Dogru D, Ozcelik U, Kiper N. The frequency and related factors of non-tuberculosis mycobacteria infections among patients with cystic fibrosis. Pediatr Int 2021; 63:1369-1375. [PMID: 33682254 DOI: 10.1111/ped.14688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) can cause chronic lung infection particularly in patients who have structural lung disease such as cystic fibrosis (CF). We evaluated the incidence and management of NTM infections in patients with CF in our center. METHODS A retrospective cohort study was carried out on CF patients having at least one positive NTM isolate between 2012 and 2020. RESULTS Ten patients (2.1%) had at least one positive NTM culture from respiratory samples. All of them were vaccinated with Bacille Calmette-Guérin (BCG) vaccine, which is in the national vaccination program in our country. Eight patients had the Mycobacterium abscessus complex, one had Mycobacterium avium, and one had Mycobacterium szulgai growth in their respiratory samples. Three patients had transient NTM infection, two had persistent, and five had active NTM infection (NTM pulmonary disease). Patients with NTM pulmonary disease received antibiogram-directed antimycobacterial therapy. In patients with NTM pulmonary disease, the median ppFEV1 and BMI decreased by 17% and 1%, respectively, at the time of the first NTM isolation when compared with the values one year before the first NTM isolation. Culture conversion was not seen in any patient infected with Mycobacteriunm abscessus complex. CONCLUSIONS The NTM infection incidence is lower in our country than in those countries where the BCG vaccine is not routinely applied. The BCG vaccine may be a protective factor for NTM infection. Further studies are needed about the prevalence of NTM infections, facilitating and protective factors, and appropriate management of NTM infections in patients with CF.
Collapse
Affiliation(s)
- Dilber Ademhan Tural
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Beste Ozsezen
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Zeynep Saribas
- Department of Medical Microbiology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nursun Ozcan
- Department of Radiology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Alpaslan Alp
- Department of Medical Microbiology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Birce Sunman
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Mina Hizal
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Sanem Eryilmaz Polat
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ugur Ozcelik
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, School of Medicine, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Harrison J, Weaver JA, Desai M, Cox JAG. In vitro efficacy of relebactam versus avibactam against Mycobacterium abscessus complex. Cell Surf 2021; 7:100064. [PMID: 34703957 PMCID: PMC8521170 DOI: 10.1016/j.tcsw.2021.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/06/2022] Open
Abstract
Infections resulting from Mycobacterium abscessus are increasing in prevalence worldwide, with the greatest risk posed to patients with underlying respiratory conditions. Treatment for infections is difficult due to wide ranging intrinsic antimicrobial resistance, which is compounded by the existence of a range of subspecies within the M. abscessus complex, each with varying additional antimicrobial resistance profiles. Previously, the use of β-lactam/β-lactamase inhibitors within a combination therapy has been proposed as an effective treatment option for pulmonary M. abscessus infections. Here, we assess the in vitro efficacy of two non-β-lactam based inhibitors, relebactam and avibactam, as agents against M. abscessus with their respective partner drugs imipenem and ceftazidime, as well as in triplicate combinations with additional β-lactam antibiotics against the M. abscessus complex. We have shown that the commercially available ratio of imipenem to relebactam is the appropriate ratio for bactericidal activity against M. abscessus, whereas the ratio between ceftazidime and avibactam is redundant, due to inactivity of ceftazidime to inhibit the bacteria. We have identified that the use of imipenem and meropenem alongside either relebactam or avibactam yield low minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for each M. abscessus subspecies, which are within the therapeutically achievable concentration ranges within the epithelial lining fluid of the lungs. We propose the implementation of imipenem with relebactam in place of stand-alone imipenem into the current treatment regime, alongside meropenem, as a future front-line treatment option for M. abscessus complex infections.
Collapse
Affiliation(s)
- James Harrison
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - John A Weaver
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Maya Desai
- Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
16
|
Vitamin D Deficiency Is Associated with Increased Nontuberculous Mycobacteria Risk in Cystic Fibrosis. Ann Am Thorac Soc 2021; 18:913-916. [PMID: 33202142 DOI: 10.1513/annalsats.202003-216rl] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Abstract
Incidences of non-tuberculosis mycobacteria (NTM) and Aspergillus fumigatus have increased around the world over the past decade and have become a significant health threat to immunocompromised individuals such as those with cystic fibrosis (CF). CF is characterized by the buildup of mucus in the lungs which become chronically infected by a myriad of pathogens. The survival rates of individuals with cystic fibrosis (CF) have significantly increased as a result of improved therapies, such as the inclusion of cystic fibrosis transmembrane conductance regulator (CFTR) modulators for some mutations. However, microbial infection of the airways remains a significant clinical problem. The well-known pathogens Pseudomonas aeruginosa and Staphylococcus aureus continue to establish difficult-to-treat infections in the CF lung. However, in recent years, there has been an increased prevalence of both Aspergillus fumigatus (Af) and non-tuberculous mycobacteria (NTM) species isolated from CF patient sputa. The emergence of these pathogens opens an important area of discussion about multikingdom infections, specifically, how interspecies interactions have the potential to shape the course of infection, such as tolerance to host immune defenses and antimicrobial therapies. Their ability to establish themselves in an existing polymicrobial environment suggests to us that microbial interactions play a significant role, and characterizing these mechanisms and understanding their implications will be critical to the future development of better antimicrobial therapies. With this minireview, we hope to inspire conversations about and demonstrate the merit of more research in this area.
Collapse
|
18
|
Reynaud Q, Bricca R, Cavalli Z, Nove-Josserand R, Durupt S, Reix P, Burgel PR, Durieu I. Risk factors for nontuberculous mycobacterial isolation in patients with cystic fibrosis: A meta-analysis. Pediatr Pulmonol 2020; 55:2653-2661. [PMID: 32603551 DOI: 10.1002/ppul.24913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND To better understand the mechanisms of infection with nontuberculous mycobacteria (NTM) in patients with cystic fibrosis (CF), we explore different risk factors associated with NTM positivity in a meta-analysis. METHODS Studies published before 31 July 2019 were selected from MEDLINE. Combined odds ratios (ORs) were calculated by pooling the ORs of each study. The weighted mean difference (WMD) was used for continuous numerical measurements. Summary data were pooled using fixed- or random-effects models according to the presence of heterogeneity (P < .1 or I2 > 50%). RESULTS Nineteen studies with a total of 23 418 patients, of whom 1421 (6%) were diagnosed as NTM positive, were included. Older age was significantly associated with NTM positivity (WMD = 2.12, 95% confidence interval [CI]: 1.11-3.13; P < .01, fixed-effects model). The OR for Staphylococcus aureus colonization was 1.66 (95% CI: 1.21-2.26; P = .001) in 11 studies (8091 patients), the OR for Aspergillus fumigatus colonization was 3.59 (95% CI: 3.05-4.23; P < .001) in 11 studies (20 480 patients), and the OR for Stenotrophomonas maltophilia colonization was 3.41 (95% CI: 2.66-4.39; P < .01) in seven studies (14 935 patients). Oral corticosteroids were significantly associated with NTM positivity (OR = 1.98, 95% CI: 1.24-3.16; P < .01, 6 studies, 1936 patients). No other factor showed a significant association. CONCLUSION Older age, S. aureus, S. maltophilia, and A. fumigatus chronic colonization, and oral corticosteroids were significantly associated with an increased risk of NTM positivity. CF patients with more severe conditions should be closely monitored for NTM.
Collapse
Affiliation(s)
- Quitterie Reynaud
- Centre de ressources et de compétences pour la mucoviscidose adulte, Service de médecine interne et vasculaire, Hospices Civils de Lyon, Lyon, France.,EA HESPER 7425, Université Claude Bernard Lyon 1, Lyon, France
| | - Romain Bricca
- Centre de ressources et de compétences pour la mucoviscidose adulte, Service de médecine interne et vasculaire, Hospices Civils de Lyon, Lyon, France
| | - Zoe Cavalli
- Centre de ressources et de compétences pour la mucoviscidose adulte, Service de médecine interne et vasculaire, Hospices Civils de Lyon, Lyon, France
| | - Raphaële Nove-Josserand
- Centre de ressources et de compétences pour la mucoviscidose adulte, Service de médecine interne et vasculaire, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Durupt
- Centre de ressources et de compétences pour la mucoviscidose adulte, Service de médecine interne et vasculaire, Hospices Civils de Lyon, Lyon, France
| | - Philippe Reix
- UMR CNRS 5558, Equipe Evaluation et Modélisation des Effets Thérapeutiques, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Lyon, France.,Centre de ressources et de compétences pour la mucoviscidose pédiatrique, Service de pneumologie pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Pierre Régis Burgel
- Centre de Référence Maladies Rares Mucoviscidose de l'adulte. Site Coordonnateur National, Hôpital Cochin, APHP, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Durieu
- Centre de ressources et de compétences pour la mucoviscidose adulte, Service de médecine interne et vasculaire, Hospices Civils de Lyon, Lyon, France.,EA HESPER 7425, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
19
|
Abidin NZ, Gardner AI, Robinson HL, Haq IJ, Thomas MF, Brodlie M. Trends in nontuberculous mycobacteria infection in children and young people with cystic fibrosis. J Cyst Fibros 2020; 20:737-741. [PMID: 32950411 PMCID: PMC8490157 DOI: 10.1016/j.jcf.2020.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022]
Abstract
NTM infection in children with CF is a major clinical concern and challenge. Prevalence of NTM in children in the UK CF registry stabilised from 2016 to 18. This prevalence, however, remained substantially higher than in 2010. We highlight the need for high quality studies in this area.
Nontuberculous mycobacteria (NTM) infection is of growing concern in cystic fibrosis (CF). UK CF Registry data were analyzed from 2016 to 2018. Prevalence of infection stabilized in the pediatric age-group during this period but remained substantially higher than in 2010. Allergic bronchopulmonary aspergillosis and Pseudomonas aeruginosa infection were associated with NTM infection.
Collapse
Affiliation(s)
- Noreen Zainal Abidin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH. United Kingdom; Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Queen Victoria Road, Newcastle upon Tyne, UK, NE1 4LP. United Kingdom
| | - Aaron Ions Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH. United Kingdom
| | - Hannah-Louise Robinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH. United Kingdom
| | - Iram J Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH. United Kingdom; Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Queen Victoria Road, Newcastle upon Tyne, UK, NE1 4LP. United Kingdom
| | - Matthew F Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH. United Kingdom; Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Queen Victoria Road, Newcastle upon Tyne, UK, NE1 4LP. United Kingdom
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH. United Kingdom; Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Queen Victoria Road, Newcastle upon Tyne, UK, NE1 4LP. United Kingdom.
| |
Collapse
|
20
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
21
|
Hatziagorou E, Orenti A, Drevinek P, Kashirskaya N, Mei-Zahav M, De Boeck K, Pfleger A, Sciensano MT, Lammertyn E, Macek M, Olesen HV, Farge A, Naehrlich L, Ujhelyi R, Fletcher G, Padoan R, Timpare Z, Malakauskas K, Fustik S, Gulmans V, Turcu O, Pereira L, Mosescu S, Rodic M, Kayserova H, Krivec U, Vazquez-Cordero C, de Monestrol I, Lindblad A, Jung A, Makukh H, Carr SB, Cosgriff R, Zolin A. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis–data from the European cystic fibrosis society patient registry. J Cyst Fibros 2020; 19:376-383. [DOI: 10.1016/j.jcf.2019.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 01/04/2023]
|
22
|
Gardner AI, McClenaghan E, Saint G, McNamara PS, Brodlie M, Thomas MF. Epidemiology of Nontuberculous Mycobacteria Infection in Children and Young People With Cystic Fibrosis: Analysis of UK Cystic Fibrosis Registry. Clin Infect Dis 2020; 68:731-737. [PMID: 29982302 PMCID: PMC6376093 DOI: 10.1093/cid/ciy531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022] Open
Abstract
Background Infection with nontuberculous mycobacteria (NTM) is of growing clinical concern in people with cystic fibrosis (CF). The epidemiology of infection in children and young people remains poorly understood. Our goal was to investigate the epidemiology of NTM infection in the pediatric age group using data from the UK CF Registry. Methods Data from 2010–2015 for individuals aged <16 years (23200 observations from 5333 unique individuals) were obtained. Univariate analysis of unique individuals comparing all key clinical factors and health outcomes to NTM status was performed. The significant factors that were identified were used to generate a multivariate logistic regression model that, following step-wise removal, generated a final parsimonious model. Results The prevalence of individuals with a NTM-positive respiratory culture increased every year from 2010 (45 [1.3%]) to 2015 (156 [3.8%]). Allergic bronchopulmonary aspergillosis (odds ratio [OR], 2.66; P = 5.0 × 10−8), age (OR, 1.08; P = 3.4 × 10−10), and intermittent Pseudomonas aeruginosa infection (OR, 1.51; P = .004) were significantly associated with NTM infection. Conclusions NTM infection is of increasing prevalence in the UK pediatric CF population. This study highlights the urgent need for work to establish effective treatment and prevention strategies for NTM infection in young people with CF.
Collapse
Affiliation(s)
- Aaron I Gardner
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Elliot McClenaghan
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Gemma Saint
- Department of Child Health, University of Liverpool
- Alder Hey Children’s National Health Service Foundation Trust
| | - Paul S McNamara
- Department of Child Health, University of Liverpool
- Alder Hey Children’s National Health Service Foundation Trust
| | - Malcolm Brodlie
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
- Department of Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, United Kingdom
- Correspondence: M. Brodlie, Level 3, Clinical Resource Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK ()
| | - Matthew F Thomas
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
- Department of Paediatric Respiratory Medicine, Great North Children’s Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, United Kingdom
| |
Collapse
|
23
|
Nontuberculous Mycobacterium. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Degiacomi G, Sammartino JC, Chiarelli LR, Riabova O, Makarov V, Pasca MR. Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. Int J Mol Sci 2019; 20:ijms20235868. [PMID: 31766758 PMCID: PMC6928860 DOI: 10.3390/ijms20235868] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) have recently emerged as important pathogens among cystic fibrosis (CF) patients worldwide. Mycobacterium abscessus is becoming the most worrisome NTM in this cohort of patients and recent findings clarified why this pathogen is so prone to this disease. M. abscessus drug therapy takes up to 2 years and its failure causes an accelerated lung function decline. The M. abscessus colonization of lung alveoli begins with smooth strains producing glycopeptidolipids and biofilm, whilst in the invasive infection, "rough" mutants are responsible for the production of trehalose dimycolate, and consequently, cording formation. Human-to-human M. abscessus transmission was demonstrated among geographically separated CF patients by whole-genome sequencing of clinical isolates worldwide. Using a M. abscessus infected CF zebrafish model, it was demonstrated that CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction seems to have a specific role in the immune control of M. abscessus infections only. This pathogen is also intrinsically resistant to many drugs, thanks to its physiology and to the acquisition of new mechanisms of drug resistance. Few new compounds or drug formulations active against M. abscessus are present in preclinical and clinical development, but recently alternative strategies have been investigated, such as phage therapy and the use of β-lactamase inhibitors.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - José Camilla Sammartino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- IUSS—University School for Advanced Studies, 27100 Pavia, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - Olga Riabova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- Correspondence: ; Tel.: +39-0382-985576
| |
Collapse
|
25
|
Bouso JM, Planet PJ. Complete nontuberculous mycobacteria whole genomes using an optimized DNA extraction protocol for long-read sequencing. BMC Genomics 2019; 20:793. [PMID: 31666009 PMCID: PMC6822416 DOI: 10.1186/s12864-019-6134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Nontuberculous mycobacteria (NTM) are a major cause of pulmonary and systemic disease in at-risk populations. Gaps in knowledge about transmission patterns, evolution, and pathogenicity during infection have prompted a recent surge in genomic NTM research. Increased availability and affordability of whole genome sequencing (WGS) techniques provide new opportunities to sequence and construct complete bacterial genomes faster and at a lower cost. However, extracting large quantities of pure genomic DNA is particularly challenging with NTM due to its slow growth and recalcitrant cell wall. Here we report a DNA extraction protocol that is optimized for long-read WGS of NTM, yielding large quantities of highly pure DNA with no additional clean-up steps. Results Our DNA extraction method was compared to 6 other methods with variations in timing of mechanical disruption and enzymatic digestion of the cell wall, quantity of matrix material, and reagents used in extraction and precipitation. We tested our optimized method on 38 clinical isolates from the M. avium and M. abscessus complexes, which yielded optimal quality and quantity measurements for Oxford Nanopore Technologies sequencing. We also present the efficient completion of circularized M. avium subspecies hominissuis genomes using our extraction technique and the long-read sequencing MinION platform, including the identification of a novel plasmid. Conclusions Our optimized extraction protocol and assembly pipeline was both sufficient and efficient for genome closure. We expect that our finely-tuned extraction method will prove to be a valuable tool in long-read sequencing and completion of mycobacterial genomes going forward. Utilization of comprehensive, long-read based approaches will advance the understanding evolution and pathogenicity of NTM infections.
Collapse
Affiliation(s)
- Jennifer M Bouso
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Planet
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| |
Collapse
|
26
|
Antimicrobial Treatment Provides a Competitive Advantage to Mycobacterium abscessus in a Dual-Species Biofilm with Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01547-19. [PMID: 31451500 DOI: 10.1128/aac.01547-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The physiological factors that contribute to Mycobacterium abscessus lung infections remain unclear. We determined whether antibiotic treatment targeting a major cystic fibrosis pathogen (i.e., Pseudomonas aeruginosa) could provide the ideal conditions for the establishment of M. abscessus infection. Our data showed that P. aeruginosa inhibited M. abscessus biofilm formation under control conditions and that antimicrobial therapy selectively targeting P. aeruginosa diminished this competitive interaction, thereby increasing M. abscessus survival.
Collapse
|
27
|
Interference with Pseudomonas aeruginosa Quorum Sensing and Virulence by the Mycobacterial Pseudomonas Quinolone Signal Dioxygenase AqdC in Combination with the N-Acylhomoserine Lactone Lactonase QsdA. Infect Immun 2019; 87:IAI.00278-19. [PMID: 31308081 DOI: 10.1128/iai.00278-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.
Collapse
|
28
|
Lopeman RC, Harrison J, Desai M, Cox JAG. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms 2019; 7:microorganisms7030090. [PMID: 30909391 PMCID: PMC6463083 DOI: 10.3390/microorganisms7030090] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Mycobacteria are a large family of over 100 species, most of which do not cause diseases in humans. The majority of the mycobacterial species are referred to as nontuberculous mycobacteria (NTM), meaning they are not the causative agent of tuberculous (TB) or leprosy, i.e., Mycobacterium tuberculous complex and Mycobacterium leprae, respectively. The latter group is undoubtedly the most infamous, with TB infecting an estimated 10 million people and causing over 1.2 million deaths in 2017 alone TB and leprosy also differ from NTM in that they are only transmitted from person to person and have no environmental reservoir, whereas NTM infections are commonly acquired from the environment. It took until the 1950′s for NTM to be recognised as a potential lung pathogen in people with underlying pulmonary disease and another three decades for NTM to be widely regarded by the medical community when Mycobacterium avium complex was identified as the most common group of opportunistic pathogens in AIDS patients. This review focuses on an emerging NTM called Mycobacterium abscessus (M. abs). M. abs is a rapidly growing NTM that is responsible for opportunistic pulmonary infections in patients with structural lung disorders such as cystic fibrosis and bronchiectasis, as well as a wide range of skin and soft tissue infections in humans. In this review, we discuss how we came to understand the pathogen, how it is currently treated and examine drug resistance mechanisms and novel treatments currently in development. We highlight the urgent need for new and effective treatments for M. abs infection as well as improved in vivo methods of efficacy testing.
Collapse
Affiliation(s)
- Rose C Lopeman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Maya Desai
- Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Jonathan A G Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
29
|
Atanasova Nadzinska M, Jakjovska T, Naceva Fushtikj S, Mladenovska K. Nontuberculous mycobacteria and allergic bronchopulmonary aspergillosisin lung transplant candidate. MAKEDONSKO FARMACEVTSKI BILTEN 2019. [DOI: 10.33320/maced.pharm.bull.2019.65.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Airway infections are a key component of cystic fibrosis (CF) lung disease. The approach to common pathogens such as Pseudomonas aeruginosa or Staphilococcus aureus is guided by a significant evidence base, but the treatment of other infections is significant challenge to pharmacotherapy teams. Here we present a specific approach to treatment of chronic infections with non-tuberculous mycobacteria (NTM) anaerobic bacteria and fungi in a 25 year old patient with CF and severely decreased lung function. Also, allergic bronchopulmonary aspegillosis (ABPA) was diagnosed in the patient.
Key words: cystic fibrosis, non-tuberculous mycobacteria, allergic bronchopulmonary aspegillosis, antibiotics, systemic steroids
Collapse
Affiliation(s)
- Marija Atanasova Nadzinska
- Institute for pulmonary diseases in children, Department for cystic fibrosis, Faculty of Medicine, Ss. Cyril and Methodius University, Kozle Str. NN, 1000 Skopje, Republic of North Macedonia
| | - Tanja Jakjovska
- Institute for pulmonary diseases in children, Department for cystic fibrosis, Faculty of Medicine, Ss. Cyril and Methodius University, Kozle Str. NN, 1000 Skopje, Republic of North Macedonia
| | - Stojka Naceva Fushtikj
- University Pediatric Clinic, Department for cystic fibrosis, Faculty of Medicine, Ss. Cyril and Methodius University, Vodjanska Str. NN, 1000 Skopje, Republic of North Macedonia
| | - Kristina Mladenovska
- Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa Str. No 47, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
30
|
Ravnholt C, Kolpen M, Skov M, Moser C, Katzenstein TL, Pressler T, Høiby N, Qvist T. The importance of early diagnosis of Mycobacterium abscessus complex in patients with cystic fibrosis. APMIS 2018; 126:885-891. [PMID: 30456869 DOI: 10.1111/apm.12903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus complex can cause severe lung infections and has proven to be a serious threat to patients with cystic fibrosis and a challenge for clinicians due to difficulties in timely diagnosis and complex multidrug treatment regimes. Mycobacterial culture is the gold standard for diagnosis, but in most cystic fibrosis centers it is performed less frequently than culture for other pathogens. Consensus today recommends just one annual mycobacterial culture for asymptomatic patients with cystic fibrosis, a strategy likely to lead to diagnostic delays. Postponement of diagnosis might be the deciding factor in whether an early colonization turns into chronic infection. This review highlights the latest developments in knowledge about the pathogenicity and clinical consequences of M. abscessus complex pulmonary disease, addressing the central theme of why pulmonary infection requires early identification and aggressive antibiotic treatment. The window of opportunity, before M. abscessus complex transforms from a mucosal colonizer to a chronic biofilm infection, is where microbial eradication is most likely to be successful, making early diagnosis essential for improved outcomes.
Collapse
Affiliation(s)
- Cecilie Ravnholt
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Skov
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Rigshospitalet, Copenhagen, Denmark
| | - Claus Moser
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Terese L Katzenstein
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Tania Pressler
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Institute of Immunology and Medical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tavs Qvist
- Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
31
|
Rodríguez-Sevilla G, Rigauts C, Vandeplassche E, Ostyn L, Mahíllo-Fernández I, Esteban J, Peremarch CPJ, Coenye T, Crabbé A. Influence of three-dimensional lung epithelial cells and interspecies interactions on antibiotic efficacy against Mycobacterium abscessus and Pseudomonas aeruginosa. Pathog Dis 2018; 76:4966983. [PMID: 29648588 DOI: 10.1093/femspd/fty034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus lung infection is a major health problem for cystic fibrosis (CF) patients. Understanding the in vivo factors that influence the outcome of therapy may help addressing the poor correlation between in vitro and in vivo antibiotic efficacy. We evaluated the influence of interspecies interactions and lung epithelial cells on antibiotic efficacy. Therefore, single and dual-species biofilms of M. abscessus and a major CF pathogen (Pseudomonas aeruginosa) were cultured on a plastic surface or on in vivo-like three-dimensional (3-D) lung epithelial cells, and the activity of antibiotics (colistin, amikacin, clarithromycin, ceftazidime) in inhibiting biofilm formation was evaluated. Using the most physiologically relevant model (dual-species biofilms on 3-D cells), we observed that treatment with antibiotics during biofilm development inhibited P. aeruginosa but not M. abscessus biofilms, resulting in a competitive advantage for the latter. Clarithromycin efficacy against P. aeruginosa was inhibited by 3-D lung cells. In addition, biofilm induction of M. abscessus was observed by certain antibiotics on plastic but not on 3-D cells. Pseudomonas aeruginosa influenced the efficacy of certain antibiotics against M. abscessus, but not vice versa. In conclusion, these results suggest a role of host cells and interspecies interactions in bacterial responses to antimicrobials.
Collapse
Affiliation(s)
| | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS- Fundación Jiménez Díaz, UAM, Madrid, 28040 Madrid, Spain
| | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
32
|
Diagnosis of nontuberculous mycobacterial disease in the era of surveillance chest CT scans. Infection 2018; 46:861-865. [PMID: 30298470 DOI: 10.1007/s15010-018-1232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
The radiologic surveillance of smokers with low-dose CT scan has led to a significant surge of radiologic incidental findings, including the detection of early stages of pulmonary infections including nontuberculous mycobacteria (NTM). This causes a state of overdiagnosis and potential overtreatment of NTM lung disease. Here we propose a new approach to NTM pulmonary disease in the era of increased CT scanning.
Collapse
|
33
|
Prevalence and clinical outcomes of nontuberculous mycobacteria in a Brazilian cystic fibrosis reference center. Pathog Dis 2018; 76:5017445. [DOI: 10.1093/femspd/fty051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
|
34
|
Schäfer J, Griese M, Chandrasekaran R, Chotirmall SH, Hartl D. Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis. BMC Pulm Med 2018; 18:79. [PMID: 29788954 PMCID: PMC5964733 DOI: 10.1186/s12890-018-0630-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Bronchiectasis is a common feature of severe inherited and acquired pulmonary disease conditions. Among inherited diseases, cystic fibrosis (CF) is the major disorder associated with bronchiectasis, while acquired conditions frequently featuring bronchiectasis include post-infective bronchiectasis and chronic obstructive pulmonary disease (COPD). Mechanistically, bronchiectasis is driven by a complex interplay of inflammation and infection with neutrophilic inflammation playing a predominant role. The clinical characterization and management of bronchiectasis should involve a precise diagnostic workup, tailored therapeutic strategies and pulmonary imaging that has become an essential tool for the diagnosis and follow-up of bronchiectasis. Prospective future studies are required to optimize the diagnostic and therapeutic management of bronchiectasis, particularly in heterogeneous non-CF bronchiectasis populations.
Collapse
Affiliation(s)
- Jürgen Schäfer
- Department of Radiology, Division of Pediatric Radiology, University of Tübingen, Tübingen, Germany.
| | | | | | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.,Roche Pharma Research & Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
35
|
Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol 2018; 308:413-423. [PMID: 29555180 DOI: 10.1016/j.ijmm.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/17/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin.
Collapse
|
36
|
Fungi in Bronchiectasis: A Concise Review. Int J Mol Sci 2018; 19:ijms19010142. [PMID: 29300314 PMCID: PMC5796091 DOI: 10.3390/ijms19010142] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022] Open
Abstract
Although the spectrum of fungal pathology has been studied extensively in immunosuppressed patients, little is known about the epidemiology, risk factors, and management of fungal infections in chronic pulmonary diseases like bronchiectasis. In bronchiectasis patients, deteriorated mucociliary clearance—generally due to prior colonization by bacterial pathogens—and thick mucosity propitiate, the persistence of fungal spores in the respiratory tract. The most prevalent fungi in these patients are Candida albicans and Aspergillus fumigatus; these are almost always isolated with bacterial pathogens like Haemophillus influenzae and Pseudomonas aeruginosa, making very difficult to define their clinical significance. Analysis of the mycobiome enables us to detect a greater diversity of microorganisms than with conventional cultures. The results have shown a reduced fungal diversity in most chronic respiratory diseases, and that this finding correlates with poorer lung function. Increased knowledge of both the mycobiome and the complex interactions between the fungal, viral, and bacterial microbiota, including mycobacteria, will further our understanding of the mycobiome’s relationship with the pathogeny of bronchiectasis and the development of innovative therapies to combat it.
Collapse
|
37
|
Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, Leitch A, Loebinger MR, Milburn HJ, Nightingale M, Ormerod P, Shingadia D, Smith D, Whitehead N, Wilson R, Floto RA. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017; 72:ii1-ii64. [DOI: 10.1136/thoraxjnl-2017-210927] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 01/18/2023]
|
38
|
Bouso JM, Burns JJ, Amin R, Livingston FR, Elidemir O. Household proximity to water and nontuberculous mycobacteria in children with cystic fibrosis. Pediatr Pulmonol 2017; 52:324-330. [PMID: 28135043 DOI: 10.1002/ppul.23646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/06/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) have a particular affinity for patients with cystic fibrosis (CF). Recent studies suggest a possible relationship between acquiring NTM and the level of environmental water in a given area. We sought to determine if there is an association between household proximity to water and NTM in children with CF. MATERIALS AND METHODS An IRB-approved retrospective chart review was completed on 150 children with CF in Florida. Inclusion criteria required regular follow-up, at least two acid-fast bacilli cultures, and a consistent home address over a 3-year period. The distance from each patient's home to the nearest body of water was measured using ArcMap®, a Geographic Information System, and the mean distance to water for NTM-positive and NTM-negative groups were compared. A stepwise backwards logistic regression was used to evaluate for predictors of NTM-positivity. RESULTS Of the 150 CF patients, 65 met inclusion criteria and 21 (32.3%) tested positive for NTM. Comparison of the mean distance to water for NTM-positive versus NTM-negative groups revealed a cutoff of 500 meters. On the logistic regression, CF patients who lived within 500 meters of water were 9.4 times more likely to acquire NTM (P = 0.013). Other significant predictors included a history of Aspergillus fumigatus (OR 7.9, P = 0.011) and recent history of Pseudomonas aeruginosa (OR 2.5, P = 0.007). CONCLUSIONS In the regions studied, children with CF who live closer to water are more likely to acquire nontuberculous mycobacteria. Future studies in other geographic areas are needed to determine if these results are generalizable. Pediatr Pulmonol. 2017;52:324-330. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Bouso
- Pediatric Residency Program at Sacred Heart Hospital, University of Florida, Pensacola, Florida.,Department of Pediatric Pulmonology, Nemours Children's Specialty Care, Pensacola, Florida
| | - James J Burns
- Pediatric Residency Program at Sacred Heart Hospital, University of Florida, Pensacola, Florida
| | - Raid Amin
- Department of Mathematics and Statistics, University of West Florida, Pensacola, Florida
| | - Floyd R Livingston
- Department of Pediatric Pulmonology, Nemours Children's Specialty Care, Orlando, Florida
| | - Okan Elidemir
- Pediatric Residency Program at Sacred Heart Hospital, University of Florida, Pensacola, Florida.,Department of Pediatric Pulmonology, Nemours Children's Specialty Care, Pensacola, Florida
| |
Collapse
|
39
|
De Soyza A, Aliberti S. Bronchiectasis and Aspergillus: How are they linked? Med Mycol 2016; 55:69-81. [PMID: 27794529 DOI: 10.1093/mmy/myw109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/25/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
Bronchiectasis is a chronic airway infection syndrome, distinct from cystic fibrosis that is rising in prevalence and is associated with significant morbidity and mortality. It can be caused by many etiologies including post-infectious effects or be seen in common lung diseases such as chronic obstructive pulmonary disease (COPD) or severe asthma. Bronchiectasis is associated with many Aspergillus-associated syndromes: allergic bronchopulmonary aspergillosis (ABPA) may complicate asthma, thus leading to bronchiectasis as part of the diagnostic criteria of ABPA or can complicate preexisting bronchiectasis due to another etiology. Aspergilloma can develop in areas of lung damage seen in patients with bronchiectasis, whereas fungal bronchitis may lead to later bronchiectasis. Invasive aspergillosis, perhaps more commonly viewed as a consequence of significant immunosuppression, is also seen in the absence of immunosuppression in those with underlying lung diseases including bronchiectasis. The pathogenesis and treatments of these diverse Aspergillus-associated diseases in bronchiectasis are discussed.
Collapse
Affiliation(s)
- Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University NE2 4HH; and Adult Bronchiectasis Service, Department of Respiratory Medicine, Freeman Hospital, Heaton Road, Newcastle, NE7 7DN, UK
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
40
|
Skolnik K, Kirkpatrick G, Quon BS. Nontuberculous Mycobacteria in Cystic Fibrosis. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2016; 8:259-274. [PMID: 28035194 PMCID: PMC5155018 DOI: 10.1007/s40506-016-0092-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nontuberculous mycobacteria (NTM) are found in approximately 10 % of cystic fibrosis (CF) patients, but only a portion will develop NTM disease. The management of CF lung disease should be optimized, including antibiotic therapy targeted to the individual's usual airway bacteria, prior to considering treatment for NTM lung disease. Those who meet criteria for NTM lung disease may not necessarily require treatment and could be monitored expectantly if symptoms and radiographic findings are minimal. However, the presence of Mycobacterium abscessus complex (MABSC), severe lung disease, and/or anticipated lung transplant should prompt NTM therapy initiation. For CF patients with Mycobacterium avium complex (MAC), recommended treatment includes triple antibiotic therapy with a macrolide, rifampin, and ethambutol. Azithromycin is generally our preferred macrolide in CF as it is better tolerated and has fewer drug-drug interactions. MABSC treatment is more complex and requires an induction phase (oral macrolide and two IV agents including amikacin) as well as a maintenance phase (nebulized amikacin and two to three oral antibiotics including a macrolide). The induction phase may range from one to three months (depending on infection severity, treatment response, and medication tolerability). For both MAC and MABSC, treatment duration is extended 1-year post-culture conversion. However, in patients who do not achieve culture negative status but tolerate therapy, we consider ongoing treatment for mycobacterial suppression and prevention of disease progression.
Collapse
Affiliation(s)
- Kate Skolnik
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, Alberta Canada
- Department of Medicine, Division of Respirology, University of British Columbia, Vancouver, BC Canada
- Rockyview General Hospital Respirology Offices, 7007 14th Street SW, Calgary, AB T2V 1P9 Canada
| | - Gordon Kirkpatrick
- Department of Medicine, Division of Respirology, University of British Columbia, Vancouver, BC Canada
| | - Bradley S. Quon
- Department of Medicine, Division of Respirology, University of British Columbia, Vancouver, BC Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC Canada
- St. Paul’s Hospital, 8B Providence Wing, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| |
Collapse
|