1
|
Gronau L, Duecker RP, Jerkic SP, Eickmeier O, Trischler J, Chiocchetti AG, Blumchen K, Zielen S, Schubert R. Dual Role of microRNA-146a in Experimental Inflammation in Human Pulmonary Epithelial and Immune Cells and Expression in Inflammatory Lung Diseases. Int J Mol Sci 2024; 25:7686. [PMID: 39062931 PMCID: PMC11276706 DOI: 10.3390/ijms25147686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
microRNA (miR)-146a emerges as a promising post-transcriptional regulator in various inflammatory diseases with different roles for the two isoforms miR-146a-5p and miR-146a-3p. The present study aimed to examine the dual role of miR-146a-5p and miR-146a 3p in the modulation of inflammation in human pulmonary epithelial and immune cells in vitro as well as their expression in patients with inflammatory lung diseases. Experimental inflammation in human A549, HL60, and THP1 via the NF-kB pathway resulted in the major upregulation of miR-146a-5p and miR-146a-3p expression, which was partly cell-specific. Modulation by transfection with miRNA mimics and inhibitors demonstrated an anti-inflammatory effect of miR-146a-5p and a pro-inflammatory effect of miR-146a-3p, respectively. A mutual interference between miR-146a-5p and miR-146a-3p was observed, with miR-146a-5p exerting a predominant influence. In vivo NGS analyses revealed an upregulation of miR-146a-3p in the blood of patients with cystic fibrosis and bronchiolitis obliterans, while miR-146a-5p levels were downregulated or unchanged compared to controls. The reverse pattern was observed in patients with SARS-CoV-2 infection. In conclusion, miR-146a-5p and miR-146a-3p are two distinct but interconnected miRNA isoforms with opposing functions in inflammation regulation. Understanding their interaction provides important insights into the progression and persistence of inflammatory lung diseases and might provide potential therapeutic options.
Collapse
Affiliation(s)
- Lucia Gronau
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Ruth P. Duecker
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Silvija-Pera Jerkic
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Olaf Eickmeier
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Jordis Trischler
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Katharina Blumchen
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Stefan Zielen
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany;
| | - Ralf Schubert
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| |
Collapse
|
2
|
Gutmann D, Dressler M, Eickmeier O, Herrmann E, Kirwil M, Schubert R, Zielen S, Zissler UM. Proinflammatory pattern in the lower airways of non-asthmatic obese adolescents. Cytokine 2024; 173:156452. [PMID: 38039695 DOI: 10.1016/j.cyto.2023.156452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Obesity is known to be a pro-inflammatory condition affecting multiple organs. Obesity as a systemic pro-inflammatory state, might be associated with bronchial inflammation in non-smoking adolescents with a BMI ≥ 30 kg/m2 without evidence of concomitant chronic diseases. MATERIALS AND METHODS We studied non-asthmatic obese patients (n = 20; median age 15.8 years; BMI 35.0 kg/m2) compared to age matched healthy control subjects (n = 20; median age 17.5 years; BMI 21.5 kg/m2). Induced sputum differential cell counts and sputum mRNA levels were assessed for all study subjects. Serum levels of CRP, IL-6, and IL-8 were measured. Further, IL-5, IL-6, IL-8, IL-13, IL-17, TNF-α, IFN-γ, and IP-10 protein levels were analyzed in induced sputum was. RESULTS Serum CRP levels, sputum inflammatory cell load and sputum eosinophils differed significantly between obese and non-obese subjects, for sputum neutrophils, a correlation was shown with BMI ≥ 30 kg/m2. Differences were also observed for sputum mRNA expression of IL6, IL8, IL13, IL17, IL23, and IFN-γ, as well as the transcription factors T-bet, GATA3, and FoxP3. CONCLUSIONS Increased bronchial inflammation, triggered by systemic or local inflammatory effects of obesity itself, may account for the higher rates of airway disease in obese adolescents.
Collapse
Affiliation(s)
- Desiree Gutmann
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Melanie Dressler
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt, Germany
| | - Marta Kirwil
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Center for Environmental Health (HMGU), Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.
| |
Collapse
|
3
|
Jerkic SP, Bächle L, Duecker RP, Gronau L, Chiocchetti AG, Zielen S, Schubert R. Association between Polyunsaturated Fatty Acid Profile and Bronchial Inflammation in Bronchiolitis Obliterans. Mediators Inflamm 2023; 2023:3406399. [PMID: 37448886 PMCID: PMC10338129 DOI: 10.1155/2023/3406399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/23/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Bronchiolitis obliterans (BO) is a chronic lung disease, which occurs after an insult to the lower airways, in particular after airway infections or after stem cell transplantation, and which results in persistent inflammation. N-3 and n-6 polyunsaturated fatty acids (PUFA) have been shown to influence the inflammatory processes in chronic inflammatory conditions. Since BO is maintained by persistent pulmonary inflammation, a disbalanced n-6/n-3 fatty acid profile could support the inflammatory process in patients with BO and therefore, could become an approach to new therapeutic options. Methods Twenty-five patients with BO (age: 13; 7-39) and 26 healthy controls (age: 19; 7-31) participated in the study. Lung function (forced viral capacity (FVC), forced expiratory volume 1 (FEV1), residual volume (RV)), and lung clearance index (LCI) were measured. Induced sputum was analyzed for cytology and cytokine levels (IL-1ß, IL-6, IL-8, TNF-α) using cytometric bead array (CBA). The PUFA profile was determined in the serum and induced sputum by gas chromatography. Results Patients presented with significantly lower FVC and FEV1 as well as higher RV and LCI measurements compared to the control group. Apart from a massive airway inflammation indicated by elevated numbers of total cells and neutrophils, the CBA analysis showed significantly increased levels of IL-1β, IL-6, and IL-8. The analysis of PUFA in sputum and serum revealed a significant difference in the ratio between the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA) (AA : DHA). Furthermore, the AA : DHA ratio significantly correlated with the inflammatory cytokines in induced sputum. Conclusion Lung function in BO is significantly impaired and associated with uncontrolled neutrophil-dominated airway inflammation. Furthermore, the imbalance in the AA/DHA ratio in favor of n-6 PUFA demonstrates a pro-inflammatory microenvironment in the cell membrane, which correlates with the inflammatory cytokines in induced sputum and might be an option for an anti-inflammatory therapy in BO.
Collapse
Affiliation(s)
- Silvija P. Jerkic
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Laura Bächle
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ruth Pia Duecker
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Lucia Gronau
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
- Department of Food Technology, University of Applied Science, Fulda, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-University, Frankfurt am Main 60590, Germany
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
5
|
Schröder A, Lunding LP, Zissler UM, Vock C, Webering S, Ehlers JC, Orinska Z, Chaker A, Schmidt‐Weber CB, Lang NJ, Schiller HB, Mall MA, Fehrenbach H, Dinarello CA, Wegmann M. IL-37 regulates allergic inflammation by counterbalancing pro-inflammatory IL-1 and IL-33. Allergy 2022; 77:856-869. [PMID: 34460953 DOI: 10.1111/all.15072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation. METHODS IL-37 target cells were identified by single-cell RNA-seq of IL-1R5 and IL-1R8. Airway tissues were isolated by laser-capture microdissection and examined by microarray-based gene expression analysis. Mononuclear cells (MNC) and airway epithelial cells (AECs) were isolated and stimulated with allergen, IL-1β, or IL-33 together with recombinant human (rh) IL-37. Wild-type, IL-1R1- and IL-33-deficient mice with EAA were treated with rhIL-37. IL-1β, IL-33, and IL-37 levels were determined in sputum and nasal secretions from adult asthma patients without glucocorticoid therapy. RESULTS IL-37 target cells included AECs, T cells, and dendritic cells. In mice with EAA, rhIL-37 led to differential expression of >90 genes induced by IL-1β and IL-33. rhIL-37 reduced production of Th2 cytokines in allergen-activated MNCs from wild-type but not from IL-1R1-deficient mice and inhibited IL-33-induced Th2 cytokine release. Furthermore, rhIL-37 attenuated IL-1β- and IL-33-induced pro-inflammatory mediator expression in murine AEC cultures. In contrast to wild-type mice, hIL-37 had no effect on EAA in IL-1R1- or IL-33-deficient mice. We also observed that expression/production ratios of both IL-1β and IL-33 to IL-37 were dramatically increased in asthma patients compared to healthy controls. CONCLUSION IL-37 downregulates allergic airway inflammation by counterbalancing the disease-amplifying effects of IL-1β and IL-33.
Collapse
Affiliation(s)
- Alexandra Schröder
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Lars P. Lunding
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Christina Vock
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Sina Webering
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Johanna C. Ehlers
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Zane Orinska
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical, University of Munich Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Niklas J. Lang
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine Charité ‐ Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- German Center for Lung Research (DZL), associated partner site Berlin Germany
| | - Heinz Fehrenbach
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Charles A. Dinarello
- Department of Medicine University of Colorado Denver Denver CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Michael Wegmann
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| |
Collapse
|
6
|
Ionescu MI, Neagoe DȘ, Crăciun AM, Moldovan OT. The Gram-Negative Bacilli Isolated from Caves- Sphingomonas paucimobilis and Hafnia alvei and a Review of Their Involvement in Human Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042324. [PMID: 35206510 PMCID: PMC8872274 DOI: 10.3390/ijerph19042324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
The opportunistic infections with Gram-negative bacilli are frequently reported. The clinical studies are focused on the course of human infectious and very often the source of infection remain unclear. We aim to see if the Gram-negative bacilli isolated from a non-contaminated environment—the caves—are reported in human infections. Eleven samples were collected from six Romanian caves. We used the standard procedure used in our clinical laboratory for bacterial identification and for antibiotic susceptibility testing of the cave isolates. Out of the 14 bacterial strains, three isolates are Gram-negative bacilli—one isolate belong to Hafnia alvei and two strains belong to Sphingomonas paucimobilis. We screened for the published studies—full-text original articles or review articles—that reported human infections with S. paucimobilis and H. alvei. Data sources—PubMed and Cochrane library. We retrieved 447 cases from 49 references—262 cases (58.61%) are S. paucimobilis infections and 185 cases (41.39%) are H. alvei infections. The types of infections are diverse but there are some infections more frequent; there are 116 cases (44.27%) and many infections of the bloodstream with S. paucimobilius (116 cases) and 121 cases (65.41%) are urinary tract infections with H. alvei. The acquired source of the bloodstream infections is reported for 93 of S. paucimobilis bloodstream infections—50 cases (43%) are hospital-acquired, and 40 cases (37%) are community-acquired. Most of the infections are reported in patients with different underlying conditions. There are 80 cases (17.9%) are reported of previously healthy persons. Out of the 72 cases of pediatric infections, 62 cases (86.11%) are caused by S. paucimobilis. There are ten death casualties—three are H. alvei infections, and seven are S. paucimobilis infections.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania;
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania;
- Correspondence:
| | - Dan Ștefan Neagoe
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania;
| | | | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Clinicilor 5, 400006 Cluj-Napoca, Romania;
- Romanian Institute of Science and Technology, Saturn 24-26, 400504 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Lepissier A, Addy C, Hayes K, Noel S, Bui S, Burgel PR, Dupont L, Eickmeier O, Fayon M, Leal T, Lopes C, Downey DG, Sermet-Gaudelus I. Inflammation biomarkers in sputum for clinical trials in cystic fibrosis: current understanding and gaps in knowledge. J Cyst Fibros 2021; 21:691-706. [PMID: 34772643 DOI: 10.1016/j.jcf.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Sputum biomarkers hold promise as a direct measure of inflammation within the cystic fibrosis (CF) lung, but variability in study design and sampling methodology have limited their use. A full evaluation of the reliability, validity and clinical relevance of individual biomarkers is required to optimise their use within CF clinical research. OBJECTIVES A biomarker Special Interest Working Group was established within the European Cystic Fibrosis Society-Clinical Trials Network Standardisation Committee, to perform a review of the evidence regarding sputum biomarkers in CF. METHODS From the 139 included articles, we identified 71 sputum biomarkers to undergo evaluation of their clinimetric properties, responsiveness, discriminant, concurrent and convergent validity. RESULTS Current evidence confirms the potential of sputum biomarkers as outcome measures in clinical trials. Inconsistency in responsiveness, concurrent and convergent validity require further research into these markers and processing standardisation before translation into wider use. Of the 71 biomarkers identified, Neutrophil Elastase (NE), IL-8, TNF-α and IL-1β, demonstrated validity and responsiveness to be currently considered for use in clinical trials. Other biomarkers show future promise, including IL-6, calprotectin, HMGB-1 and YKL-40. CONCLUSION A concerted international effort across the cystic fibrosis community is needed to promote high quality biomarker trial design, establish large population-based biomarker studies, and work together to create standards for collection, storage and analysis of sputum biomarkers.
Collapse
Affiliation(s)
- Agathe Lepissier
- Paediatric Center for Cystic Fibrosis, Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades 149 rue de Sévres, Paris 75743, France; INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France; European Reference Network (ERN Lung)
| | - Charlotte Addy
- Northern Ireland Clinical Research Facility, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL; All Wales Adult Cystic Fibrosis Centre, University Hopsital Llandough, Penlan Road, CF64 2XX
| | - Kate Hayes
- Northern Ireland Clinical Research Facility, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sabrina Noel
- INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France
| | - Stéphanie Bui
- Université de Bordeaux (INSERM U1045), CHU de Bordeaux, (CIC1401), F-33000 Bordeaux, France
| | - Pierre-Régis Burgel
- European Reference Network (ERN Lung); National Reference Cystic Fibrosis Center and Department of Respiratory Medicine, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, 75014, France; Institut Cochin, INSERM U1016 and Université de Paris; Paris 75014, France
| | - Lieven Dupont
- University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Olaf Eickmeier
- Facharzt für Kinder- und Jugendmedizin, Universitätsklinikum Frankfurt a.M., Johann Wolfgang-Goethe-Universität, Allergologie, Pneumologie & Mukoviszidose, Theodor-Stern-Kai 7, 60590 Frankfurt/Main
| | - Michael Fayon
- Université de Bordeaux (INSERM U1045), CHU de Bordeaux, (CIC1401), F-33000 Bordeaux, France
| | - Teresinha Leal
- Louvain Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carlos Lopes
- Departamento do Tórax, Hospital de Santa Maria, Lisbon
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Isabelle Sermet-Gaudelus
- Paediatric Center for Cystic Fibrosis, Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades 149 rue de Sévres, Paris 75743, France; INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France; European Reference Network (ERN Lung); Service de Pneumologie et Allergologie Pédiatriques, Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Necker Enfants Malades 149 rue de Sévres, INSERM U1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris 75743, France.
| |
Collapse
|
8
|
Jerkic SP, Koc-Günel S, Herrmann E, Kriszeleit L, Eckrich J, Schubert R, Zielen S. Long-term course of bronchial inflammation and pulmonary function testing in children with postinfectious bronchiolitis obliterans. Pediatr Pulmonol 2021; 56:2966-2972. [PMID: 34156164 DOI: 10.1002/ppul.25547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023]
Abstract
RATIONALE Postinfectious bronchiolitis obliterans (PIBO) is a rare, chronic respiratory condition, which follows an acute insult due to a severe infection of the lower airways. OBJECTIVES The objective of this study was to investigate the long-term course of bronchial inflammation and pulmonary function testing in children with PIBO. METHODS Medical charts of 21 children with PIBO were analyzed retrospectively at the Children's University Hospital Frankfurt/Main Germany. Pulmonary function tests (PFTs) with an interval of at least 1 month were studied between 2002 and 2019. A total of 382 PFTs were analyzed retrospectively and per year, the two best PFTs, in total 217, were evaluated. Additionally, 56 sputum analysis were assessed and the sputum neutrophils were evaluated. RESULTS The evaluation of the 217 PFTs showed a decrease in FEV1 with a loss of 1.07% and a loss in z score of -0.075 per year. FEV1/FVC decreased by 1.44 per year. FVC remained stable, showing a nonsignificant increase by 0.006 in z score per year. However, FEV1 and FVC in L increased significantly with FEV1 0.032 L per cm and FVC 0.048 L/cm in height. Sputum neutrophils showed a significant increase of 2.12% per year. CONCLUSION Our results demonstrated that in patients with PIBO pulmonary function decreased significantly showing persistent obstruction over an average follow-up period of 8 years. However, persistent lung growth was revealed. In addition, pulmonary inflammation persisted clearly showing an increasing amount of neutrophils in induced sputum. Patients did not present with a general susceptibility to respiratory infections.
Collapse
Affiliation(s)
- Silvija P Jerkic
- Department for Children and Adolescents, Division of Allergy, Pulmonology and Cystic fibrosis, University Hospital, Frankfurt, Germany
| | - Sinem Koc-Günel
- Department for Internal Medicine, Division of Allergy, Pulmonology and Cystic Fibrosis, University Hospital, Frankfurt, Germany
| | - Eva Herrmann
- Division of Biostatistics and Mathematical Modelling, Goethe University, Frankfurt, Germany
| | - Lia Kriszeleit
- Department for Children and Adolescents, Division of Allergy, Pulmonology and Cystic fibrosis, University Hospital, Frankfurt, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology Head- and Neck-Surgery, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergy, Pulmonology and Cystic fibrosis, University Hospital, Frankfurt, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergy, Pulmonology and Cystic fibrosis, University Hospital, Frankfurt, Germany
| |
Collapse
|
9
|
Liu Y, Zhang L, Li HL, Liang BM, Wang J, Zhang X, Chen ZH, Zhang HP, Xie M, Wang L, Wang G, Oliver BG. Small Airway Dysfunction in Asthma Is Associated with Perceived Respiratory Symptoms, Non-Type 2 Airway Inflammation, and Poor Responses to Therapy. Respiration 2021; 100:767-779. [PMID: 33895739 DOI: 10.1159/000515328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Emerging evidence has indicated that small airway dysfunction (SAD) contributes to the clinical expression of asthma. OBJECTIVES The aim of the study was to explore the relationships of SAD assessed by forced expiratory flow between 25 and 75% (FEF25-75%), with clinical and inflammatory profile and treatment responsiveness in asthma. METHOD In study I, dyspnea intensity (Borg scale), chest tightness, wheezing and cough (visual analog scales, VASs), and pre- and post-methacholine challenge testing (MCT) were analyzed in asthma patients with SAD and non-SAD. In study II, asthma subjects with SAD and non-SAD underwent sputum induction, and inflammatory mediators in sputum were detected. Asthma patients with SAD and non-SAD receiving fixed treatments were prospectively followed up for 4 weeks in study III. Spirometry, Asthma Control Questionnaire (ACQ), and Asthma Control Test (ACT) were carried out to define treatment responsiveness. RESULTS SAD subjects had more elevated ΔVAS for dyspnea (p = 0.027) and chest tightness (p = 0.032) after MCT. Asthma patients with SAD had significantly elevated interferon (IFN)-γ in sputum (p < 0.05), and Spearman partial correlation found FEF25-75% significantly related to IFN-γ and interleukin-8 (both having p < 0.05). Furthermore, multivariable regression analysis indicated SAD was significantly associated with worse treatment responses (decrease in ACQ ≥0.5 and increase in ACT ≥3) (p = 0.022 and p = 0.032). CONCLUSIONS This study indicates that SAD in asthma predisposes patients to greater dyspnea intensity and chest tightness during bronchoconstriction. SAD patients with asthma are characterized by non-type 2 inflammation that may account for poor responsiveness to therapy.
Collapse
Affiliation(s)
- Ying Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Lin Li
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Miao Liang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.,Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xin Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi Hong Chen
- Shanghai Institute of Respiratory Disease, Respiratory Division of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Ping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Wagner Mackenzie B, Dassi C, Vivekanandan A, Zoing M, Douglas RG, Biswas K. Longitudinal analysis of sinus microbiota post endoscopic surgery in patients with cystic fibrosis and chronic rhinosinusitis: a pilot study. Respir Res 2021; 22:106. [PMID: 33849523 PMCID: PMC8045235 DOI: 10.1186/s12931-021-01697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis is a debilitating, autosomal recessive disease which results in chronic upper and lower airway infection and inflammation. In this study, four adult patients presenting with cystic fibrosis and chronic rhinosinusitis were recruited. Culture and molecular techniques were employed to evaluate changes in microbial profiles, host gene expression and antimicrobial resistance (AMR) in the upper respiratory tract over time. METHODS Swab samples from the sinonasal cavity were collected at the time of surgery and at follow-up clinics at regular time intervals for up to 18 months. Nucleic acids were extracted, and DNA amplicon sequencing was applied to describe bacterial and fungal composition. In parallel, RNA was used to evaluate the expression of 17 AMR genes and two inflammatory markers (interleukins 6 and 8) using custom qPCR array cards. Molecular results were compared with routine sinus and sputum culture reports within each patient. RESULTS Bacterial amplicon sequencing and swab culture reports from the sinonasal cavity were mostly congruent and relatively stable for each patient across time. The predominant species detected in patients P02 and P04 were Pseudomonas aeruginosa, Staphylococcus aureus in patient P03, and a mixture of Enterobacter and S. aureus in patient P01. Fungal profiles were variable and less subject specific than bacterial communities. Increased expressions of interleukins 6 and 8 were observed in all patients throughout the sampling period compared with other measured genes. The most prevalent AMR gene detected was ampC. However, the prevalence of AMR gene expression was low in all patient samples across varying time-points. CONCLUSIONS We observed a surprising degree of stability of sinonasal microbial composition, and inflammatory and AMR gene expression across all patients post sinus surgery.
Collapse
Affiliation(s)
- Brett Wagner Mackenzie
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| | - Camila Dassi
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Anitha Vivekanandan
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Melissa Zoing
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| |
Collapse
|
11
|
Barber C, Lau L, Ward JA, Daniels T, Watson A, Staples KJ, Wilkinson TMA, Howarth PH. Sputum processing by mechanical dissociation: A rapid alternative to traditional sputum assessment approaches. CLINICAL RESPIRATORY JOURNAL 2021; 15:800-807. [PMID: 33749082 DOI: 10.1111/crj.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sputum cytology is currently the gold standard to evaluate cellular inflammation in the airways and phenotyping patients with airways diseases. Sputum eosinophil proportions have been used to guide treatment for moderate to severe asthma. Furthermore, raised sputum neutrophils are associated with poor disease control and impaired lung function in both asthma and COPD and small airways disease in cystic fibrosis. However, induced-sputum analysis is subjective and resource heavy, requiring dedicated specialist processing and assessment; this limits its utility in most clinical settings. Indirect blood eosinophil measures have been adopted in clinical care. However, there are currently no good peripheral blood biomarkers of airway neutrophils. A resource-light sputum processing approach could thus help integrate induced sputum more readily into routine clinical care. New mechanical disruption (MD) methods can rapidly obtain viable single cell suspensions from sputum samples. AIMS The aim of this study was to compare MD sputum processing to traditional methods for cell viability, granulocyte proportions and sputum cytokine analysis. METHODS Sputum plugs were split and processed using traditional methods and the MD method, and samples were then compared. RESULTS The MD method produced a homogeneous cell suspension in 62 s; 70 min faster than the standard method used. No significant difference was seen between the cell viability (p = 0.09), or the concentration of eosinophils (p = 0.83), neutrophils (p = 0.99) or interleukin-8 (p = 0.86) using MD. CONCLUSION This cost-effective method of sputum processing could provide a more pragmatic, sustainable means of directly monitoring the airway milieu. Therefore, we recommend this method be taken forward for further investigation.
Collapse
Affiliation(s)
- Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan A Ward
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Thomas Daniels
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton, UK
| | - Peter H Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
12
|
Walicka-Serzysko K, Postek M, Jeneralska N, Cichocka A, Milczewska J, Sands D. The effects of the addition of a new airway clearance device to chest physiotherapy in children with cystic fibrosis pulmonary exacerbations. JOURNAL OF MOTHER AND CHILD 2021; 24:16-24. [PMID: 33544556 PMCID: PMC8258837 DOI: 10.34763/jmotherandchild.20202403.2013.d-20-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chest physiotherapy plays a crucial role in managing cystic fibrosis, especially during pulmonary exacerbations. This study evaluated the effects of adding a new airway clearance device to chest physiotherapy in subjects with cystic fibrosis hospitalised due to pulmonary exacerbations. METHODS This prospective open-label study was carried out at the Pediatric Cystic Fibrosis Centre in Poland between October 2017 and August 2018. Cystic fibrosis patients aged 10 to 18 years who were admitted to the hospital and required intravenous antibiotic therapy due to pulmonary exacerbations were consecutively allocated (1:1) to either chest physiotherapy alone or chest physiotherapy with a new airway clearance device (Simeox; PhysioAssist). Patients performed spirometry and multiple-breath nitrogen washout for lung clearance index assessment upon admission and prior to discharge. RESULTS Forty-eight cystic fibrosis patients were included (24 in each group). Spirometry parameters in both groups improved significantly after intravenous antibiotic therapy. A significant improvement in the maximum expiratory flow at 25% of forced vital capacity was observed only in the group with a new airway clearance device (p < 0.01 vs. baseline). Trends towards a lower lung clearance index ratio were similar in both groups. No adverse events were observed in either group. CONCLUSIONS Spirometry parameters increased significantly in cystic fibrosis patients treated for pulmonary exacerbations with intravenous antibiotic therapy and intensive chest physiotherapy. The new airway clearance device was safe and well tolerated when added to chest physiotherapy and may be another option for the treatment of pulmonary exacerbation in cystic fibrosis.
Collapse
Affiliation(s)
- Katarzyna Walicka-Serzysko
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland,Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland, E-mail:
| | - Magdalena Postek
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland,Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
| | | | | | - Justyna Milczewska
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland,Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
| | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland,Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
| |
Collapse
|
13
|
Turner MJ, Dauletbaev N, Lands LC, Hanrahan JW. The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. J Pharmacol Exp Ther 2020; 375:414-429. [PMID: 33012706 DOI: 10.1124/jpet.120.000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel that impair airway salt and fluid secretion. Excessive release of proinflammatory cytokines and chemokines by CF bronchial epithelium during airway infection leads to chronic inflammation and a slow decline in lung function; thus, there is much interest in finding safe and effective treatments that reduce inflammation in CF. We showed previously that the cyclic nucleotide phosphodiesterase (PDE) inhibitor ensifentrine (RPL554; Verona Pharma) stimulates the channel function of CFTR mutants with abnormal gating and also those with defective trafficking that are partially rescued using a clinically approved corrector drug. PDE inhibitors also have known anti-inflammatory effects; therefore, we examined whether ensifentrine alters the production of proinflammatory cytokines in CF bronchial epithelial cells. Ensifentrine reduced the production of monocyte chemoattractant protein-1 and granulocyte monocyte colony-stimulating factor (GM-CSF) during challenge with interleukin-1β Comparing the effect of ensifentrine with milrinone and roflumilast, selective PDE3 and PDE4 inhibitors, respectively, demonstrated that the anti-inflammatory effect of ensifentrine was mainly due to inhibition of PDE4. Beneficial modulation of GM-CSF was further enhanced when ensifentrine was combined with low concentrations of the β 2-adrenergic agonist isoproterenol or the corticosteroid dexamethasone. The results indicate that ensifentrine may have beneficial anti-inflammatory effects in CF airways particularly when used in combination with β 2-adrenergic agonists or corticosteroids. SIGNIFICANCE STATEMENT: Airway inflammation that is disproportionate to the burden of chronic airway infection causes much of the pathology in the cystic fibrosis (CF) lung. We show here that ensifentrine beneficially modulates the release of proinflammatory factors in well differentiated CF bronchial epithelial cells that is further enhanced when combined with β2-adrenergic agonists or low-concentration corticosteroids. The results encourage further clinical testing of ensifentrine, alone and in combination with β2-adrenergic agonists or low-concentration corticosteroids, as a novel anti-inflammatory therapy for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Nurlan Dauletbaev
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Larry C Lands
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - John W Hanrahan
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| |
Collapse
|
14
|
Lee AJ, Einarsson GG, Gilpin DF, Tunney MM. Multi-Omics Approaches: The Key to Improving Respiratory Health in People With Cystic Fibrosis? Front Pharmacol 2020; 11:569821. [PMID: 33013411 PMCID: PMC7509435 DOI: 10.3389/fphar.2020.569821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The advent of high-throughput multi-omics technologies has underpinned the expansion in lung microbiome research, increasing our understanding of the nature, complexity and significance of the polymicrobial communities harbored by people with CF (PWCF). Having established that structurally complex microbial communities exist within the airways, the focus of recent research has now widened to investigating the function and dynamics of the resident microbiota during disease as well as in health. With further refinement, multi-omics approaches present the opportunity to untangle the complex interplay between microbe-microbe and microbe-host interactions in the lung and the relationship with respiratory disease progression, offering invaluable opportunities to discover new therapeutic approaches for our management of airway infection in CF.
Collapse
Affiliation(s)
- Andrew J. Lee
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Gisli G. Einarsson
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F. Gilpin
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Michael M. Tunney
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Calprotectin as a New Sensitive Marker of Neutrophilic Inflammation in Patients with Bronchiolitis Obliterans. Mediators Inflamm 2020; 2020:4641585. [PMID: 32410855 PMCID: PMC7211255 DOI: 10.1155/2020/4641585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/10/2020] [Accepted: 04/04/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Bronchiolitis obliterans (BO) is a chronic disease in which persistent inflammation leads to obstruction and obliteration of the small airways. The aim of this study was to evaluate the value of calprotectin as an inflammatory marker in induced sputum. Methods Twenty-eight patients suffering from BO and 18 healthy controls were examined. Lung function was measured by spirometry, body plethysmography, and lung clearance index (LCI). The induced sputum was obtained, cell counts were performed, and cytokines were measured using cytometric bead array (CBA). Calprotectin was quantified in the sputum and serum samples using commercially available sandwich ELISA. Results Spirometry parameters including forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and maximum expiratory flow rate at 25% vital capacity (MEF25) were significantly lower in BO patients than in healthy controls, whereas the reserve volume (RV), RV to total lung capacity ratio (RV/TLC), and LCI were significantly increased. In sputum, calprotectin levels, neutrophils, and IL-8 were significantly elevated. Calprotectin levels correlated strongly with IL-8 and other biomarkers, neutrophils FEV1 and MEF25. In serum, calprotectin was significantly diminished in BO patients compared to controls. Conclusion Lung function is severely impaired in BO patients. Calprotectin is significantly elevated in the sputum of BO patients and reflects ongoing neutrophilic inflammation.
Collapse
|
16
|
Tran HB, Macowan MG, Abdo A, Donnelley M, Parsons D, Hodge S. Enhanced inflammasome activation and reduced sphingosine-1 phosphate S1P signalling in a respiratory mucoobstructive disease model. JOURNAL OF INFLAMMATION-LONDON 2020; 17:16. [PMID: 32336954 PMCID: PMC7175514 DOI: 10.1186/s12950-020-00248-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Background Inflammasomes and sphingosine-1-phosphate (S1P) signalling are increasingly subject to intensive research in human diseases. We hypothesize that in respiratory muco-obstructive diseases, mucus obstruction enhances NLRP3 inflammasome activation and dysregulated S1P signalling. Methods Lung tissues from mice overexpressing the beta-unit of the epithelial sodium channel (βENaC) and their littermate controls were examined by histology, immunofluorescence and confocal microscopy, followed by ImageJ quantitative analysis. Results Lower airways in βENaC mice showed patchy patterns of mucus obstruction and neutrophil-dominant infiltrations. In contrast to a ubiquitous distribution of TNFα specks, significantly (p < 0.05) increased specks of bronchiolar NLRP3, IL-1β, and IgG in the βENaC mouse lungs were localized to the vicinity of mucus obstruction sites. Bright Spinster homologue 2 (SPNS2) at the epithelial apex and positive correlation with sphingosine kinase 1 (SPHK1) (R2 = 0.640; p < 0.001) supported the normal bronchial epithelium as an active generator of extracellular S1P. SPNS2 in βENaC mice was sharply reduced (38%, p < 0.05) and lost apical localization at sites of mucus obstruction. A significant (34%; p < 0.01) decrease in epithelial SPHK2 was also noted at mucus obstruction sites. Conclusion These results support that mucus obstruction may enhance NLRP3 inflammasome activation and dysregulated S1P signaling.
Collapse
Affiliation(s)
- Hai B Tran
- 1Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,2Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Matthew G Macowan
- 1Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,2Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Adrian Abdo
- 2Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- 2Adelaide Medical School, University of Adelaide, Adelaide, Australia.,3Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, Australia.,4Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - David Parsons
- 2Adelaide Medical School, University of Adelaide, Adelaide, Australia.,3Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, Australia.,4Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sandra Hodge
- 1Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,2Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
|
18
|
Abstract
PURPOSE OF REVIEW Cystic fibrosis (CF) is commonly associated with compromised growth especially in severe cases when the pulmonary function (PFT) deteriorates. As growth optimization is an important aspect of CF management, this review will summarize the current knowledge on the prevalence of growth failure in CF patients, and focus on the mechanisms leading to poor growth, on the association of poor linear growth with reduced PFT and on recombinant human growth hormone (rhGH) therapy in CF patients. RECENT FINDINGS Despite the improvement in CF care in the last 2 decades, compromised linear growth is still quite prevalent. The pathophysiology of growth failure in CF is multifactorial. Malnutrition due to decreased energy intake increased energy expenditure and malabsorption of ingested nutrients secondary to pancreatic insufficiency, all probably play a major role in growth restriction. In addition, chronic inflammation characteristic of CF may contribute to growth failure via alteration in the GH-insulin-like growth factor 1 signaling and other changes in the growth plate. rhGH and new CFTR modulators may improve some growth parameters. SUMMARY Beyond optimizing nutrition and malabsorption, and controlling chronic inflammation, children with CF may benefit from the anabolic effects of rhGH therapy to improve their anthropometric parameters. Whether this translates into better PFT and improved long-term outcomes is yet to be determined.
Collapse
Affiliation(s)
- Eran Lavi
- Division of Pediatric Endocrinology, Pediatric Endocrinology Unit
| | - Alex Gileles-Hillel
- Pediatric Pulmonology and CF Unit, Department of Pediatrics
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Pediatric Endocrinology Unit
| |
Collapse
|
19
|
Jaques R, Shakeel A, Hoyle C. Novel therapeutic approaches for the management of cystic fibrosis. Multidiscip Respir Med 2020; 15:690. [PMID: 33282281 PMCID: PMC7706361 DOI: 10.4081/mrm.2020.690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic condition characterised by the build-up of thick, sticky mucus that can damage many of the body's organs. It is a life-long disease that results in a shortened life expectancy, often due to the progression of advanced lung disease. Treatment has previously targeted the downstream symptoms such as diminished mucus clearance and recurrent infection. More recently, significant advances have been made in treating the cause of the disease by targeting the faulty gene responsible. Hope for the development of potential therapies lies with ongoing research into new pharmacological agents and gene therapy. This review gives an overview of CF, and summarises the current evidence regarding the disease management and upcoming strategies aimed at treating or potentially curing this condition.
Collapse
Affiliation(s)
- Ryan Jaques
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, UK
| | | | | |
Collapse
|
20
|
Eickmeier O, Zissler UM, Wittschorek J, Unger F, Schmitt-Grohé S, Schubert R, Herrmann E, Zielen S. Clinical relevance of Aspergillus fumigatus sensitization in cystic fibrosis. Clin Exp Allergy 2020; 50:325-333. [PMID: 31886564 DOI: 10.1111/cea.13557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE The clinical relevance of sensitization to Aspergillus (A) fumigatus in cystic fibrosis (CF) is unclear. Some researchers propose that specific A fumigatus IgE is an innocent bystander, whereas others describe it as the major cause of TH-2-driven asthma-like disease. OBJECTIVES Lung function parameters in mild CF patients may be different in patients with and without A fumigatus sensitization. We aimed to ascertain whether allergen exposure to A fumigatus by bronchial allergen provocation (BAP) induces TH-2 inflammation comparable to an asthma-like disease. METHODS A total of 35 patients, aged 14.8 ± 8.5 years, and 20 healthy controls were investigated prospectively. The patients were divided into two groups: group 1 (n = 18): specific (s)IgE negative, and group 2 (n = 17): sIgE positive (≥0.7 KU/L) for A fumigatus. Lung function, exhaled NO, and induced sputum were analysed. All sensitized patients with an FEV1 > 75% (n = 13) underwent BAP with A fumigatus, and cell counts, and the expression of IL-5, IL-13, INF-γ, and IL-8 as well as transcription factors T-bet, GATA-3, and FoxP3, were measured. RESULTS Lung function parameters decreased significantly compared to controls, but not within the CF patient group. After BAP, 8 of 13 patients (61%) had a significant asthmatic response and increased eNO 24 hours later. In addition, marked TH-2-mediated inflammation involving eosinophils, IL-5, IL-13, and FoxP3 became apparent in induced sputum cells. CONCLUSION Our study demonstrated the clinical relevance of A fumigatus for the majority of sensitized CF patients. A distinct IgE/TH-2-dominated inflammation was found in induced sputum after A fumigatus exposure.
Collapse
Affiliation(s)
- Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Julia Wittschorek
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Frederike Unger
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Sabina Schmitt-Grohé
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe University, Frankfurt, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
22
|
Hovold G, Palmcrantz V, Kahn F, Egesten A, Påhlman LI. Heparin-binding protein in sputum as a marker of pulmonary inflammation, lung function, and bacterial load in children with cystic fibrosis. BMC Pulm Med 2018; 18:104. [PMID: 29925362 PMCID: PMC6011334 DOI: 10.1186/s12890-018-0668-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Background Cystic fibrosis (CF) is associated with bacterial pulmonary infections and neutrophil-dominated inflammation in the airways. The aim of this study was to evaluate the neutrophil-derived protein Heparin-binding protein (HBP) as a potential sputum marker of airway inflammation and bacterial load. Methods Nineteen CF patients, aged 6–18 years, were prospectively followed for 6 months with sputum sampling at every visit to the CF clinic. A total of 41 sputum samples were collected. Sputum-HBP was analysed with ELISA, neutrophil elastase activity with a chromogenic assay, and total bacterial load with RT-PCR of the 16 s rDNA gene. Data were compared to lung function parameters and airway symptoms. Results HBP and elastase correlated to a decrease in FEV1%predicted compared to the patients´ individual baseline pulmonary function (∆FEV1), but not to bacterial load. Area under the receiver operating characteristic curve values for the detection of > 10% decrease in ∆FEV1 were 0.80 for HBP, 0.78 for elastase, and 0.54 for bacterial load. Conclusions Sputum HBP is a promising marker of airway inflammation and pulmonary function in children with CF.
Collapse
Affiliation(s)
- Gisela Hovold
- Department of Clinical Sciences Lund, Division of Infection Medicine, BMC B14, Lund University, Skåne University Hospital, Tornavägen 10, SE-22184, Lund, Sweden
| | | | - Fredrik Kahn
- Department of Clinical Sciences Lund, Division of Infection Medicine, BMC B14, Lund University, Skåne University Hospital, Tornavägen 10, SE-22184, Lund, Sweden
| | - Arne Egesten
- Department of Clinical Sciences Lund, Respiratory Medicine & Allergology, Lund University, Lund, Sweden
| | - Lisa I Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, BMC B14, Lund University, Skåne University Hospital, Tornavägen 10, SE-22184, Lund, Sweden.
| |
Collapse
|
23
|
Morin C, Cantin AM, Vézina FA, Fortin S. The Efficacy of MAG-DHA for Correcting AA/DHA Imbalance of Cystic Fibrosis Patients. Mar Drugs 2018; 16:md16060184. [PMID: 29861448 PMCID: PMC6025526 DOI: 10.3390/md16060184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022] Open
Abstract
Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA) influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18–48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil) for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA) levels and decrease arachidonic acid (AA) ratio (AA/DHA) in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE) complexes and interleukin-6 (IL-6) expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients. Trial registration: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC), NCT02518672.
Collapse
Affiliation(s)
- Caroline Morin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC G0K 1P0, Canada.
| | - André M Cantin
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Félix-Antoine Vézina
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Samuel Fortin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC G0K 1P0, Canada.
| |
Collapse
|
24
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|