1
|
Felipe Montiel A, Fernández AÁ, Amigo MC, Traversi L, Clofent Alarcón D, Reyes KL, Polverino E. The ageing of people living with cystic fibrosis: what to expect now? Eur Respir Rev 2024; 33:240071. [PMID: 39477350 PMCID: PMC11522972 DOI: 10.1183/16000617.0071-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
The prognosis of people with cystic fibrosis (pwCF) has improved dramatically with the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators (CFTRm). The ageing of the cystic fibrosis (CF) population is changing the disease landscape with the emergence of different needs and increasing comorbidities related to both age and long-term exposure to multiple treatments including CFTRm. Although the number of pwCF eligible for this treatment is expected to increase, major disparities in care and outcomes still exist in this population. Moreover, the long-term impact of the use of CFTRm is still partly unknown due to the current short follow-up and experience with their use, thus generating some uncertainties. The future spread and initiation of these drugs at an earlier stage of the disease is expected to reduce the systemic burden of systemic inflammation and its consequences on health. However, the prolonged life expectancy is accompanied by an increasing burden of age-related comorbidities, especially in the context of chronic disease. The clinical manifestations of the comorbidities directly or indirectly associated with CFTR dysfunction are changing, along with the disease dynamics and outcomes. Current protocols used to monitor slow disease progression will need continuous updates, including the composition of the multidisciplinary team for CF care, with a greater focus on the needs of the adult population.
Collapse
Affiliation(s)
- Almudena Felipe Montiel
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Antonio Álvarez Fernández
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Culebras Amigo
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Letizia Traversi
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - David Clofent Alarcón
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karina Loor Reyes
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Eva Polverino
- Department of Respiratory Medicine (Adult Cystic Fibrosis Unit), Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Amaral MD, Pankonien I. Theranostics vs theratyping or theranostics plus theratyping? J Cyst Fibros 2024:S1569-1993(24)01782-X. [PMID: 39327193 DOI: 10.1016/j.jcf.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Treating all people with Cystic Fibrosis (pwCF) to the level of benefit achieved by highly efficient CFTR modulator therapies (HEMT) remains a significant challenge. Theratyping and theranostics are two distinct approaches to advance CF treatment. Both theratyping in cell lines and pwCF-derived biomaterials theranostics have unique strengths and limitations in the context of studying and treating CF. The challenges, advantages and disadvantages of both approaches are discussed here. While theratyping in cell lines offers ease of use, cost-effectiveness, and standardized platforms for experimentation, it misses physiological relevance and patient-specificity. Theranostics, on the other hand, provides a more human-relevant model for personalized medicine approaches but requires specialized expertise, resources, and access to patient samples. Integrating these two approaches in parallel and leveraging their respective strengths may enhance our understanding of CF and facilitate the development of more effective therapies for all pwCF.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.
| | - Ines Pankonien
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Rodenburg LW, Metzemaekers M, van der Windt IS, Smits SMA, den Hertog-Oosterhoff LA, Kruisselbrink E, Brunsveld JE, Michel S, de Winter-de Groot KM, van der Ent CK, Stadhouders R, Beekman JM, Amatngalim GD. Exploring intrinsic variability between cultured nasal and bronchial epithelia in cystic fibrosis. Sci Rep 2023; 13:18573. [PMID: 37903789 PMCID: PMC10616285 DOI: 10.1038/s41598-023-45201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored whether intrinsic differences between nasal and bronchial epithelial cells persist in cell cultures and affect epithelial cell functioning in CF. Comparison of air-liquid interface (ALI) differentiated epithelial cells from subjects with CF revealed distinct mucociliary differentiation states of nasal and bronchial cultures. Moreover, using RNA sequencing we identified cell type-specific signature transcription factors in differentiated nasal and bronchial epithelial cells, some of which were already poised for expression in basal progenitor cells as evidenced by ATAC sequencing. Analysis of differentiated nasal and bronchial epithelial 3D organoids revealed distinct capacities for fluid secretion, which was linked to differences in ciliated cell differentiation. In conclusion, we show that unique phenotypical and functional features of nasal and bronchial epithelial cells persist in cell culture models, which can be further used to investigate the effects of tissue-specific features on upper and lower respiratory disease development in CF.
Collapse
Affiliation(s)
- Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands.
| | - Mieke Metzemaekers
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Isabelle S van der Windt
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Shannon M A Smits
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Loes A den Hertog-Oosterhoff
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Sabine Michel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
4
|
Ramalho AS, Amato F, Gentzsch M. Patient-derived cell models for personalized medicine approaches in cystic fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S32-S38. [PMID: 36529661 PMCID: PMC9992303 DOI: 10.1016/j.jcf.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.
Collapse
Affiliation(s)
- Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Felice Amato
- Department Of Molecular Medicine and Medical Biotechnologies and CE.IN.GE - Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Martina Gentzsch
- Marsico Lung Institute - Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Tomati V, Costa S, Capurro V, Pesce E, Pastorino C, Lena M, Sondo E, Di Duca M, Cresta F, Cristadoro S, Zara F, Galietta LJ, Bocciardi R, Castellani C, Lucanto MC, Pedemonte N. Rescue by elexacaftor-tezacaftor-ivacaftor of the G1244E cystic fibrosis mutation's stability and gating defects are dependent on cell background. J Cyst Fibros 2022:S1569-1993(22)01425-4. [DOI: 10.1016/j.jcf.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
|
6
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
7
|
Anticipating New Treatments for Cystic Fibrosis: A Global Survey of Researchers. J Clin Med 2022; 11:jcm11051283. [PMID: 35268374 PMCID: PMC8911007 DOI: 10.3390/jcm11051283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis is a life-threatening disease that affects at least 100,000 people worldwide. It is caused by a defect in the cystic fibrosis transmembrane regulator (CFTR) gene and presently, 360 CFTR-causing mutations have been identified. Since the discovery of the CFTR gene, the expectation of developing treatments that can substantially increase the quality of life or even cure cystic fibrosis patients is growing. Yet, it is still uncertain today which developing treatments will be successful against cystic fibrosis. This study addresses this gap by assessing the opinions of over 524 cystic fibrosis researchers who participated in a global web-based survey. For most respondents, CFTR modulator therapies are the most likely to succeed in treating cystic fibrosis in the next 15 years, especially through the use of CFTR modulator combinations. Most respondents also believe that fixing or replacing the CFTR gene will lead to a cure for cystic fibrosis within 15 years, with CRISPR-Cas9 being the most likely genetic tool for this purpose.
Collapse
|
8
|
Ramalho AS, Boon M, Proesmans M, Vermeulen F, Carlon MS, De Boeck K. Assays of CFTR Function In Vitro, Ex Vivo and In Vivo. Int J Mol Sci 2022; 23:1437. [PMID: 35163362 PMCID: PMC8836180 DOI: 10.3390/ijms23031437] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis, a multi-organ genetic disease, is characterized by abnormal function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel at the apical membrane of several epithelia. In recent years, therapeutic strategies have been developed to correct the CFTR defect. To evaluate CFTR function at baseline for diagnosis, or the efficacy of CFTR-restoring therapy, reliable tests are needed to measure CFTR function, in vitro, ex vivo and in vivo. In vitro techniques either directly or indirectly measure ion fluxes; direct measurement of ion fluxes and quenching of fluorescence in cell-based assays, change in transmembrane voltage or current in patch clamp or Ussing chamber, swelling of CFTR-containing organoids by secondary water influx upon CFTR activation. Several cell or tissue types can be used. Ex vivo and in vivo assays similarly evaluate current (intestinal current measurement) and membrane potential differences (nasal potential difference), on tissues from individual patients. In the sweat test, the most frequently used in vivo evaluation of CFTR function, chloride concentration or stimulated sweat rate can be directly measured. Here, we will describe the currently available bio-assays for quantitative evaluation of CFTR function, their indications, advantages and disadvantages, and correlation with clinical outcome measures.
Collapse
Affiliation(s)
- Anabela S. Ramalho
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
| | - Mieke Boon
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marijke Proesmans
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - François Vermeulen
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium
| | - Kris De Boeck
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
9
|
Next-Generation Sequencing for Molecular Diagnosis of Cystic Fibrosis in a Brazilian Cohort. DISEASE MARKERS 2021; 2021:9812074. [PMID: 33613790 PMCID: PMC7878085 DOI: 10.1155/2021/9812074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/05/2022]
Abstract
Cystic fibrosis (CF), an autosomal recessive genetic disease, is recognized as one of the most prevalent diseases in Caucasian populations. Epidemiological data show that the incidence of CF varies between countries and ethnic groups in the same region. CF occurs due to pathogenic variants in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR), located on chromosome 7q31.2. To date, more than 2,000 variants have been registered in the CFTR database. The study of these variants leads to the diagnosis and the possibility of a specific treatment for each patient through precision medicine. In this study, complete screening of CFTR was performed through next-generation sequencing (NGS) to gain insight into the variants circulating in the population of Rio de Janeiro and to provide patient access to treatment through genotype-specific therapies. Samples from 93 patients with an inconclusive molecular diagnosis were subjected to full-length screening of CFTR using an Illumina NGS HiSeq platform. Among these patients, 46 had two pathogenic variants, whereas 12 had only one CFTR variant. Twenty-four variants were not part of our routine screening. Of these 24 variants, V938Gfs∗37 had not been described in the CF databases previously. This research achieved a molecular diagnosis of the patients with CF and identification of possible molecular candidates for genotype-specific treatments.
Collapse
|
10
|
Lee RE, Miller SM, Mascenik TM, Lewis CA, Dang H, Boggs ZH, Tarran R, Randell SH. Assessing Human Airway Epithelial Progenitor Cells for Cystic Fibrosis Cell Therapy. Am J Respir Cell Mol Biol 2020; 63:374-385. [PMID: 32437238 DOI: 10.1165/rcmb.2019-0384oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane regulator) gene. Pharmacologic therapies directed at CFTR have been developed but are not effective for mutations that result in little or no mRNA or protein expression. Cell therapy is a potential mutation-agnostic approach to treatment. One strategy is to harvest human bronchial epithelial cells (HBECs) for gene addition or genetic correction, followed by expansion and engraftment. This approach will require cells to grow extensively while retaining their ability to reconstitute CFTR activity. We hypothesized that conditionally reprogrammed cell (CRC) technology, namely growth in the presence of irradiated feeder cells and a Rho kinase inhibitor, would enable expansion while maintaining cell capacity to express functional CFTR. Our goal was to compare expression of the basal cell marker NGFR (nerve growth factor receptor) and three-dimensional bronchosphere colony-forming efficiency (CFE) in early- and later-passage HBECs grown using nonproprietary bronchial epithelial growth medium or the CRC method. Cell number and CFTR activity were determined in a competitive repopulation assay employing chimeric air-liquid interface cultures. HBECs expanded using the CRC method expressed the highest NGFR levels, had the greatest 3D colony-forming efficiency at later passage, generated greater cell numbers in chimeric cultures, and most effectively reconstituted CFTR activity. In our study, the HBEC air-liquid interface model, an informative testing platform proven vital for the development of other CF therapies, illustrated that cells grown by CRC technology or equivalent methods may be useful for cell therapy of CF.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center and
| | | | - Robert Tarran
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Balasa G, Chaudary N. The Lung Life of a Cystic Fibrosis Patient: A Patient and Physician Perspective. Pulm Ther 2020; 6:159-167. [PMID: 32965658 PMCID: PMC7672141 DOI: 10.1007/s41030-020-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022] Open
Abstract
This article is co-authored by a patient living with cystic fibrosis, and her treating physician. The first section of this commentary article is authored by a patient, who describes their experience of living with cystic fibrosis. The following section is authored by the patient’s physician, who discusses the management of cystic fibrosis in the context of the patient’s experiences.
Collapse
Affiliation(s)
| | - Nauman Chaudary
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
12
|
Bajko J, Duguid M, Altmann S, Hurlbut GD, Kaczmarek JS. Pendrin stimulates a chloride absorption pathway to increase CFTR-mediated chloride secretion from Cystic Fibrosis airway epithelia. FASEB Bioadv 2020; 2:526-537. [PMID: 32923987 PMCID: PMC7475303 DOI: 10.1096/fba.2020-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/24/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Cystic Fibrosis (CF), an inherited multi-system disease, is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) that disrupt its ability to secrete anions from epithelia. Recovery of functional anion secretion may be curative for CF, so different components of the ion transport machinery have become attractive therapeutic targets. Several members of the SLC26 ion transporter family have been linked to epithelial ion flux, some through putative functional interactions with CFTR. Using a small-scale qPCR screen, we confirmed that the anion transporter SLC26A4 (pendrin) is downregulated in CF. Upregulation of pendrin using interleukins IL-4 or IL-13 increased Cl- secretion through CFTR in human bronchial epithelial cell (HBEC) derived epithelia differentiated in vitro and measured in the Ussing Chamber. Inhibition or knockdown of pendrin prevented this increased secretion. Increased CFTR activity was not driven by increases in CFTR protein or upstream regulatory pathway components. When basolateral Cl- absorption through NKCC1 was inhibited, a pendrin-dependent Cl- absorption pathway allowing CFTR to continue secreting Cl- from the epithelium was revealed. Although CFTR is often considered the bottleneck in the transepithelial Cl- transport pathway, these studies indicate that basolateral Cl- permeability becomes limiting as CFTR activity increases. Therefore, an increase of epithelial Cl- absorption via pendrin might have additional therapeutic benefit in combination with CFTR modulators.
Collapse
|
13
|
Mall MA, Mayer-Hamblett N, Rowe SM. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am J Respir Crit Care Med 2020; 201:1193-1208. [PMID: 31860331 DOI: 10.1164/rccm.201910-1943so] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) remains the most common life-shortening hereditary disease in white populations, with high morbidity and mortality related to chronic airway mucus obstruction, inflammation, infection, and progressive lung damage. In 1989, the discovery that CF is caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that encodes a cAMP-dependent anion channel vital for proper Cl- and HCO3- transport across epithelial surfaces provided a solid foundation for unraveling underlying disease mechanisms and the development of therapeutics targeting the basic defect in people with CF. In this review, we focus on recent advances in our understanding of the molecular defects caused by different classes of CFTR mutations, implications for pharmacological rescue of mutant CFTR, and insights into how CFTR dysfunction impairs key host defense mechanisms, such as mucociliary clearance and bacterial killing in CF airways. Furthermore, we review the path that led to the recent breakthrough in the development of highly effective CFTR-directed therapeutics, now applicable for up to 90% of people with CF who carry responsive CFTR mutations, including those with just a single copy of the most common F508del mutation. Finally, we discuss the remaining challenges and strategies to develop highly effective targeted therapies for all patients and the unprecedented potential of these novel therapies to transform CF from a fatal to a treatable chronic condition.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Nicole Mayer-Hamblett
- Department of Pediatrics and.,Department of Biostatistics, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics, and.,Department of Cell, Developmental and Integrative Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
McCravy MS, Quinney NL, Cholon DM, Boyles SE, Jensen TJ, Aleksandrov AA, Donaldson SH, Noone PG, Gentzsch M. Personalised medicine for non-classic cystic fibrosis resulting from rare CFTR mutations. Eur Respir J 2020; 56:13993003.00062-2020. [PMID: 32265312 DOI: 10.1183/13993003.00062-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew S McCravy
- Dept of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nancy L Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susan E Boyles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy J Jensen
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Andrei A Aleksandrov
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC, USA.,Dept of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Scott H Donaldson
- Dept of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Peadar G Noone
- Dept of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,M. Gentzsch and P.G. Noone contributed equally to this article as lead authors and supervised the work
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC, USA .,Dept of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,M. Gentzsch and P.G. Noone contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
15
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
16
|
Rayner RE, Wellmerling J, Osman W, Honesty S, Alfaro M, Peeples ME, Cormet-Boyaka E. In vitro 3D culture lung model from expanded primary cystic fibrosis human airway cells. J Cyst Fibros 2020; 19:752-761. [PMID: 32565193 DOI: 10.1016/j.jcf.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In vitro cystic fibrosis (CF) models are crucial for understanding the mechanisms and consequences of the disease. They are also the gold standard for pre-clinical efficacy studies of current and novel CF drugs. However, few studies have investigated expansion and differentiation of primary CF human bronchial epithelial (CF-HBE) cells. Here we describe culture conditions to expand primary CF airway cells while preserving their ability to differentiate into 3D epithelial cultures expressing functional cystic fibrosis transmembrane conductance regulator (CFTR) ion channels that responds to CFTR modulators. METHODS Primary CF airway cells were expanded using PneumaCultTM-Ex Plus (StemCell Technologies) medium with no feeder cells or added Rho kinase (ROCK) inhibitor. Differentially passaged CF-HBE cells at the air-liquid interface (ALI) were characterized phenotypically and functionally in response to the CFTR corrector drug VX-661 (Tezacaftor). RESULTS CF-HBE primary cells, expanded up to six passages (~25 population doublings), differentiated into 3D epithelial cultures as evidenced by trans-epithelial electrical resistance (TEER) of >400 Ohms∙cm2 and presence of pseudostratified columnar ciliated epithelium with goblet cells. However, up to passage five cells from most donors showed increased CFTR-mediated short-circuit currents when treated with the corrector drug, VX-661. Ciliary beat frequency (CBF) also increased with the corrector VX-661. CONCLUSIONS CF donor-derived airway cells can be expanded without the use of feeder cells or additional ROCK inhibitor, and still achieve optimal 3D epithelial cultures that respond to CFTR modulators. The study of rare CF mutations could benefit from cell expansion and could lead to the design of personalized medicine/treatments.
Collapse
Affiliation(s)
- Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Jack Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Wissam Osman
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Sean Honesty
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Maria Alfaro
- Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
18
|
Easy measurement of health related quality of life in patients with cystic fibrosis by the COPD assessment test (CAT) - A pilot study. Respir Med 2020; 168:105992. [PMID: 32469708 DOI: 10.1016/j.rmed.2020.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Quality of life (QOL) is an important patient-related outcome (PRO) in patients with cystic fibrosis (CF). There are several QOL questionnaires like the "Cystic Fibrosis Questionnaire Revised" (CFQ-R) or the "St George's Respiratory Questionnaire" (SGRQ) that are well validated in CF. The aim of the study was to evaluate whether the easily applicable "COPD assessment test" (CAT) can be used in CF patients. METHODS 42 CF patients were recruited within the PulmoHOM study, a prospective, observational cohort study. The CAT, the SGRQ and the CFQ-R were handed out to the patients. The spearman's rank correlation coefficient and the Cronbach's α coefficient were used for the statistical analysis. RESULTS The internal consistencies of the CAT, SGRQ and the CFQ-R were high (Cronbach's α coefficients = 0.89, 0.91 and 0.83). There were significant correlations between the CAT and the total score of the SGRQ (r = 0.851, p < 0.01), between the CAT and many items of the CFQ-R (physical score of the CFQ-R and total score of the CAT: r = -0.872, p < 0.01) and between the SGRQ and the CFQ-R (physical score of the CFQ-R and total score of the SGRQ: r = -0.878, p < 0.01). CONCLUSION The main finding was the high correlation between the CAT and the validated questionnaires in CF. The CAT is a PRO instrument that can be filled quickly and that correlates well with the CFQ-R. The CAT or similar tools might be applicable in the care of CF patients.
Collapse
|
19
|
Guerra L, Favia M, Di Gioia S, Laselva O, Bisogno A, Casavola V, Colombo C, Conese M. The preclinical discovery and development of the combination of ivacaftor + tezacaftor used to treat cystic fibrosis. Expert Opin Drug Discov 2020; 15:873-891. [PMID: 32290721 DOI: 10.1080/17460441.2020.1750592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, F508del, induces protein misprocessing and loss of CFTR function. The discovery through in vitro studies of the CFTR correctors (i.e. lumacaftor, tezacaftor) that partially rescue the misprocessing of F508del-CFTR with the potentiator ivacaftor is promising in giving an unprecedented clinical benefit in affected patients. AREAS COVERED Online databases were searched using key phrases for CF and CFTR modulators. Tezacaftor-ivacaftor treatment has proved to be safer than lumacaftor-ivacaftor, although clinical efficacy is similar. Further clinical efficacy has ensued with the introduction of triple therapy, i.e. applying second-generation correctors, such as VX-569 and VX-445 (elexacaftor) to tezacaftor-ivacaftor. The triple combinations will herald the availability of etiologic therapies for patients for whom no CFTR modulators are currently applied (i.e. F508del/minimal function mutations) and enhance CFTR modulator therapy for patients homozygous for F508del. EXPERT OPINION CF patient-derived tissue models are being explored to determine donor-specific response to current approved and future novel CFTR modulators for F508del and other rare mutations. The discovery and validation of biomarkers of CFTR modulation will complement these studies in the long term and in real-life world.
Collapse
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| | - Onofrio Laselva
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children , Toronto, Ontario, Canada.,Department of Physiology, University of Toronto , Toronto, Ontario, Canada
| | - Arianna Bisogno
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| |
Collapse
|
20
|
Bellisola G, Caldrer S, Cestelli-Guidi M, Cinque G. Infrared biomarkers of impaired cystic fibrosis transmembrane regulator protein biogenesis. JOURNAL OF BIOPHOTONICS 2020; 13:e201900174. [PMID: 31654605 DOI: 10.1002/jbio.201900174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The mid-infrared (IR) spectra of human cystic fibrosis (CF) cells acquired by Fourier transform infrared microspectroscopy were compared with those of non-CF cells. Within the 1700 to 1480 cm-1 spectral domain of amides, unsupervised explorative principal component analysis identified a few variables reflecting quantitative and qualitative vibrations arising from protein secondary structures and amino acid side chains. Their pattern reflected α-helix to β-sheet transitions in bronchial epithelial cells and in immortalized peripheral blood mononuclear cells from patients with R1162X missense or in-frame F508del mutations in the cystic fibrosis transmembrane regulator gene (Cftr). Similar transitions have been described in IR spectra of cells, tissues and body fluids of patients affected with some neurodegenerative diseases characterized by the accumulation of misfolded protein aggregates. The variables pattern was able to distinguish CF cells from non-CF cells and was modified by molecular compounds used to rescue the unbalanced folding process of mutated cystic fibrosis transmembrane regulator (CFTR) anion channel. To our knowledge, this is the first experimental evidence of spectroscopic biomarkers of the impaired biogenesis of CFTR by IR microanalysis in the spectra of human CF bronchial epithelial and lymphoblastoid cells.
Collapse
Affiliation(s)
- Giuseppe Bellisola
- Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Frascati, Rome, Italy
| | - Sara Caldrer
- IRCSS Sacro Cuore - Don Calabria, Centro Malattie Tropicali, Negrar, Verona, Italy
| | | | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| |
Collapse
|
21
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive, inherited congenital disease caused by the mutation of the family autosomal CF gene, with cumulative exocrine secretion characterized by inflammation, tracheal remodeling, and mucus accumulation. With the development of modern medical technology, CF patients are living longer lives and receiving more and more treatments, including traditional drugs, physical therapy, and gene therapy. Exercise is widely used to prevent and treat metabolic diseases such as cardiovascular diseases, obesity, diabetes, and metabolic syndrome. Regular exercise is beneficial to aerobic capacity and lung health. Exercise therapy has been of great interest since people realized that CF can be affected by exercise. Exercise alone can be used as an ACT (airway clearance technique), which promotes the removal of mucosal cilia. Exercise therapy is more easily accepted by any society, which helps to normalize the lives of CF patients, rather than placing a psychological burden on them. In this chapter, we will review the latest research progress about exercise in CF.
Collapse
Affiliation(s)
- Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, Burgel PR, Tullis E, Castaños C, Castellani C, Byrnes CA, Cathcart F, Chotirmall SH, Cosgriff R, Eichler I, Fajac I, Goss CH, Drevinek P, Farrell PM, Gravelle AM, Havermans T, Mayer-Hamblett N, Kashirskaya N, Kerem E, Mathew JL, McKone EF, Naehrlich L, Nasr SZ, Oates GR, O'Neill C, Pypops U, Raraigh KS, Rowe SM, Southern KW, Sivam S, Stephenson AL, Zampoli M, Ratjen F. The future of cystic fibrosis care: a global perspective. THE LANCET. RESPIRATORY MEDICINE 2020; 8:65-124. [PMID: 31570318 PMCID: PMC8862661 DOI: 10.1016/s2213-2600(19)30337-6] [Citation(s) in RCA: 569] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
The past six decades have seen remarkable improvements in health outcomes for people with cystic fibrosis, which was once a fatal disease of infants and young children. However, although life expectancy for people with cystic fibrosis has increased substantially, the disease continues to limit survival and quality of life, and results in a large burden of care for people with cystic fibrosis and their families. Furthermore, epidemiological studies in the past two decades have shown that cystic fibrosis occurs and is more frequent than was previously thought in populations of non-European descent, and the disease is now recognised in many regions of the world. The Lancet Respiratory Medicine Commission on the future of cystic fibrosis care was established at a time of great change in the clinical care of people with the disease, with a growing population of adult patients, widespread genetic testing supporting the diagnosis of cystic fibrosis, and the development of therapies targeting defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which are likely to affect the natural trajectory of the disease. The aim of the Commission was to bring to the attention of patients, health-care professionals, researchers, funders, service providers, and policy makers the various challenges associated with the changing landscape of cystic fibrosis care and the opportunities available for progress, providing a blueprint for the future of cystic fibrosis care. The discovery of the CFTR gene in the late 1980s triggered a surge of basic research that enhanced understanding of the pathophysiology and the genotype-phenotype relationships of this clinically variable disease. Until recently, available treatments could only control symptoms and restrict the complications of cystic fibrosis, but advances in CFTR modulator therapies to address the basic defect of cystic fibrosis have been remarkable and the field is evolving rapidly. However, CFTR modulators approved for use to date are highly expensive, which has prompted questions about the affordability of new treatments and served to emphasise the considerable gap in health outcomes for patients with cystic fibrosis between high-income countries, and low-income and middle-income countries (LMICs). Advances in clinical care have been multifaceted and include earlier diagnosis through the implementation of newborn screening programmes, formalised airway clearance therapy, and reduced malnutrition through the use of effective pancreatic enzyme replacement and a high-energy, high-protein diet. Centre-based care has become the norm in high-income countries, allowing patients to benefit from the skills of expert members of multidisciplinary teams. Pharmacological interventions to address respiratory manifestations now include drugs that target airway mucus and airway surface liquid hydration, and antimicrobial therapies such as antibiotic eradication treatment in early-stage infections and protocols for maintenance therapy of chronic infections. Despite the recent breakthrough with CFTR modulators for cystic fibrosis, the development of novel mucolytic, anti-inflammatory, and anti-infective therapies is likely to remain important, especially for patients with more advanced stages of lung disease. As the median age of patients with cystic fibrosis increases, with a rapid increase in the population of adults living with the disease, complications of cystic fibrosis are becoming increasingly common. Steps need to be taken to ensure that enough highly qualified professionals are present in cystic fibrosis centres to meet the needs of ageing patients, and new technologies need to be adopted to support communication between patients and health-care providers. In considering the future of cystic fibrosis care, the Commission focused on five key areas, which are discussed in this report: the changing epidemiology of cystic fibrosis (section 1); future challenges of clinical care and its delivery (section 2); the building of cystic fibrosis care globally (section 3); novel therapeutics (section 4); and patient engagement (section 5). In panel 1, we summarise key messages of the Commission. The challenges faced by all stakeholders in building and developing cystic fibrosis care globally are substantial, but many opportunities exist for improved care and health outcomes for patients in countries with established cystic fibrosis care programmes, and in LMICs where integrated multidisciplinary care is not available and resources are lacking at present. A concerted effort is needed to ensure that all patients with cystic fibrosis have access to high-quality health care in the future.
Collapse
Affiliation(s)
- Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Marcus A Mall
- Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Lung Research, Berlin, Germany
| | | | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Susan Madge
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Jane C Davies
- Royal Brompton and Harefield NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College, London, UK
| | - Pierre-Régis Burgel
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Institut Cochin, Paris, France
| | - Elizabeth Tullis
- St Michael's Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Claudio Castaños
- Hospital de Pediatria "Juan P Garrahan", Buenos Aires, Argentina
| | - Carlo Castellani
- Cystic Fibrosis Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Catherine A Byrnes
- Starship Children's Hospital, Auckland, New Zealand; University of Auckland, Auckland, New Zealand
| | - Fiona Cathcart
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Isabelle Fajac
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Institut Cochin, Paris, France
| | | | - Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | | | - Anna M Gravelle
- Cystic Fibrosis Clinic, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Trudy Havermans
- Cystic Fibrosis Centre, University Hospital Leuven, Leuven, Belgium
| | - Nicole Mayer-Hamblett
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Joseph L Mathew
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Edward F McKone
- School of Medicine, St Vincent's University Hospital, Dublin, Ireland; University College Dublin School of Medicine, Dublin, Ireland
| | - Lutz Naehrlich
- Universities of Giessen and Marburg Lung Center, German Center of Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Samya Z Nasr
- CS Mott Children's Hospital, Ann Arbor, MI, USA; University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Steven M Rowe
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin W Southern
- Alder Hey Children's Hospital, Liverpool, UK; University of Liverpool, Liverpool, UK
| | - Sheila Sivam
- Royal Prince Alfred Hospital, Sydney, NSW, Australia; Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Anne L Stephenson
- St Michael's Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Marco Zampoli
- Division of Paediatric Pulmonology and MRC Unit for Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Felix Ratjen
- University of Toronto, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, Translational Medicine Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Shei RJ, Dekerlegand RL, Mackintosh KA, Lowman JD, McNarry MA. Inspiration for the Future: The Role of Inspiratory Muscle Training in Cystic Fibrosis. SPORTS MEDICINE-OPEN 2019; 5:36. [PMID: 31396726 PMCID: PMC6687783 DOI: 10.1186/s40798-019-0210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/31/2019] [Indexed: 11/10/2022]
Abstract
Cystic fibrosis (CF) is an inherited, multi-system, life-limiting disease characterized by a progressive decline in lung function, which accounts for the majority of CF-related morbidity and mortality. Inspiratory muscle training (IMT) has been proposed as a rehabilitative strategy to treat respiratory impairments associated with CF. However, despite evidence of therapeutic benefits in healthy and other clinical populations, the routine application of IMT in CF can neither be supported nor refuted due to the paucity of methodologically rigorous research. Specifically, the interpretation of available studies regarding the efficacy of IMT in CF is hampered by methodological threats to internal and external validity. As such, it is important to highlight the inherent risk of bias that differences in patient characteristics, IMT protocols, and outcome measurements present when synthesizing this literature prior to making final clinical judgments. Future studies are required to identify the characteristics of individuals who may respond to IMT and determine whether the controlled application of IMT can elicit meaningful improvements in physiological and patient-centered clinical outcomes. Given the equivocal evidence regarding its efficacy, IMT should be utilized on a case-by-case basis with sound clinical reasoning, rather than simply dismissed, until a rigorous evidence-based consensus has been reached.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL, 35294-0006, USA. .,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Robert L Dekerlegand
- Department of Physical Therapy, College of Rehabilitation Sciences, Jefferson (Philadelphia University and Thomas Jefferson University), Philadelphia, PA, USA
| | - Kelly A Mackintosh
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UK
| | - John D Lowman
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melitta A McNarry
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
24
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
25
|
Beyond cystic fibrosis transmembrane conductance regulator therapy: a perspective on gene therapy and small molecule treatment for cystic fibrosis. Gene Ther 2019; 26:354-362. [PMID: 31300729 DOI: 10.1038/s41434-019-0092-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/07/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Cystic fibrosis (CF) is a life-limiting disease caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) activity. The recent advent of the FDA-approved CFTR modulator drug ivacaftor, alone or in combination with lumacaftor or tezacaftor, has enabled treatment of the majority of patients suffering from CF. Even before the identification of the CFTR gene, gene therapy was put forward as a viable treatment option for this genetic condition. However, initial enthusiasm has been hampered as CFTR gene delivery to the lungs has proven to be more challenging than expected. This review covers the contemporary clinical and scientific knowledge base for small molecule CFTR modulator drug therapy, gene delivery vectors and CRISPR/Cas9 gene editing and highlights the prospect of these technologies for future treatment options.
Collapse
|
26
|
Trandafir LM, Leon MM, Frasinariu O, Baciu G, Dodi G, Cojocaru E. Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis. J Clin Med 2019; 8:jcm8071023. [PMID: 31336857 PMCID: PMC6678759 DOI: 10.3390/jcm8071023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Pain is a complex, multidimensional process that negatively affects physical and mental functioning, clinical outcomes, quality of life, and productivity for cystic fibrosis (CF) patients. CF is an inherited multi-system disease that requires a complete approach in order to evaluate, monitor and treat patients. The landscape in CF care has changed significantly, with currently more adult patients than children worldwide. Despite the great advances in supportive care and in our understanding regarding its pathophysiology, there are still numerous aspects of CF pain that are not fully explained. This review aims to provide a critical overview of CF pain research that focuses on pain assessment, prevalence, characteristics, clinical association and the impact of pain in children and adults, along with innovative nanotechnology perspectives for CF management. Specifically, the paper evaluates the pain symptoms associated with CF and examines the relationship between pain symptoms and disease severity. The particularities of gastrointestinal, abdominal, musculoskeletal, pulmonary and chest pain, as well as pain associated with medical procedures are investigated in patients with CF. Disease-related pain is common for patients with CF, suggesting that pain assessment should be a routine part of their clinical care. A summary of the use of nanotechnology in CF and CF-related pain is also given. Further research is clearly needed to better understand the sources of pain and how to improve patients’ quality of life.
Collapse
Affiliation(s)
- Laura M Trandafir
- Pediatric Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Magdalena M Leon
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Otilia Frasinariu
- Pediatric Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Ginel Baciu
- Pediatric Department, "Dunărea de Jos" University of Galati, 800008 Galati, Romania
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania.
| | - Elena Cojocaru
- Morpho-Functional Sciences Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
27
|
Matthes E, Goepp J, Martini C, Shan J, Liao J, Thomas DY, Hanrahan JW. Variable Responses to CFTR Correctors in vitro: Estimating the Design Effect in Precision Medicine. Front Pharmacol 2018; 9:1490. [PMID: 30618775 PMCID: PMC6305743 DOI: 10.3389/fphar.2018.01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Interest in precision medicine has grown in recent years due to the variable clinical benefit provided by some medications, their cost, and by new opportunities to tailor therapies to individual patients. In cystic fibrosis it may soon be possible to test several corrector drugs that improve the folding and functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) prospectively using cells from a patient to find the one that is best for that individual. Patient-to-patient variation in cell culture responses to correctors and the reproducibility of those responses has not been studied quantitatively. We measured the functional correction provided by lumacaftor (VX-809) using bronchial epithelial cells from 20 patients homozygous for the F508del-CFTR mutation. Significant differences were observed between individuals, supporting the utility of prospective testing. However, when correction of F508del-CFTR was measured repeatedly using cell aliquots from the same individuals, a design effect was observed that would impact statistical tests of significance. The results suggest that the sample size obtained from power calculations should be increased to compensate for group sampling when CFTR corrector drugs are compared in vitro for precision medicine.
Collapse
Affiliation(s)
- Elizabeth Matthes
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Julie Goepp
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Carolina Martini
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Jiajie Shan
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Jie Liao
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - David Y. Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
- Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
28
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disease characterized by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a chloride channel responsible for ion flow across epithelial surfaces of lung, sinuses, pancreas, intestine, and liver. Researchers have grouped CFTR genetic mutations into various protein defects: reduced protein synthesis (class 1 mutations), abnormal protein folding and maturation (class 2 mutation), and abnormal gating (class 3 mutation). These mutations usually present as severe forms of CF due to complete absence of CFTR at cell surfaces. Milder forms (eg, protein maturation and conductance defects, classes 4–6) present as less severe forms of CF related to the presence of CFTR at the cell surface. Differences in severity are directly due to CFTR function which is based on the severity of CFTR mutation. This knowledge has proven useful for designing therapy for individual mutations and mutation classes. The discovery and US Food and Drug Administration approval of Kalydeco® (ivacaftor) in early 2011 marked the beginning of a new era of therapies that are focused on improving defective CFTR protein function. However, due to its specificity for the G551D mutation, ivacaftor only benefitŝ5% of CF patients. Approximately 50% of CF patients have two copies of the F508Del mutation, while other CF patients carry only one copy of this gene. More recently, Orkambi®, a two compound medication composed of lumacaftor and ivacaftor, has provided the foundation necessary to further build on molecular concepts of: correction of trafficking, potentiation, and amplification of defective CFTR. These new concepts will form the basis of future CF therapies and extend CFTR treatment to almost 50% of CF patients. Evolving knowledge of the molecular mechanisms responsible for defective CFTR has prompted new research focused on “repair” of each phase of CFTR expression and function, thus creating a new class of combination “CFTR correctors” referred to as “triplet CFTR compounds.” This article will review how patients can be selected and treated with these newer agents that are based on specific mutations. In the future, many CF practitioners have expectations that initiation of treatment for CF patients will occur simply by use of biomarkers of CFTR expression (eg, sweat chloride, nasal potential difference, rectal organoids) rather than testing for specific mutations. As continued research identifies biomarkers with greater specificity and which predict clinical response, therapies can potentially be tailored to individual responses.
Collapse
Affiliation(s)
- Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
29
|
Shei RJ, Peabody JE, Kaza N, Rowe SM. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis. Curr Opin Pharmacol 2018; 43:152-165. [PMID: 30340955 PMCID: PMC6294660 DOI: 10.1016/j.coph.2018.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR dysfunction is characterized by abnormal mucociliary transport due to a dehydrated airway surface liquid (ASL) and hyperviscous mucus, among other pathologies of host defense. ASL depletion is caused by the absence of CFTR mediated chloride secretion along with continued activity of the epithelial sodium channel (ENaC) activity, which can also be affected by CFTR mediated anion conductance. Therefore, ENaC has been proposed as a therapeutic target to ameliorate ASL dehydration and improve mucus transport. Inhibition of ENaC has been shown to restore ASL hydration and enhance mucociliary transport in induced models of CF lung disease. To date, no therapy inhibiting ENaC has successfully translated to clinical efficacy, in part due to concerns regarding off-target effects, systemic exposure, durability of effect, and adverse effects. Recent efforts have been made to develop novel, rationally designed therapeutics to produce-specific, long-lasting inhibition of ENaC activity in the airways while simultaneously minimizing off target fluid transport effects, systemic exposure and side effects. Such approaches comprise next-generation small molecule direct inhibitors, indirect channel-activating protease inhibitors, synthetic peptide analogs, and oligonucleotide-based therapies. These novel therapeutics represent an exciting step forward in the development of ENaC-directed therapies for CF.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Medical Scientist (MD/PhD) Training Program, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Niroop Kaza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Conese M, Beccia E, Carbone A, Castellani S, Di Gioia S, Corti F, Angiolillo A, Colombo C. The role of stem cells in cystic fibrosis disease modeling and drug discovery. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1549480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elisa Beccia
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellani
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Fabiola Corti
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Hutt DM, Loguercio S, Campos AR, Balch WE. A Proteomic Variant Approach (ProVarA) for Personalized Medicine of Inherited and Somatic Disease. J Mol Biol 2018; 430:2951-2973. [PMID: 29924966 PMCID: PMC6097907 DOI: 10.1016/j.jmb.2018.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
The advent of precision medicine for genetic diseases has been hampered by the large number of variants that cause familial and somatic disease, a complexity that is further confounded by the impact of genetic modifiers. To begin to understand differences in onset, progression and therapeutic response that exist among disease-causing variants, we present the proteomic variant approach (ProVarA), a proteomic method that integrates mass spectrometry with genomic tools to dissect the etiology of disease. To illustrate its value, we examined the impact of variation in cystic fibrosis (CF), where 2025 disease-associated mutations in the CF transmembrane conductance regulator (CFTR) gene have been annotated and where individual genotypes exhibit phenotypic heterogeneity and response to therapeutic intervention. A comparative analysis of variant-specific proteomics allows us to identify a number of protein interactions contributing to the basic defects associated with F508del- and G551D-CFTR, two of the most common disease-associated variants in the patient population. We demonstrate that a number of these causal interactions are significantly altered in response to treatment with Vx809 and Vx770, small-molecule therapeutics that respectively target the F508del and G551D variants. ProVarA represents the first comparative proteomic analysis among multiple disease-causing mutations, thereby providing a methodological approach that provides a significant advancement to existing proteomic efforts in understanding the impact of variation in CF disease. We posit that the implementation of ProVarA for any familial or somatic mutation will provide a substantial increase in the knowledge base needed to implement a precision medicine-based approach for clinical management of disease.
Collapse
Affiliation(s)
- Darren M Hutt
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| | - Salvatore Loguercio
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| | - Alexandre Rosa Campos
- Sanford Burnham Prebys Medical Discovery Institute Proteomic Core 10901 North Torrey Pines Road, La Jolla CA USA 92037
| | - William E Balch
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
- Integrative Structural and Computational Biology, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
- The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| |
Collapse
|
32
|
Gorshkov K, Chen CZ, Marshall RE, Mihatov N, Choi Y, Nguyen DT, Southall N, Chen KG, Park JK, Zheng W. Advancing precision medicine with personalized drug screening. Drug Discov Today 2018; 24:272-278. [PMID: 30125678 DOI: 10.1016/j.drudis.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023]
Abstract
Personalized drug screening (PDS) of approved drug libraries enables rapid development of specific small-molecule therapies for individual patients. With a multidisciplinary team including clinicians, researchers, ethicists, informaticians and regulatory professionals, patient treatment can be optimized with greater efficacy and fewer adverse effects by using PDS as an approach to find remedies. In addition, PDS has the potential to rapidly identify therapeutics for a patient suffering from a disease without an existing therapy. From cancer to bacterial infections, we review specific maladies addressed with PDS campaigns. We predict that PDS combined with personal genomic analyses will contribute to the development of future precision medicine endeavors.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Raisa E Marshall
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Nino Mihatov
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Yong Choi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Kevin G Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - John K Park
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
33
|
Gentzsch M, Mall MA. Ion Channel Modulators in Cystic Fibrosis. Chest 2018; 154:383-393. [PMID: 29750923 PMCID: PMC6113631 DOI: 10.1016/j.chest.2018.04.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cyclic adenosine monophosphate-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces, and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacologic modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High-throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking, and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently, the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. The present review focuses on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel as additional targets in CF lung disease. We further discuss how patient-derived precision medicine models may aid the translation of emerging next-generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF.
Collapse
Affiliation(s)
- Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
34
|
O'Day E, Hosta-Rigau L, Oyarzún DA, Okano H, de Lorenzo V, von Kameke C, Alsafar H, Cao C, Chen GQ, Ji W, Roberts RJ, Ronaghi M, Yeung K, Zhang F, Lee SY. Are We There Yet? How and When Specific Biotechnologies Will Improve Human Health. Biotechnol J 2018; 14:e1800195. [PMID: 29799175 DOI: 10.1002/biot.201800195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Patient X: A 67-year-old Caucasian man slips on a patch of ice. He has abrasions to his hands and has sustained significant damage to his hip. At the emergency room, he informs clinicians he takes atorvastatin, metformin, and glimepiride to treat hypertension and Type 2 Diabetes Mellitus (T2DM). X-rays reveal a fractured hip, which will require total hip replacement surgery.
Collapse
Affiliation(s)
- Elizabeth O'Day
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Olaris Therapeutics, Inc., 45 Moulton St., Cambridge, MA, 02138, USA
| | - Leticia Hosta-Rigau
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Diego A Oyarzún
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.,EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK
| | - Hideyuki Okano
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Víctor de Lorenzo
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,National Center of Biotechnology CSIC, Systems Biology Program, Campus de Cantoblanco, E-28049, Madrid, Spain
| | - Conrad von Kameke
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,BioInnovators Europe, Berlin, Germany
| | - Habiba Alsafar
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Khalifa University Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Cong Cao
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,University of Nottingham, 199 East Taikang Road, Ningbo, 315100, China
| | - Guo-Qiang Chen
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Center for Synthetic and Systems Biology, MOE Lab for Industrial Biocatalysis, Tsinghua-Peking University Center of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weizhi Ji
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Kunming University of Science and Technology, 727 Jingming South Rd. Chenh Gong, Kunming, 650500, Yunnan, China
| | - Richard J Roberts
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Mostafa Ronaghi
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Illumina Inc., 5200 Illumina Way, San Diego, CA, 92121, USA
| | - Karen Yeung
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Law School and School of Computer Science University of Birmingham, Birmingham, UK, B15 2TT
| | - Feng Zhang
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sang Yup Lee
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Chemical and Biomolecular Engineering (BK21 Plus program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Daejeon, 34141, Republic of Korea.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, Sabbioni G, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. A Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells. Molecules 2017; 23:molecules23010071. [PMID: 29286300 PMCID: PMC6017273 DOI: 10.3390/molecules23010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 01/18/2023] Open
Abstract
Peptide nucleic acids (PNAs) are very useful tools for gene regulation at different levels, but in particular in the last years their use for targeting microRNA (anti-miR PNAs) has provided impressive advancements. In this respect, microRNAs related to the repression of cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis, are of great importance in the development of new type of treatments. In this paper we propose the use of an anti-miR PNA for targeting miR-145, a microRNA reported to suppress CFTR expression. Octaarginine-anti-miR PNA conjugates were delivered to Calu-3 cells, exerting sequence dependent targeting of miR-145-5p. This allowed to enhance expression of the miR-145 regulated CFTR gene, analyzed at mRNA (RT-qPCR, Reverse Transcription quantitative Polymerase Chain Reaction) and CFTR protein (Western blotting) level.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Anna Tamanini
- Laboratory of Molecular Pathology, University-Hospital, 37126 Verona, Italy.
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Giuseppe Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Munari
- Laboratory of Molecular Pathology, University-Hospital, 37126 Verona, Italy.
| | | | - Giulio Cabrini
- Laboratory of Molecular Pathology, University-Hospital, 37126 Verona, Italy.
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|