1
|
Nick HJ, Christeson SE, Bratcher PE. VX-770, C act-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity. Int J Mol Sci 2025; 26:471. [PMID: 39859187 PMCID: PMC11764695 DOI: 10.3390/ijms26020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose. Cact-A1 is a unique CFTR activator that does not increase intracellular cAMP, and VX-770 (ivacaftor) is a CFTR potentiator that is used experimentally and therapeutically to increase the open probability of the channel. Using primary human nasal epithelial cell (HNEC) cultures and Fischer rat thyroid (FRT) epithelial cells exogenously expressing functional CFTR, we examined the impact of VX-770, Cact-A1, and forskolin/IBMX on CFTR activity during analysis in an Ussing chamber. Relative contributions of these compounds to maximal CFTR activity were dependent on order of exposure, the presence of chemical and electrical gradients, the level of constitutive CFTR function, and the cell model tested. Increasing intracellular cAMP appeared to change cellular functions outside of CFTR activity that resulted in alterations in the drive for chloride through CFTR. These results demonstrate that one can utilize combinations of small-molecule CFTR activators and potentiators to provide detailed characterization of CFTR-mediated ion transport in primary HNECs and properties of these modulators in both primary HNECs and FRT cells. Future studies using these approaches may assist in the identification of novel defects in CFTR function and the identification of modulators with unique impacts on CFTR-mediated ion transport.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
| | - Sarah E. Christeson
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
| | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Bacalhau M, Ferreira FC, Azevedo MFMF, Rosa TP, Buarque CD, Lopes-Pacheco M. Rescue of Mutant CFTR Channel Activity by Investigational Co-Potentiator Therapy. Biomedicines 2025; 13:82. [PMID: 39857666 PMCID: PMC11762957 DOI: 10.3390/biomedicines13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many of these variants, indicating they may benefit from the combination of potentiators exhibiting distinct mechanisms of action (i.e., co-potentiators). We previously identified LSO-24, a hydroxy-1,2,3-triazole-based compound, as a modest potentiator of p.Arg334Trp-CFTR, a variant with a conductance defect for which no modulator therapy is currently approved. Objective/Methods: We synthesized a new set of LSO-24 structure-based compounds, screened their effects on p.Arg334Trp-CFTR activity, and assessed the additivity of hit compounds to VX-770, ABBV-974, ABBV-3067, and apigenin. After validation by electrophysiological assays, the most promising hits were also assessed in cells expressing other variants with defective gating/conductance, namely p.Pro205Ser, p.Ser549Arg, p.Gly551Asp, p.Ser945Leu, and p.Gly1349Asp. Results: We found that five compounds were able to increase p.Arg334Trp-CFTR activity with similar efficacy, but slightly greater potency promoted by LSO-150 and LSO-153 (EC50: 1.01 and 1.26 μM, respectively). These two compounds also displayed a higher rescue of p.Arg334Trp-CFTR activity in combination with VX-770, ABBV-974, and ABBV-3067, but not with apigenin. When tested in cells expressing other CFTR variants, LSO-24 and its derivative LSO-150 increased CFTR activity for the variants p.Ser549Arg, p.Gly551Asp, and p.Ser945Leu with a further effect in combination with VX-770 or ABBV-3067. No potentiator was able to rescue CFTR activity in p.Pro205Ser-expressing cells, while p.Gly1349Asp-CFTR responded to VX-770 and ABBV-3067 but not to LSO-24 or LSO-150. Conclusions: Our data suggest that these new potentiators might share a common mechanism with apigenin, which is conceivably distinct from that of VX-770 and ABBV-3067. The additive rescue of p.Arg334Trp-, p.Ser549Arg-, p.Gly551Asp-, and p.Ser945Leu-CFTR also indicates that these variants could benefit from the development of a co-potentiator therapy.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | | | - Talita P. Rosa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Nick HJ, Christeson SE, Bratcher PE. The Functional Impact of VX-770 on the Cystic Fibrosis Transmembrane Conductance Regulator Is Enduring and Increases the Constitutive Activity of This Channel in Primary Airway Epithelia Generated from Healthy Donors. Biomolecules 2024; 14:1378. [PMID: 39595555 PMCID: PMC11591604 DOI: 10.3390/biom14111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
VX-770 is a small-molecule CFTR potentiator that is highly efficacious in individuals with cystic fibrosis caused by mutations in CFTR that result in a defect in channel gating. While studies have reported on the mechanism of action of VX-770, there is still more to learn about the impact that it has on CFTR function in various contexts. The aim of the present study was to examine the longevity and stability of the effect of VX-770 on CFTR function in cultured airway epithelia and to measure the consequences of this interaction. The responses to acute and chronic VX-770 exposure were measured in cultures of expanded and re-differentiated primary human nasal epithelial cells. Acute VX-770 exposure resulted in an increase in CFTR-mediated currents in the absence of exogenous compounds that induce the phosphorylation/activation of CFTR, with acute exposure having the same effect as chronic exposure. The functional impact of VX-770 on CFTR was long-lasting in cultured airway epithelia, as they maintained an electrophysiological profile consistent with the saturation of CFTR with VX-770 over time periods of up to 4 days following a short (0.5 min) or low-dose (100 nM) exposure to VX-770 during an analysis in an Ussing chamber. Rinsing the apical surface prior to VX-770 exposure or exposure during the analysis in the Ussing chamber increased the interaction between VX-770 and the CFTR. Importantly, after short, low-dose exposures to VX-770, the CFTR channels in cultured epithelia appeared to remain saturated with VX-770 for extended periods of time, despite the repetitive rinsing of the apical surface. This finding has implications for patients discontinuing the use of VX-770-containing therapies.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Tham T, Li FA, Schneider JR, Saleem MI, Werner MT, Chaskes MB, Tong CCL, Fastenberg JH. Functional and radiological sinonasal outcomes of CFTR modulators for sinus disease in cystic fibrosis: A meta-analysis. Int Forum Allergy Rhinol 2024; 14:1607-1617. [PMID: 39212072 DOI: 10.1002/alr.23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve pulmonary outcomes in cystic fibrosis (CF) by stabilizing the CFTR protein on respiratory epithelial surfaces. To determine the efficacy of CFTR modulators on sinonasal outcomes in patients with CF, we performed a meta-analysis of clinical trials to date that include functional and radiographic evidence of sinus disease. METHODS English full-text articles were searched in PubMed, Embase, and Scopus databases. Two reviewers screened articles and a third reviewer resolved disagreements. Articles were included if they reported functional or radiological sinonasal outcomes in patients with CF before and after CFTR modulator therapies. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed, and the risk of bias in non-randomized studies of interventions tool was used for quality assessment. The generic inverse variance method with random effects model was used for meta-analysis. Standardized mean difference (SMD) and mean difference (MD) were used as effect measurements. RESULTS Seven prospective and two retrospective studies representing 248 patients were included in this analysis. There was a significant improvement in sinonasal outcome test-22 scores on elexacaftor‒tezacaftor‒ivacaftor (MD = 12.80, [95% confidence interval, CI: 10.46‒15.13], p < 0.001, n = 222), with no heterogeneity detected (I2 = 0%, p = 0.820). There was also a significant improvement in Lund‒Mackay scores (SMD = 1.25, [95% CI: 0.58‒1.91], p < 0.001, n = 88), with heterogeneity detected (I2 = 67%, p = 0.030). CONCLUSIONS CFTR modulators improve functional and radiologic sinonasal outcomes. Given the utility of CFTR modulators, the treatment paradigm for CF-related chronic rhinosinusitis promises to evolve.
Collapse
Affiliation(s)
- Tristan Tham
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, USA
| | - Felisha A Li
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Jacob R Schneider
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Matthew I Saleem
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael T Werner
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Mark B Chaskes
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Charles C L Tong
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Judd H Fastenberg
- Department of Otolaryngology-Head & Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
5
|
Stone RG, Short C, Davies JC, McNally P. Chronic rhinosinusitis in the era of CFTR modulator therapy. J Cyst Fibros 2024; 23:208-213. [PMID: 37690973 DOI: 10.1016/j.jcf.2023.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Chronic rhinosinusitis is a common manifestation of CF that is associated with impaired quality of life and can be difficult to treat. CFTR modulator therapy has resulted in significant improvements in lower respiratory and nutritional outcomes for people with CF however their impact on chronic rhinosinusitis has received less attention. We review the literature in relation to chronic rhinosinusitis in CF and examine the impact of CFTR modulator therapy on symptoms, imaging, endoscopic appearances, and olfactory outcomes in the treatment of chronic rhinosinusitis. While an overall improvement in symptoms, imaging and endoscopic appearances is seen in response to treatment, limited impact is documented on olfaction. Outcome measures employed were heterogenous, limiting comparison of findings. There is a need for well powered prospective real-world studies with standardised outcome measures.
Collapse
Affiliation(s)
- Roy Gavin Stone
- RCSI University of Medicine and Health Sciences, Dublin, Ireland; Children's Health Ireland, Dublin, Ireland.
| | - Christopher Short
- Imperial College London, National Heart and Lung Institute, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom
| | - Jane C Davies
- Imperial College London, National Heart and Lung Institute, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom
| | - Paul McNally
- RCSI University of Medicine and Health Sciences, Dublin, Ireland; Children's Health Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
8
|
Bacalhau M, Camargo M, Magalhães-Ghiotto GAV, Drumond S, Castelletti CHM, Lopes-Pacheco M. Elexacaftor-Tezacaftor-Ivacaftor: A Life-Changing Triple Combination of CFTR Modulator Drugs for Cystic Fibrosis. Pharmaceuticals (Basel) 2023; 16:ph16030410. [PMID: 36986509 PMCID: PMC10053019 DOI: 10.3390/ph16030410] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis (CF) is a potentially fatal monogenic disease that causes a progressive multisystemic pathology. Over the last decade, the introduction of CF transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has profoundly modified the lives of many people with CF (PwCF) by targeting the fundamental cause of the disease. These drugs consist of the potentiator ivacaftor (VX-770) and the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). In particular, the triple combination of CFTR modulators composed of elexacaftor, tezacaftor, and ivacaftor (ETI) represents a life-changing therapy for the majority of PwCF worldwide. A growing number of clinical studies have demonstrated the safety and efficacy of ETI therapy in both short- and long-term (up to two years of follow-up to date) and its ability to significantly reduce pulmonary and gastrointestinal manifestations, sweat chloride concentration, exocrine pancreatic dysfunction, and infertility/subfertility, among other disease signs and symptoms. Nevertheless, ETI therapy-related adverse effects have also been reported, and close monitoring by a multidisciplinary healthcare team remains vital. This review aims to address and discuss the major therapeutic benefits and adverse effects reported by the clinical use of ETI therapy for PwCF.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Grace A V Magalhães-Ghiotto
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringa, Maringa 87020-900, PR, Brazil
| | - Sybelle Drumond
- Center for Research in Bioethics and Social Health, School of Magistracy of the State of Rio de Janeiro, Rio de Janeiro 20010-090, RJ, Brazil
| | - Carlos Henrique M Castelletti
- Molecular Prospecting and Bioinformatics Group, Keizo Asami Institute, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Boat T, Hente E, Hardie W, Szczesniak R, Gecili E, Zhou G, Taylor J, Amin R. Body composition and functional correlates of CF youth experiencing pulmonary exacerbation and recovery. Pediatr Pulmonol 2023; 58:457-464. [PMID: 36271603 DOI: 10.1002/ppul.26207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Youth with cystic fibrosis (CF) and pulmonary exacerbation (PEx) often experience weight loss, then rapid weight gain. Little is known about body composition and its relationship to functional outcomes during this critical period. METHODS Twenty CF youth experiencing PEx were assessed on the day following admission and 7-17 days later at discharge for body mass index (BMI), fat mass index (FMI), lean mass index (LMI), skeletal muscle mass index (SMMI), and functional measures: percent predicted forced expiratory volume in 1 second (FEV1) (ppFEV1), maximal inspiratory and expiratory pressures (MIPs and MEPs), and handgrip strength (HGS). Changes from admission to discharge and correlations among body composition indices and functional measures at both times are reported. RESULTS Upon admission, participant BMI percentile and ppFEV1 varied from 2 to 97 and 29 to 113, respectively. Thirteen had an LMI below the 25th percentile and nine had a percent body fat above the 75th percentile. BMI and FMI increased significantly (p = 0.03, 0.003) during hospitalization. LMI and SMMI did not change. FEV1 and MIPS increased (p = 0.0003, 0.007), independent of weight gain, during treatment. HGS did not improve. CONCLUSIONS Many youth with CF, independent of BMI, frequently carried a small muscle mass and disproportionate fat at the time of PEx. During hospital treatment, weight gain largely represented fat deposition; muscle mass and strength did not improve. A need for trials of interventions designed to augment muscle mass and function, and limit fat mass accretion, at the time of PEx is suggested by these observations.
Collapse
Affiliation(s)
- Thomas Boat
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elizabeth Hente
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rhonda Szczesniak
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emrah Gecili
- Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Grace Zhou
- Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacqueline Taylor
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Athanazio RA, Tanni SE, Ferreira J, Dalcin PDTR, Fuccio MBD, Esposito C, Canan MGM, Coelho LS, Firmida MDC, Almeida MBD, Marostica PJC, Monte LDFV, Souza EL, Pinto LA, Rached SZ, Oliveira VSBD, Riedi CA, Silva Filho LVRFD. Brazilian guidelines for the pharmacological treatment of the pulmonary symptoms of cystic fibrosis. Official document of the Sociedade Brasileira de Pneumologia e Tisiologia (SBPT, Brazilian Thoracic Association). J Bras Pneumol 2023; 49:e20230040. [PMID: 37194817 DOI: 10.36416/1806-3756/e20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that results in dysfunction of the CF transmembrane conductance regulator (CFTR) protein, which is a chloride and bicarbonate channel expressed in the apical portion of epithelial cells of various organs. Dysfunction of that protein results in diverse clinical manifestations, primarily involving the respiratory and gastrointestinal systems, impairing quality of life and reducing life expectancy. Although CF is still an incurable pathology, the therapeutic and prognostic perspectives are now totally different and much more favorable. The purpose of these guidelines is to define evidence-based recommendations regarding the use of pharmacological agents in the treatment of the pulmonary symptoms of CF in Brazil. Questions in the Patients of interest, Intervention to be studied, Comparison of interventions, and Outcome of interest (PICO) format were employed to address aspects related to the use of modulators of this protein (ivacaftor, lumacaftor+ivacaftor, and tezacaftor+ivacaftor), use of dornase alfa, eradication therapy and chronic suppression of Pseudomonas aeruginosa, and eradication of methicillin-resistant Staphylococcus aureus and Burkholderia cepacia complex. To formulate the PICO questions, a group of Brazilian specialists was assembled and a systematic review was carried out on the themes, with meta-analysis when applicable. The results obtained were analyzed in terms of the strength of the evidence compiled, the recommendations being devised by employing the GRADE approach. We believe that these guidelines represent a major advance to be incorporated into the approach to patients with CF, mainly aiming to favor the management of the disease, and could become an auxiliary tool in the definition of public policies related to CF.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Suzana Erico Tanni
- . Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Julio de Mesquita Filho - UNESP - Botucatu (SP) Brasil
| | - Juliana Ferreira
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Paulo de Tarso Roth Dalcin
- . Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
- . Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre - HCPA - Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
| | - Marcelo B de Fuccio
- . Hospital Júlia Kubitschek, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | | | | | - Liana Sousa Coelho
- . Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Julio de Mesquita Filho - UNESP - Botucatu (SP) Brasil
| | | | - Marina Buarque de Almeida
- . Unidade de Pneumologia, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Paulo José Cauduro Marostica
- . Unidade de Pneumologia Infantil, Hospital de Clínicas de Porto Alegre - HCPA - Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
| | | | - Edna Lúcia Souza
- . Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador (BA) Brasil
| | | | - Samia Zahi Rached
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Verônica Stasiak Bednarczuk de Oliveira
- . Hospital de Clínicas, Universidade Federal do Paraná, Curitiba (PR) Brasil
- . Unidos Pela Vida - Instituto Brasileiro de Atenção à Fibrose Cística, Curitiba (PR) Brasil
| | | | | |
Collapse
|
11
|
Britto CJ, Ratjen F, Clancy JP. Emerging Approaches to Monitor and Modify Care in the Era of Cystic Fibrosis Transmembrane Conductance Regulators. Clin Chest Med 2022; 43:631-646. [PMID: 36344071 DOI: 10.1016/j.ccm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As we characterize the clinical benefits of highly effective modulator therapy (HEMT) in the cystic fibrosis (CF) population, our paradigm for treating and monitoring disease continues to evolve. More sensitive approaches are necessary to detect early disease and clinical progression. This article reviews evolving strategies to assess disease control and progression in the HEMT era. This article also explores developments in pulmonary function monitoring, advanced respiratory imaging, tools for the collection of patient-reported outcomes, and their application to profile individual responses, guide therapeutic decisions, and improve the quality of life of people with CF.
Collapse
Affiliation(s)
- Clemente J Britto
- Yale Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine.
| | - Felix Ratjen
- Division of Respiratory Medicine, Translational Medicine, University of Toronto Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1X8, Canada
| | | |
Collapse
|
12
|
Dittrich AM, Chuang SY. Dual CFTR modulator therapy efficacy in the real world: lessons for the future. ERJ Open Res 2022; 8:00464-2022. [PMID: 36382239 PMCID: PMC9661234 DOI: 10.1183/23120541.00464-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Stringent analyses caution against drawing conclusions about the real-world efficacy of CFTR modulator therapy too early https://bit.ly/3dJt6no.
Collapse
Affiliation(s)
- Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Sandra Y. Chuang
- Discipline of Paediatric and Child Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Respiratory Medicine Department, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
13
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
14
|
Abstract
Over the past decade there have been significant developments in the field of Cystic Fibrosis Transmembrane Regulator modulator drugs. Following treatment in patients with cystic fibrosis with common gating mutations using the potentiator drug ivacaftor, successive development of corrector drugs used in combination has led to highly effective modulator therapy being available to more than 85% of the cystic fibrosis population over 12 years of age in the form of elexacaftor/tezacaftor/ivacaftor. In this article, we review the evidence from clinical trials and mounting real-world observational and registry data that demonstrates the impact highly effective modulators have on both pulmonary and extra-pulmonary manifestations of cystic fibrosis. As clinical trials progress to younger patient groups, we discuss the challenges to demonstrating drug efficacy in early life, and also consider practicalities of drug development in an ever-shrinking modulator-naïve population. Drug-drug interactions are an important consideration in people with cystic fibrosis, where polypharmacy is commonplace, but also as the modulated population look to remain healthier for longer, we identify trials that aim to address treatment burden too. Inequity of care, through drug cost or ineligibility for modulators by genotype, is widening without apparent strategies to address this; however, we present evidence of hopeful early-stage drug development for non-modulatable genes and summarise the current state of gene-therapy development.
Collapse
|
15
|
McGarry ME, Gibb ER, Oates GR, Schechter MS. Left behind: The potential impact of CFTR modulators on racial and ethnic disparities in cystic fibrosis. Paediatr Respir Rev 2022; 42:35-42. [PMID: 35277357 PMCID: PMC9356388 DOI: 10.1016/j.prrv.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
The advent of CFTR modulators, a genomic specific medication, revolutionized the treatment of CF for many patients. However, given that these therapeutics were only developed for specific CFTR mutations, not all people with CF have access to such disease-modifying drugs. Racial and ethnic minority groups are less likely to have CFTR mutations that are approved for CFTR modulators. This exclusion has the potential to widen existing health disparities.
Collapse
Affiliation(s)
- Meghan E. McGarry
- Division of Pulmonary Medicine, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Elizabeth R. Gibb
- Division of Pulmonary Medicine, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Gabriela R. Oates
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael S. Schechter
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Virginia Commonwealth University and Children’s Hospital of Richmond at VCU, Richmond, VA
| |
Collapse
|
16
|
Measurements of spontaneous CFTR-mediated ion transport without acute channel activation in airway epithelial cultures after modulator exposure. Sci Rep 2021; 11:22616. [PMID: 34799640 PMCID: PMC8605007 DOI: 10.1038/s41598-021-02044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Quantitation of CFTR function in vitro is commonly performed by acutely stimulating then inhibiting ion transport through CFTR and measuring the resulting changes in transepithelial voltage (Vte) and current (ISC). While this technique is suitable for measuring the maximum functional capacity of CFTR, it may not provide an accurate estimate of in vivo CFTR activity. To test if CFTR-mediated ion transport could be measured in the absence of acute CFTR stimulation, primary airway epithelia were analyzed in an Ussing chamber with treatment of amiloride followed by CFTR(inh)-172 without acute activation of CFTR. Non-CF epithelia demonstrated a decrease in Vte and ISC following exposure to CFTR(inh)-172 and in the absence of forskolin/IBMX (F/I); this decrease is interpreted as a measure of spontaneous CFTR activity present in these epithelia. In F508del/F508del CFTR epithelia, F/I-induced changes in Vte and ISC were ~ fourfold increased after treatment with VX-809/VX-770, while the magnitude of spontaneous CFTR activities were only ~ 1.6-fold increased after VX-809/VX-770 treatment. Method-dependent discrepancies in the responses of other CF epithelia to modulator treatments were observed. These results serve as a proof of concept for the analysis of CFTR modulator responses in vitro in the absence of acute CFTR activation. Future studies will determine the usefulness of this approach in the development of novel CFTR modulator therapies.
Collapse
|
17
|
Bratcher PE, Yadav S, Shaughnessy CA, Thornell IM, Zeitlin PL. Effect of apical chloride concentration on the measurement of responses to CFTR modulation in airway epithelia cultured from nasal brushings. Physiol Rep 2021; 8:e14603. [PMID: 33038073 PMCID: PMC7547589 DOI: 10.14814/phy2.14603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION One method for assessing the in vitro response to CFTR-modulating compounds is by analysis of epithelial monolayers in an Ussing chamber, where the apical and basolateral surfaces are isolated and the potential difference, short-circuit current, and transepithelial resistance can be monitored. The effect of a chloride ion gradient across airway epithelia on transepithelial chloride transport and the magnitude of CFTR modulator efficacy were examined. METHODS CFTR-mediated changes in the potential difference and transepithelial currents of primary human nasal epithelial cell cultures were quantified in Ussing chambers with either symmetrical solutions or reduced chloride solutions in the apical chamber. CFTR activity in homozygous F508del CFTR epithelia was rescued by treatment with VX-661, C4/C18, 4-phenylbutyrate (4-PBA) for 24 hr at 37°C or by incubation at 29°C for 48 hr. RESULTS Imposing a chloride gradient increased CFTR-mediated and CaCC-mediated ion transport. Treatment of F508del CFTR homozygous cells with CFTR modulating compounds increased CFTR activity, which was significantly more evident in the presence of a chloride gradient. This observation was recapitulated with temperature-mediated F508del CFTR correction. CONCLUSIONS Imposing a chloride gradient during Ussing chamber measurements resulted in increased CFTR-mediated ion transport in expanded non-CF and F508del CFTR homozygous epithelia. In F508del CFTR homozygous epithelia, the magnitude of response to CFTR modulating compounds or low temperature was greater when assayed with a chloride gradient compared to symmetrical chloride, resulting in an apparent increase in measured efficacy. Future work may direct which methodologies utilized to quantify CFTR modulator response in vitro are most appropriate for the estimation of in vivo efficacy.
Collapse
Affiliation(s)
- Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.,Department of Pediatrics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| | - Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Ian M Thornell
- Dept. of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.,Department of Pediatrics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
18
|
Clinical Effectiveness of Lumacaftor/Ivacaftor in Patients with Cystic Fibrosis Homozygous for F508del-CFTR. A Clinical Trial. Ann Am Thorac Soc 2021; 18:75-83. [PMID: 32644818 DOI: 10.1513/annalsats.202002-144oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rationale: The combination of lumacaftor (LUM) and ivacaftor (IVA) is an approved CFTR (cystic fibrosis [CF] transmembrane conductance regulator) modulator treatment for homozygous F508del patients with CF.Objectives: To evaluate the effectiveness of LUM/IVA in children (6 yr or more) and adults (more than 18 yr) in a postapproval setting.Methods: This longitudinal cohort study, performed at 38 centers in the U.S. CF Therapeutics Development Network, enrolled homozygous F508del patients with CF ages 6 years old and older with no prior exposure to LUM/IVA. Study assessments were performed at baseline and at 1, 3, 6, and 12 months after LUM/IVA initiation.Results: A total of 193 patients initiated LUM/IVA, and 85% completed the study through 1 year. Baseline mean percent-predicted forced expiratory volume in 1 second (ppFEV1) was 85 (standard deviation, 22.4) in this cohort. No statistically significant change in ppFEV1 was observed from baseline to any of the follow-up time points, with a mean absolute change at 12 months of -0.3 (95% confidence interval [CI], -1.8 to 1.2). Body mass index improved from baseline to 12 months (mean change, 0.8 kg/m2; P < 0.001). Sweat chloride decreased from baseline to 1 month (mean change, -18.5 mmol/L; 95% CI, -20.7 to -16.3; P < 0.001), and these reductions were sustained through the study period. There were no significant changes in hospitalization rate for pulmonary exacerbations and Pseudomonas aeruginosa infection status with treatment.Conclusions: In this real-world multicenter cohort of children and adults, LUM/IVA treatment was associated with significant improvements in growth and reductions in sweat chloride without statistically significant or clinically meaningful changes in lung function, hospitalization rates, or P. aeruginosa infection.Clinical trial registered with www.clinicaltrials.gov (NCT02477319).
Collapse
|
19
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
20
|
A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. J Pers Med 2021; 11:jpm11070643. [PMID: 34357110 PMCID: PMC8307171 DOI: 10.3390/jpm11070643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Trikafta, a triple-combination drug, consisting of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor) and the gating potentiator VX-770 (ivacaftor) provided unprecedented clinical benefits for patients with the most common cystic fibrosis (CF) mutation, F508del. Trikafta indications were recently expanded to additional 177 mutations in the CF transmembrane conductance regulator (CFTR). To minimize life-long pharmacological and financial burden of drug administration, if possible, we determined the necessary and sufficient modulator combination that can achieve maximal benefit in preclinical setting for selected mutants. To this end, the biochemical and functional rescue of single corrector-responsive rare mutants were investigated in a bronchial epithelial cell line and patient-derived human primary nasal epithelia (HNE), respectively. The plasma membrane density of P67L-, L206W- or S549R-CFTR corrected by VX-661 or other type I correctors was moderately increased by VX-445. Short-circuit current measurements of HNE, however, uncovered that correction comparable to Trikafta was achieved for S549R-CFTR by VX-661 + VX-770 and for P67L- and L206W-CFTR by the VX-661 + VX-445 combination. Thus, introduction of a third modulator may not provide additional benefit for patients with a subset of rare CFTR missense mutations. These results also underscore that HNE, as a precision medicine model, enable the optimization of mutation-specific modulator combinations to maximize their efficacy and minimize life-long drug exposure of CF patients.
Collapse
|
21
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
22
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
23
|
Duckers J, Lesher B, Thorat T, Lucas E, McGarry LJ, Chandarana K, De Iorio F. Real-World Outcomes of Ivacaftor Treatment in People with Cystic Fibrosis: A Systematic Review. J Clin Med 2021; 10:1527. [PMID: 33917386 PMCID: PMC8038673 DOI: 10.3390/jcm10071527] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF) is a rare, progressive, multi-organ genetic disease. Ivacaftor, a small-molecule CF transmembrane conductance regulator modulator, was the first medication to treat the underlying cause of CF. Since its approval, real-world clinical experience on the use of ivacaftor has been documented in large registries and smaller studies. Here, we systematically review data from real-world observational studies of ivacaftor treatment in people with CF (pwCF). Searches of MEDLINE and Embase identified 368 publications reporting real-world studies that enrolled six or more pwCF treated with ivacaftor published between January 2012 and September 2019. Overall, 75 publications providing data from 57 unique studies met inclusion criteria and were reviewed. Studies reporting within-group change for pwCF treated with ivacaftor consistently showed improvements in lung function, nutritional parameters, and patient-reported respiratory and sino-nasal symptoms. Benefits were evident as early as 1 month following ivacaftor initiation and were sustained over long-term follow-up. Decreases in pulmonary exacerbations, Pseudomonas aeruginosa prevalence, and healthcare resource utilization also were reported for up to 66 months following ivacaftor initiation. In studies comparing ivacaftor treatment to modulator untreated comparator groups, clinical benefits similarly were reported as were decreases in mortality, organ-transplantation, and CF-related complications. The safety profile of ivacaftor observed in these real-world studies was consistent with the well-established safety profile based on clinical trial data. Our systematic review of real-world studies shows ivacaftor treatment in pwCF results in highly consistent and sustained clinical benefit in both pulmonary and non-pulmonary outcomes across various geographies, study designs, patient characteristics, and follow-up durations, confirming and expanding upon evidence from clinical trials.
Collapse
Affiliation(s)
- Jamie Duckers
- All Wales Adult Cystic Fibrosis Centre, University Hospital Llandough, Cardiff CF64 2XX, UK
| | - Beth Lesher
- Pharmerit—An OPEN Health Company, 4350 East-West Highway, Suite 1100, Bethesda, MD 20814, USA; (B.L.); (E.L.)
| | - Teja Thorat
- Vertex Pharmaceuticals Incorporated, Boston, MA 02210, USA; (T.T.); (L.J.M.); (K.C.)
| | - Eleanor Lucas
- Pharmerit—An OPEN Health Company, 4350 East-West Highway, Suite 1100, Bethesda, MD 20814, USA; (B.L.); (E.L.)
| | - Lisa J. McGarry
- Vertex Pharmaceuticals Incorporated, Boston, MA 02210, USA; (T.T.); (L.J.M.); (K.C.)
| | - Keval Chandarana
- Vertex Pharmaceuticals Incorporated, Boston, MA 02210, USA; (T.T.); (L.J.M.); (K.C.)
| | - Fosca De Iorio
- Vertex Pharmaceuticals (Europe) Limited, London W2 6BD, UK;
| |
Collapse
|
24
|
Long-Term Ivacaftor in People Aged 6 Years and Older with Cystic Fibrosis with Ivacaftor-Responsive Mutations. Pulm Ther 2020; 6:303-313. [PMID: 32965659 PMCID: PMC7671954 DOI: 10.1007/s41030-020-00129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) affect the quantity and/or function of CFTR protein reaching the cell surface. Ivacaftor, a CFTR potentiator that enhances chloride transport, increases the channel-open probability of normal and dysfunctional CFTR. Initially approved for people with CF (pwCF) with G551D-CFTR gating mutations, ivacaftor demonstrated clinical benefit in pwCF with other gating mutations and certain residual function mutations, including R117H-CFTR, in clinical studies. We evaluated the long-term safety and efficacy of ivacaftor in pwCF aged 6 years and older with non-G551D-CFTR ivacaftor-responsive mutations. Methods Efficacy and safety data from a phase 3, multicenter, open-label, extension study for participants from Study 110 (R117H-CFTR mutations), Study 111 (non–G551D-CFTR gating mutations), and Study 113 (n-of-1 pilot study in participants with residual CFTR function) were analyzed. Following washout from the randomized parent study, participants received oral ivacaftor 150 mg once every 12 h for 104 weeks. Results Forty-one of 121 participants completed treatment through 104 weeks; 59 participants who did not complete the extension study continued treatment with commercial ivacaftor. The most common adverse events were pulmonary exacerbation (46.3%) and cough (33.9%). Most treatment-emergent adverse events were mild/moderate in severity and consistent with manifestations of CF or the ivacaftor safety profile. Rapid, durable improvement occurred across all efficacy endpoints. Conclusions Ivacaftor was generally safe and well tolerated with no new safety concerns for up to 104 weeks in pwCF with ivacaftor-responsive mutations. The pattern of improvement across efficacy endpoints was durable and generally consistent with parent-study outcomes. Trial Registration NCT01707290 Electronic supplementary material The online version of this article (10.1007/s41030-020-00129-2) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Cystic fibrosis transmembrane conductance receptor (CFTR) modulators are a new class of drugs that treat the underlying cause of cystic fibrosis. To date, there are four approved medications, which are mutation-specific. Although the number of mutations that respond to these agents is expanding, effective CFTR modulators are not available to all cystic fibrosis patients. The purpose of this article is to review the approved CFTR modulators and discuss the mutations that can be treated with these agents, as well as, review the long-term benefits of modulator therapy. RECENT FINDINGS More people with cystic fibrosis can be effectively treated with CFTR modulators. The new, highly effective triple therapy, elexacaftor/tezacaftor/ivacaftor is indicated for more than 90% of patients with cystic fibrosis and ivacaftor is now approved for children as young as 6 months of age with 1 of 30 CFTR mutations. Long-term use of modulator therapy is associated with fewer pulmonary exacerbations, maintenance of lung function, improved weight gain, and quality of life. SUMMARY CFTR modulators are the first therapies developed to treat the underlying defect in cystic fibrosis. Their use is associated with preserved lung function and improved health in patients with cystic fibrosis.
Collapse
|
26
|
Tosco A, Villella VR, Raia V, Kroemer G, Maiuri L. Cystic Fibrosis: New Insights into Therapeutic Approaches. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190702151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the identification of Cystic Fibrosis (CF) as a disease in 1938 until 2012, only
therapies to treat symptoms rather than etiological therapies have been used to treat the disease. Over
the last few years, new technologies have been developed, and gene editing strategies are now
moving toward a one-time cure. This review will summarize recent advances in etiological therapies
that target the basic defect in the CF Transmembrane Receptor (CFTR), the protein that is mutated in
CF. We will discuss how newly identified compounds can directly target mutated CFTR to improve
its function. Moreover, we will discuss how proteostasis regulators can modify the environment in
which the mutant CFTR protein is synthesized and decayed, thus restoring CFTR function. The
future of CF therapies lies in combinatory therapies that may be personalized for each CF patient.
Collapse
Affiliation(s)
- Antonella Tosco
- Department of Translational Medical Sciences, Pediatric Unit, Regional Cystic Fibrosis Center, Federico II University, Naples 80131, Italy
| | - Valeria R. Villella
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Raia
- Department of Translational Medical Sciences, Pediatric Unit, Regional Cystic Fibrosis Center, Federico II University, Naples 80131, Italy
| | - Guido Kroemer
- Equipe11 labellisee Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Luigi Maiuri
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
27
|
Exocrine Pancreatic Insufficiency and Nutritional Complications. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Targeting the Underlying Defect in CFTR with Small Molecule Compounds. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Salvatore D, Carnovale V, Iacotucci P, Braggion C, Castellani C, Cimino G, Colangelo C, Francalanci M, Leonetti G, Lucidi V, Manca A, Vitullo P, Ferrara N. Effectivenesss of ivacaftor in severe cystic fibrosis patients and non-G551D gating mutations. Pediatr Pulmonol 2019; 54:1398-1403. [PMID: 31237430 DOI: 10.1002/ppul.24424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ivacaftor is a significant innovation in the treatment of cystic fibrosis (CF) with gating mutations. A substantial percentage of patients with CF have severe lung involvement, but these patients are usually excluded from phase III clinical trials. Thus, the effectiveness of ivacaftor in this population has not been fully determined. METHODS Data were collected from Italian CF centers with patients enrolled in an ivacaftor compassionate use programme (percent predicted [pp] forced expiratory volume in 1 second [FEV1 ] < 40%, or on lung transplant waiting list, or with a fast worsening trend of lung function). Data were collected for 1 year before and 1 year after ivacaftor commencement. RESULTS Thirteen patients received ivacaftor for a median of 320 days. Mean (SD) ppFEV1 increased from 35.1% (14.3%) before treatment to 46.6% (18.8%) after 12 months of treatment (absolute increase 11.5%, relative increase 32.8%). Mean distance of the 6-minute walking test improved significantly, from 535.1 m before to 611.6 m after 12 months of treatment (P = .002). The number of pulmonary exacerbations decreased significantly, from 57 during the year before ivacaftor to 28 in the year following ivacaftor (P = .0048). Five of the 13 patients (38.5%) had no exacerbations during the 12 months after starting ivacaftor. Median weight increased significantly, from 52.7 kg to 55.6 kg (P = .0031). Mean (SD) sweat chloride concentration decreased significantly, from 99.5 (22.8) mmol/L to 39.3 (15.8) mmol/L (P < .0001). No safety concerns were registered. CONCLUSIONS Ivacaftor was safe and effective in patients with CF with severe lung disease and non-G551D gating mutations.
Collapse
Affiliation(s)
| | - Vincenzo Carnovale
- Adult Cystic Fibrosis Center, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Paola Iacotucci
- Adult Cystic Fibrosis Center, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | | | - Carlo Castellani
- Cystic Fibrosis Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | | | | | - Vincenzina Lucidi
- Cystic Fibrosis Center, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Manca
- Cystic Fibrosis Center, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Pamela Vitullo
- Cystic Fibrosis Unit, Hospital G. Tatarella, Foggia, Italy
| | - Nicola Ferrara
- Cystic Fibrosis Center, Hospital San Carlo, Potenza, Italy
| |
Collapse
|
30
|
Connett GJ. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2405-2412. [PMID: 31409974 PMCID: PMC6650604 DOI: 10.2147/dddt.s153719] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/01/2019] [Indexed: 11/23/2022]
Abstract
Lumacaftor-ivacaftor is a combination of two small molecule therapies targeting the basic defect in cystic fibrosis (CF) at a cellular level. It is a precision medicine and its effects are specific to individuals with two copies of the p.Phe508del gene mutation. The drug combination works by restoring functioning CF transmembrane conductance regulator (CFTR) protein in cell surface membranes and was the first CFTR modulator licensed for the homozygous p.Phe508del genotype. The drug is a combination of a CFTR corrector and potentiator. Lumacaftor, the corrector, works by increasing the trafficking of CFTR proteins to the outer cell membrane. Ivacaftor, the potentiator, works by enabling the opening of what would otherwise be a dysfunctional chloride channel. In vivo lumacaftor-ivacaftor improves Phe508del-CFTR activity in airways, sweat ducts and intestine to approximately 10–20% of normal CFTR function with greater reductions in sweat chloride levels in children versus adults. Its use results in a modest improvement in lung function and a decreased rate of subsequent decline. Perhaps more importantly, those treated report increased levels of well-being and their rate of respiratory exacerbations is significantly improved. This review traces the development and use of this combination of CFTR modulators, the first licensed drug for treating the homozygous p.Phe508del CF genotype at the intracellular level by correcting the protein defect.
Collapse
Affiliation(s)
- G J Connett
- National Institute for Health Research, Southampton Respiratory Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
31
|
Villella VR, Tosco A, Esposito S, Bona G, Raia V, Maiuri L. Mutation-specific therapies and drug repositioning in cystic fibrosis. Minerva Pediatr 2019; 71:287-296. [DOI: 10.23736/s0026-4946.19.05506-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|